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1. Introduction

Let k be a field of finite characteristic p, and G a finite group acting on the
left on a finite dimensional k-vector space V . Then the dual vector space V ∗

is naturally a right kG-module, and the symmetric algebra of the dual, R :=
Sym(V ∗), is a polynomial ring over k on which G acts naturally by graded algebra
automorphisms, and if k is algebraically closed can be regarded as the space k[V ] of
polynomial functions on V . The G-fixed points of R under this action form a ring,
which we denote by RG and call the ring of invariants. If k is algebraically closed,
RG can be regarded as the set of G-invariant polynomial functions on V , or the
ring of coordinate functions on the quotient space V/G. The ring of invariants RG

is the central object of study in invariant theory. The situation becomes modular
when we assume p divides the order of G. Let P be a (fixed) Sylow-p-subgroup of
G.

Since the ring of invariants RG coincides with the zeroth cohomology H0(G, R),
we can regard RG as the zeroth degree part of the cohomology ring H∗(G, R), and
as such, the higher cohomology modules Hi(G, R) become RG-modules via the cup
product. One can often learn more about the structure of modular rings of invari-
ants by studying these higher cohomology modules; for example, in [3] Ellingsrud
and Skjelbred showed that Hi(G, R) is Cohen-Macaulay for G cyclic of order p.
They then used this result to find a formula for the depth the ring of invariants RG

in this case. This approach was also used in [7], [9] and [10] to answer questions
about the depth or Cohen-Macaulay property of modular invariant rings.

If X < G, we may define a mapping TrG
X : RX → RG as follows: let S be a

set of right coset representatives of X in G. Then we define

TrG
X(x) :=

∑
g∈S

xg. (1)

This mapping is often called the relative transfer, and induces mappings TrG
X :

Hi(X, R) → Hi(G, R) also called the relative transfer. Both are surjective when
the index of X in G is coprime to p. The image of the transfer map TrG

X(RX) is
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an ideal in RG called the relative transfer ideal which we denote by IG
X . We may

generalise this definition and define

IG
χ :=

∑
X∈χ

IG
X

for any set χ of subgroups of G. Relative transfer ideals and their radicals have
been studied widely in connection with modular invariant theory. For example it
is known that the quotient ring RG/

√
IG
<P

1 is always Cohen-Macaulay (see [6]).
Let H+(G, R) denote the set of positive degree elements of the cohomology

ring H∗(G, R), that is, we define H+(G, R) := ⊕i>0H
i(G, R). The main purpose

of this paper is to prove the following:

Theorem 1.1. Let p be an associated prime ideal of the RG-module H+(G, R).

Then p =
√

IG
χ for some set χ of subgroups of G.

Remark: The relative transfer ideals IG
χ defined above were first studied by

Fleischmann ([5]), who proved the following formulae:√
IG
χ = (

⋂
X∈χ′

((g − 1)V ∗| g ∈ X)R) ∩RG = (
⋂

X∈χ′

I(V X)) ∩RG (2)

where χ′ := {Q ≤ P | Q 6≤ Xg for any g ∈ G and X ∈ χ}, and for a subspace
W of V , I(W ) denotes {f ∈ k[V ]| f(W ) = 0}. So we should be able to use
these formulae along with Theorem 1.1 to construct some associated primes of
cohomology modules.

Brief digression: Consider for a moment the cohomology ring H := H∗(G, k)
of a finite group G with coefficients in a field k whose characteristic divides the
order of G. It is known (see, for example [2], Theorem 12.7.1) that the associated

primes of the ring H take the form
√

ker(resG
E) for certain elementary abelian

subgroups E of G. Using a result of Benson ([1], Theorem 1.1), one can show

this is equal to
√∑

X∈χ TrG
X(H∗(X, k)) where χ is the set of subgroups of G not

contained in any Sylow-p-subgroup of CG(E). So the associated primes of H are
also radicals of relative transfer ideals. Whether this result and Theorem 1.1 are
two examples of a more general phenomenon remains to be seen.

2. Annihilators in Cohomology

The following lemma is an observation of Lorenz and Pathak ([11], Lemma 1.3).
It is a simple consequence of the transfer-restriction formula for cup products
([2], Theorem 4.4.2) and the starting point for our investigations. Throughout this
section, let m be a strictly positive integer.

Lemma 2.1. Suppose α ∈ Hm(G, R) satisfies resG
N (α) