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Abstract: Lunge velocity (LV) and change of direction speed (CODS) are considered 
fundamental to success during fencing competitions; investigating the physical 
characteristics that underpin these is the aim of this study. Seventy fencers from the 
British Fencing National Academy took part and on average (± SD) were 16.83 ± 
1.72 years of age, 178.13 ± 8.91 cm tall, 68.20 ± 9.64 kg in mass and had 6.25 ± 2.23 
years fencing experience. The relationship between anthropometric characteristics 
(height, arm-spam and adductor flexibility) and measures of lower-body power 
(bilateral and unilateral countermovement jump height and reactive strength index) 
were examined in their ability to influence LV and CODS. In testing the former, 
fencers lunged (over a self-selected distance) to and from a force plate, where front 
leg impact and rear leg propulsive force was quantified; the lunging distance was 
divided by time to establish LV. CODS was measured over 12 m involving shuttles of 
between 2 and 4 m. Results revealed that LV and CODS averaged at 3.35 m/s and 
5.45 s respectively and in both cases, standing broad jump was the strongest predictor 
(r = 0.51 and -0.65 respectively) of performance. Rear leg drive and front leg impact 
force averaged at 14.61 N/kg and 3-times bodyweight respectively, with single leg 
jumps revealing an asymmetry favoring the front leg of 9%. In conclusion, fencers 
should train lower-body power emphasizing horizontal displacement, noting that this 
seems to offset any advantage one would expect fencers of a taller stature to have. 
Also, the commonly reported asymmetry between legs is apparent from adolescence 
and thus also requires some attention. 
 
Keywords: lunge; agility; asymmetry; combat; fence 

INTRODUCTION 

Fencing involves a series of explosive attacks, spaced by low-intensity movements 

with varying recovery periods, predominately taxing anaerobic metabolism (Wylde, 

Frankie, & O'Donoghue, 2013; Guilhem, Giroux, Chollet, & Rabita, 2014). The lunge 

is the most common form of attack, with around 21 per bout (Aquili & Tancredi, 

2013) and 140 across elimination bouts (Roi & Bianchedi, 2008). Equally, change of 

direction speed (CODS) is fundamental to performance; during the elimination bouts 

of foil and epee, a fencer may cover as much as 1000 m and change direction around 

200 times (Roi & Bianchedi, 2008). In sabre, where each point lasts around 2.5 s, 

there are a reported 7 changes in direction per 5-point bout (Aquili & Tancredi, 2013). 

As such, lunging and changing direction are the most prevalent actions performed, 

and well acknowledged as fundamental to success (Roi & Bianchedi, 2008; Tsolakis 

& Vagenas, 2010). Furthermore, Guilhem et al., (2014) and Tsolakis et al., (2010) 
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noted that elite fencers are faster than non-expert fencers in both. It is clear therefore, 

that the physical characteristics that underpin these skills should be identified so that 

they may be developed as part of a fencer’s training programme. 

 

Quantitative data describing the physical determinants of the lunge are sparse and 

what is available has tended to focus on kinematic data that reveal technical points 

more relevant to the sports coach (Gholipour, Tabrizi, & Farahmand, 2008; Gutierrez-

Davila, 2011; Gresham-Fiegel, House, & Zupan, 2013; Stewart & Kopetka, 2005). 

Only Tsolakis and Vagenas (2010), Tsolakis et al., (2010) and Guilhem et al., (2014) 

have examined the relationship between anthropometric, physiological traits and 

lunging. The former two (using 18 females and 15 males from the Greek national 

team; sword not specified) looked at time of lunge as measured via four photocells 

placed at a lunge distance of 2/3-leg length. They found that lunge time was 

significantly (p < 0.05) correlated with body fat percentage (r = 0.36), dominant and 

non-dominant thigh cross sectional area (r = 0.29 and 0.28 respectively) and measures 

of squat jump, countermovement jump and the reactive strength index (r = -0.46, -

0.42 and -0.41 respectively).  While the significance of strength and power can be 

noted, the validity of the lunge test may be questioned. Arguably, measuring a full, 

self-selected lunge, rather than one that is determined by leg length dimensions would 

also account for flexibility and arm span, which have been identified as important 

factors in tennis based lunges (Cronin, McNair, & Marshall, 2003). This would also 

enable those that have a longer lunge consequent to enhanced force generation 

capabilities to be noted. Finally, the time taken for the chest to break through a beam 

may not represent the time taken for the sword to make contact with the target; it also 

neglects the significance of arm velocity, which is considered fundamental (Stewart & 

Copyright ª 2016 National Strength and Conditioning Association

AC
CE
PT
ED



Kopetka, 2005). Guilhem et al., (2014) used a 6.6 m-long force place system where 

elite female sabreurs (French national team; n = 10) performed a lunge preceded by a 

step, from which displacement and velocity was calculated and compared to 

dynamometry strength testing of the hip and knee. The fencers’ centre of mass 

travelled 1.49 ± 0.19 m in 1.42 ± 0.08 s and at a peak velocity of 2.6 ± 0.2 m/s, 

generating a peak force of 496.6 ± 77.4 N. Maximal velocity was significantly 

correlated to the concentric peak torque produced by the rear hip (r  = 0.60) and knee 

(r = 0.79) extensor muscles, as well as to the front knee extensors (r = 0.81).  Again 

the significance of strength may be noted, but a void still remains across more 

dynamic tests and with respect to anthropometrics. Also no target was used and thus 

time to hit still remains an unknown variable.   

 

With respect to CODS, again only Tsolakis et al., (2010) investigated this, via a 

“shuttle test”. Here, photocells were placed at the start and end of a 5 m distance. As 

fast as possible, the fencer moved with correct fencing steps forward and back 

between them, covering a total distance of 30 m. Scores attained by elite and sub-elite 

fencers were 12.43 ± 0.95 s and 13.28 ± 0.93 s respectively and were significantly 

correlated to height, countermovement jump height and the reactive strength index 

following a drop jump from a 40 cm box (r = -.25, -.63, -.44 respectively). These 

relationships are suggestive of the positive effects of long limbs (presumably affecting 

“stride length”) and lower-body power. Given that average work times for fencers of 

epee, foil and sabre are ~ 15 (much of which is sub-maximal), 5 (Roi & Bianchedi, 

2008) and 2.5 s (Aquili & Tancredi, 2013) respectively, and changes in direction 

usually occur over shorter distance than 5 m, results may not best represent “on piste” 

CODS and thus additional more sport specific tests are required.  
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Therefore the aim of this study is to identify the physical characteristics that underpin 

both lunge and CODS performance, using tests that build on the aforementioned 

research. As such, the lunge will be determined using a force plate system that allows 

fencers to travel their “optimal” distance to strike a target. Reporting this with respect 

to time, i.e., lunge velocity, would normalize results for those that could lunge further 

but may take longer and vice versa. Also, a CODS test that replicates bout 

performance will be used, involving changes in direction required over shorter 

distances, coupled with a shorter overall distance and thus time to completion. Both 

test scores will be compared to anthropometric measures and dynamic measures of 

lower body power. Given the significance of front leg strength and lower-limb muscle 

imbalance, these will also be measured. On the basis of these previous investigations, 

it is hypothesized that both front and rear leg power would correlate to lunge and 

CODS performance, as would stature, arm-span and flexibility. Furthermore, it is 

predicted that the high impact forces during the landing phase of a lunge, would 

generate a lower-limb strength imbalance favouring the front leg. 

 

 

METHODS 

Experimental Approach to the Problem 

Lunging and CODS (dependent variables) are considered critical to performance in 

fencing and have previously been associated with anthropometry and assessments of 

lower body power and reactive strength (independent variables).  Previously however, 
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these have been measured in tests that lacked ecologically validity. The lunge 

therefore will be measured using a force plate system that allows fencers to travel 

their “optimal” distance. The CODS test is designed to better replicate bout 

performance, requiring changes in direction over shorter distances, coupled with a 

shorter overall distance and thus time to completion. Through linear regression 

analysis, any association between one or more of the independent variables may be 

considered indicative of relevant exercise training prescription. To ensure a sample 

size large enough to utilise multiple regression analysis, academy fencers were used. 

 

Participants 

Seventy male (n = 49) and female (n = 21) fencers from the British Fencing National 

Academy took part in this study. Fencers from each sword, i.e., epee (n = 30), foil (n 

= 21) and sabre (n = 19) were tested, and on average (± SD) were 16.83 ±1.72 years 

of age, 178.13 ± 8.91 cm tall, 68.20 ± 9.64 kg in mass and had 6.25 ± 2.23 years 

fencing experience. The Middlesex University Ethics Committee approved the study 

and each participant (or parent/guardian where relevant) provided written informed 

consent before taking part in the research. All participants were familiar with the 

testing protocol as it was regularly completed throughout their season at training 

camps. Given the age range of the fencers, it was possible that some athletes may be 

late matures and thus undergoing a “growth spurt”. Where this was detected (using 

calculations described below), the fencer’s data was not included in the final analysis.    
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Testing 

Tests were selected to measure lower-body power and reactive strength. In addition to 

height and weight, anthropometric data included sitting height (and thus leg-length), 

arm span and flexibility. The inclusion of leg length also enabled the estimation of 

peak height velocity as described by Mirwald et al., (2002); a measure used to control 

for variations in maturation, ensuring all fencers could be classed as adolescent and 

thus performance not affected by the neuromuscular and stature related alterations 

consequent to the growth spurt (Mirwald & Bailey, 2002). All tests were conducted 

on the same day, in the build up to a European competition, and all athletes were 

healthy and in good fitness. Athletes were residing at the training camp and thus 

hydration and nutrition was well maintained and monitored by staff. 

 

 

Anthropometric data 

Body mass was measured to the nearest 0.1 kg with an accurately pre-calibrated 

electronic weighing scale (Seca Alpha 770, Birmingham, UK). Participants were 

instructed to stand in the centre of the weighing scale’s platform, barefoot and with 

minimum clothes (Eston & Reilly, 2009). Stature was measured to the nearest 0.1 cm 

with a stadiometer (Seca 220, Birmingham, UK). Participants were asked to stand 

barefoot in an erect position with heels together, arms hanging relaxed at sides and 

their upper back, buttocks and cranium against the stadiometer They were also 

instructed to fully inhale, stretch up and orientate their head in the Frankfort plane 

upon measurement (Eston & Reilly, 2009). The measurement was taken as the 

maximum distance from the floor to the highest point (vertex) on the skull. Sitting 
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height was also measured with the only difference to standing height being that 

participants sat on a box, with their thighs parallel to the ground to ensure their spine 

was in a neutral position. This value provided an approximated peak height velocity 

using the regression equation devised by Mirwald et al., (2002) as identified in 

equations one (for boys) and two (for girls).  

 

Equation one.  

Maturity offset (boys) = -9.236 + (0.0002708*Leg length and sitting height 

interaction) – (0.001663*age and leg length interaction) + (0.007216*age and sitting 

height interaction) + (0.02292*weight by height ratio). 

 

Equation two. 

Maturity offset (girls) = -9.376 + (0.0001882*Leg Length and Sitting Height 

interaction) + (0.0022*Age and Leg Length interaction) + (0.005841*Age and Sitting 

Height interaction) – (0.002658*Age and Weight interaction) + (0.07693*Weight by 

Height ratio).  

 

Flexibility was measured as the linear distance between the lateral malleolus of each 

leg during a split in the frontal plane (Cronin, McNair, & Marshall, 2003) and arm 

span was measured as the linear distance between the middle finger tips, with the 

arms out to the side and parallel to the ground. All scores were recorded to the nearest 

0.1 cm, using flexible tape.  
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Lower-body Power  

Jump height was measured in the countermovement jump (CMJ) and single leg-

countermovement jump (SLCMJ) for both front (or lead) and back legs. SLCMJ 

scores were used to identify any asymmetries between legs. Reactive strength index 

(RSI) was measured following a drop jump from a box height of 30cm. Typically this 

is measured at multiple heights (also 45, and 60 cm) (Flanagan & Comyns, 2008) but 

without appropriate technique, higher boxes can yield unreliable results and can be an 

injury risk. During the test, fencers were instructed to minimize ground contact time 

and then jump as high as possible. The RSI was calculated as flight time in 

milliseconds divided by ground contact time in milliseconds. For all jumps (drop 

jump, CMJ, SLCMJ), fencers were instructed to keep their hands in contact with their 

hips for the duration of the test. Any movement of the hands away from the hips 

would have resulted in the jump being disqualified. Following take-off, fencers were 

also instructed to maintain full extension until contact had been made with the floor 

upon landing. All scores were measured using an optical measurement system 

(Optijump, Microgate, Italy) and recorded to the nearest 0.01cm (or to two decimal 

places in the case of RSI). The standing broad jump was measured using a flexible 

tape measure, placed along the ground. Fencers had to jump as far forward as 

possible, keeping their hands on their hips as per other jump tests. If the fencers fell 

forward at landing, causing their feet to change position, the jump was disqualified. 

Scores were recorded to the nearest 0.1 cm, and in line with the heel of the foot 

furthest back. For all tests of lower-body power, three trials were conducted for 

reliability analysis, with the highest score used for analysis. 
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Change of Direction Speed  

The CODS was measured using a 4-2-2-4 m shuttle. For this, fencers started behind 

one set of timing gates (Brower timing systems, Utah) set at hip height. Using fencing 

footwork, they travelled as fast as they could up to a 4 m line, ensuring their front foot 

crossed the line, they then travelled backwards ensuring the front foot crossed the 2 m 

line. Again they travelled forward to the 4 m-line, before moving backwards past the 

start line. The test was carried out on a metal, competition fencing piste to increase 

validity. The test was immediately stopped if the athlete used footwork deemed by the 

fencing coach to be unrepresentative of proper form, if the beam was broken at the 

start or finish line with any part of their body other than their hips, or if the athlete 

failed to pass either line with their toes or lunged in order to reach the line. Three 

trials were performed with the best score used in the analysis. During pilot testing, 

two other CODS tests were initially used. The first involved a shuttle sequence of 3-3-

3-3-3-3 m (i.e., 3 m out to a line, 3 m back and repeat three times) and the second a 

shuttle sequence of 2-4-2 m. However, it was found that because fencers continually 

return to the start position where the beam of the light gate is broken, reliability was 

affected, resulting in intraclass correlations of r < 0.6. For this reason, the 4-2-2-4 m 

shuttle, where the beam was only broken at the start and finish of the test was 

developed and used for investigation. 

 

Lunge performance 

Fencers were instructed to lunge and strike a target as fast as they could, but from 

what they deemed to be their optimal distance. Fencers were aware that there may be 

a compromise between distance and time and that to favour one may disadvantage the 

other.  The target was a round pad with a diameter of 24 cm; the fencer could adjust 
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the height of the target. The fencer was filmed in the sagittal plane using a Casio EX-

ZR1000, recording at 480 fps. Data was then analysed using Kinovea software 

(http://www.kinovea.org/) to determine lunge distance (LD) and time. Lunge velocity 

was calculated as distance⁄time. The start of the lunge (and start of timing) was 

considered as the first forward movement of the front knee that was not immediately 

followed by a backward movement; this definition accounts for the fencer’s tendency 

to “bounce” in preparation for attack. Time was stopped once contact had been made 

with the target. 

 

Fencers also lunged to and from a surface mounted force plate (type 92866AA, 

Kistler Instruments Ltd., Hook, United Kingdom), enabling the quantification of 

lunge forces at push-off and landing. Push-off peak force (POPF), impulse (using 

time to hit) and rate of force development (RFD) measured at 30, 100, 200, 300 ms 

and time to peak force, were measured in the back leg. Peak landing forces and rate of 

loading were measured in the front leg. POPF was reported relative to body mass and 

expressed as N/kg and peak landing forces (PLF) were expressed relative to body 

weight in line with previous studies (West, et al., 2011). To improve the reliability of 

force-time data, athletes were asked to “freeze” in the start position prior to each 

lunge. To determine reliability, fencers performed 3 lunges, with the best scores used 

in the analysis.  To calculate the ground reaction force derivatives described above, 

the resultant of the anterior-posterior and vertical forces was calculated and then 

filtered using a fourth-order zero-lag Butterworth low-pass filter with a 50 Hz cut-off 

for the back foot (push-off forces) and 44 Hz cut-off for the front foot (landing 

forces). Filter settings were determined by plotting the residual between the filtered 

and unfiltered signal as a function of cut-off frequency as described by Winter (2009). 
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Statistical Analysis 

Measures of normality were assessed using the Kolmonogrov-Smirnov statistic. To 

determine the reliability of each assessment, single measures intraclass correlations 

(two-way random with absolute agreement) between trials were conducted. Pearson’s 

Product Moment Correlation analysis was used to identify relationships between 

variables and a stepwise multiple linear regression was used to identify the best 

predictors of lunge velocity and CODS. All statistical analysis was conducted using 

Statistical Package for Social Sciences (SPSS) version 21 with the level of 

significance set as p < 0.05. Due to the large sample size, it would be possible to 

identify significant correlations above 0.23, which, according to Cohen (1988), 

represents a “small” effect size. However, only significant correlations > 0.3, which 

are considered “moderate”, were reported.  

 

RESULTS 

All data was normally distributed and intraclass correlations demonstrated a high 

level of reliability between trials of CMJ (r = 0.96), SLCMJ lead-leg (r = 0.92) and 

back-leg (r = 0.91), SBJ (r = 0.94), RSI (r = 0.86), lunge distance (r = 0.94), time (r = 

0.87), velocity (r = 0.78), POPF (r = 0.9), PLF (r = 0.88) and CODS (r = 0.95). 

Measures of RFD, at all time intervals (30, 100, 200, 300 ms and time to peak force), 

along with impulse and rate of loading, were all found to be unreliable (r < 0.7) and 

thus not used within the subsequent analysis. Results for all tests are illustrated in 

Table 1 and correlations are illustrated in Table 2. To avoid multicolinearity within 

the lunge regression model, CMJ was removed as it was highly correlated with SBJ (r 
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= 0.87); SBJ had a higher correlation with lunge velocity and also enabled SLCMJ 

back leg to be included in the analysis (for CMJ and SLCMJ back-leg, r = 0.84). 

SLCMJ lead-leg was not included as it was highly correlated with SLCMJ back-leg (r 

= 0.87) and the latter was deemed to contribute to lunge velocity more. Therefore, 

only three variables (CMJ, SLCMJ back-leg and POPF) were entered (noting that no 

anthropometric data correlated with lunge velocity) into the regression model, which 

given the sample size (n = 70), was deemed acceptable (Field, 2013). The best 

predictor of lunge velocity was a one variable model using SBJ (Table 3). For the 

CODS regression model, height, flexibility, SBJ, SLCMJ back-leg and RSI were 

entered. Again, the best predictor of lunge velocity was a one variable model using 

SBJ (Table 4). 

 

**** Tables 1 – 4 here **** 

 

DISCUSSION 

Anthropometric measures of height, arm-span and flexibility showed no correlation 

with lunge velocity (LV). While most measures of lower-body power did, SBJ had the 

highest correlation (r = 0.51) and was also the only variable to be used in the multiple 

regression model, which accounted for 26% of the variability in the score. Height and 

flexibility did however, correlate with lunge distance (see Table 3). Based on previous 

research, flexibility was expected to show some relationship (Cronin, McNair, & 

Marshall, 2003), as enhanced mobility within the adductor complex would likely 

allow fencers to lunge further. Longer legs (again allowing a greater stride), coupled 
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with a longer torso (and thus a greater lean towards the target) would also enable 

fencers to do the same.  

 

The CODS test was completed in 5.45 ± 0.65 s and thus better replicates the 

approximated work duration of a fencing point. While epee and foil have longer 

“work” times, much of this is at a sub-maximal intensity; also sabre’s work duration 

is averaged at half of this but it is expected that using a CODS that would take less 

than 3 s would negatively affect test reliability. The CODS was correlated with all 

variables (except flexibility where stride length was presumably not great enough to 

affect this) and similar to LV, SBJ had the highest correlation (r = -0.65). It was also 

the only variable to be used in the regression model, accounting for 43% of the 

variability in the score. Like LV, CODS is correlated to lower-body power, but also 

leg-length, which may in part dictate stride length.  RSI is correlated, which given the 

need for “fast feet” and thus reduced ground contact times, is not a surprising finding. 

This is the first study to identify scores for CODS over sprint-based distances in 

fencing, so a comparison with other studies is not possible.   

 

The lack of any correlation with lunge time across all variables may suggest that the 

ability to generate lower-body power, cancels out the assumed greater time expected 

for taller fencers (who travel a larger distance) to hit the target. That is, enhanced 

lower-body power also enables fencers (of smaller stature) to take up their en guard 

position further away from their opponent. It may also suggest that fencers tend to opt 

for standing a greater distance from the target (and staying out of range), rather than 

reducing time to contact. In essence, fencers used their perceived propulsive forces to 
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move further away from the target (beyond that dictated by their anthropometrics), 

rather than maintain distance and hit the target in a shorter time. This inference is 

supported by the consistent significant correlations between measures of lower-body 

power and lunge distance. Equally, it is measures of lower-body power, rather than 

anthropometric characteristics, which better relate to LV. Anecdotally, coaches also 

generally teach their athletes to maintain an “out of range” distance from their 

opponent. These observations fit the theories of body- and action-scaled affordances 

(Fajen, Riley, & Turvey, 2009), whereby athletes self optimises for a particular task 

based on anthropometry e.g., leg - length (body – scaled) or on capabilities such as 

strength (action – scaled).  Results may suggest that the “optimal”, self-selected 

lunge, is a technique not only standardized by anthropometric measures, but also the 

ability to generate force and propel ones self forward.  

 

A higher correlation between POPF (N/kg) and LV was expected, especially given the 

correlations with lower-body power including single-leg jumps. Also, Guilhem et al., 

(2014) through electromyography analysis, showed that the activation of rear leg 

extensor muscles i.e., gluteus maximus, vastis lateralis and soleus, was correlated to 

LV (r = 0.70, 0.59 and 0.44, respectively). On re-examination of the video footage, it 

is clear that some fencers initiate the lunge with extension of the legs, while others 

(correctly for the purpose of “priority” scoring) with extension of the lead arm; a 

discrepancy in technique noted elsewhere (Gholipour, Tabrizi, & Farahmand, 2008; 

Gutierrez-Davila, 2011). If the latter is performed incorrectly, it may have the effect 

of shifting the athlete’s centre of mass forward and thus reducing the ability of the 

athlete to generate force at the back leg due to its reduced active state, see Bobbert 

and Casius (2005) for further details. If coupled with torso lean, this could also result 
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in changes to the length-tension relationship across various muscle groups, including 

the hip extensor complex. If such assertions were true, they would warn of the 

negative consequences of a lead arm that does not move independent of the body; 

fencers should not feel that this movement shifts their weight forward favouring the 

front leg, or causes the torso to lean towards the target.  

The average lunge distance was 148.28 ± 25.06 cm. This was further than that noted 

by Gholipour et al., (2008), but similar to Gutierrez-Davila et al., (2011) (117 and 140 

cm respectively). Compared to Guilhem et al., (2014), and acknowledging their lunge 

was preceded by a (small) step but our fencers were taller (~8 cm), distance travelled 

appears similar. The average lunge time (from initiation to sword contact with target) 

was 400 ± 8 ms. This was quicker than Gholipour et al., (2008), Gutierrez-Davila et 

al., (2011) and Guilhem et al., (2014) (1082, 601 and 1430 ms respectively). In the 

study of Gholipour et al., (2008), fencers were asked to lunge with no target to aim at, 

with time stopped at completion of the lunge, which can often follow the swords 

contact with the target as this may occur with the front foot still airborne. Also, data 

was recorded at 50 Hz, creating a probable error of ± 20 ms. In the study of Gutierrez-

Davila et al., (2011) lunge distance was set at 1.5-fold the height of the fencer. While 

time was stopped when the sword made contact with the target, fencers first had to 

respond to a visual cue, thus including a reactive element. In the Guilhem et al., 

(2014) study, the lunge was preceded by a step as well as measured until the front foot 

made contact with the floor, rather than the sword with the target. Only Tsolakis and 

Vagenas (2010) have found quicker lunge times.  They reported scores of 180 ± 30 

ms and 210 ± 40 ms in elite and sub-elite Greek Fencers respectively. As 

aforementioned, they used a different protocol (four photocells placed at a lunge 
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distance of 2/3-leg length, with the height of the photocells adjusted to be interrupted 

by the chest) making comparisons difficult.  

 

Like Tsolakis and Vagenas (2010) and Tsolakis et al., (2010) correlations were found 

between lead leg power and lunge performance, which given the landing forces 

experienced (~ 3 times body weight) and thus the need to demonstrate and develop 

high eccentric (braking) strength (Guilhem, Giroux, Chollet, & Rabita, 2014), is not a 

surprising outcome. Also, given its correlation with LD, it appears that this will 

continually develop with increases in stature and the ability for rear leg propulsion. 

The association is of course indirect, as the measurement of lower-limb muscle 

activation has revealed the lunge is performed via rear leg propulsion (Guilhem, 

Giroux, Chollet, & Rabita, 2014). The high landing forces also explain the 

asymmetries noted here and previously (Guilhem, Giroux, Chollet, & Rabita, 2014) 

and although these fencers are ~ 17 years, they are already close to the threshold (> 

15%) for which the likelihood for injury is high (Impellizzeri, Rampinni, & Marcora, 

2007) and performance may be compromised (on average, fencers had asymmetry of 

9.3%). Although not measured here, it is likely that the force required to return to the 

en guard position following the competition of the lunge, will add to this 

asymmetrical issue.  

 

The results herein add to the growing evidence that strength and power characteristics 

positively correlate to lunge and CODS performance. We would also add stature and 

flexibility in the adductors as having beneficial effects. We also highlight the 

concerns of others regarding lower-limb asymmetries in favour of the front leg on 
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account of high landing forces (and probably the need to recover from this position). 

This will increase the risk of injury and compromise performance and is an issue 

already apparent in many of these adolescent fencers. Unfortunately, time based 

derivatives of force (i.e., RFD and impulse) where too unreliable to be used for 

analysis. Future investigations should look to standardize the lunge position better, 

requiring static poses in the start position in excess of 3 s to reduce active state 

(Bobbert & Casius, 2005).  

 

CONCLUSIONS AND PRACTICAL APPLICATIONS 

Training the lunge. Based on these results, fencers of smaller stature (and thus 

reduced attacking range) can compensate for this by working on the ability to 

generate force, especially in the horizontal direction. Training programmes should 

look to include horizontal jumping, bi-lateral and unilateral. Of note, the SLCMJ lead-

leg was also correlated with distance and velocity and, despite not being as 

responsible for propelling the body forward while lunging, had higher jump scores 

than the back-leg (18.86 ± 4.65 cm vs. 17.1 ± 4.62 cm). It may be that this is an 

outcome of the high landing forces generated from the lunge, as well as the push-off 

force then required to quickly recover back to the en guard position; both are likely to 

translate to strength gains. These may reveal the benefits of exposing the back-leg to 

higher landing/eccentric forces as part of training, as well as high concentric forces 

from a relatively deep squat position (thighs at least parallel to the floor). Finally, 

despite the relatively young age of the fencers (16.83 years), the 6.25 years 

experience in fencing has already generated a lower-limb asymmetry between the 

front leg and back leg of 9.3%. Given that a 15% difference is a probable indication 
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of impeding injury (Impellizzeri, Rampinni, & Marcora, 2007), this needs to be 

addressed. As well as more single-leg work on the weaker leg (generally the back 

leg), switching the stance during warm-ups may be one way of addressing this. 

 

Training CODS. Exercises that develop lower-body power, especially with horizontal 

propulsion, may be beneficial. These should also be supplemented with exercises that 

develop reactive strength such as drop jumps and hurdle jumps; perhaps the latter will 

have a greater carry-over given its horizontal displacement, as SBJ (horizontal 

displacement) showed a stronger correlation than CMJ (vertical displacement). 

Finally, taller athletes tend to be at an advantage; perhaps due to an ability to 

maximize stride length. 
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Table 1 Descriptive statistics for anthropometric and strength and power 

variables in British Fencing National Academy Fencers (n = 70) 
Variable Mean (SD) Standard deviation 

APHV 1.63 1.21 

Leg-length (cm) 92.50 7.01 

Arm-span (cm) 171.91 10.56 

Flexibility (cm) 147.75 17.49 

SBJ (cm) 177.7 0.32 

CMJ (cm) 34.33 7.33 

SLCMJB (cm) 17.1 4.64 

SLCMJF (cm) 18.86 4.65 

Asymmetry (%)  9.3 8 

RSI 2.27 0.56 

Peak push-off force (N/kg) 14.61 2.47 

Peak landing forces (BW) 2.83 1.16 

Lunge distance (cm) 148. 28 25.06 

Lunge time (s) 0.40 0.08 

Lunge velocity (m/s) 3.35 0.70 

Change of direction speed (s) 5.45 0.65 
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APHV = approximated peak height velocity; SBJ = standing broad jump; CMJ = countermovement 

jump; SLCMJ = single leg-countermovement jump, both back (B) and front (F); RSI = reactive 

strength index; BW = body weight 

 

Table 2 Correlations for anthropometric and strength and power tests with 

lunge distance, time and velocity. 

 Lunge distance Lunge time Lunge velocity 

 

CODS 

Height .45 - - -.37  

Arm-span .37 - - / 

Flexibility .38 - - - 

CMJ .44 - .49 -.49 

SBJ .43 - .51 -.65 

SLCMJB .43 - .38 -.46 

SLCMJF .37 - .45 -.45 

RSI .38 - -  -.41 

Peak push-off force .32 - .38 / 

Peak landing forces .38 - / / 

All correlations significant at p < 0.001. CODS = change of direction speed; SBJ = standing broad 

jump; CMJ = countermovement jump; SLCMJ = single leg-countermovement jump, both back (B) and 

front (F); RSI = reactive strength index; / = not tested; - = no correlation. 
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Table 3 Multiple Regression model to predict lunge velocity 
Model B SE B β 

Constant 1.766 0.350  

SBJ 0.923 0.198 0.507* 

Note. R2 = .257. *p < .001 

 

Table 4 Multiple Regression model to predict change of direction speed 
Model B SE B β 

Constant 7.660 0.320  

SBJ -1.279 0.180 -0.652* 

Note. R2 = .425. *p < .001 
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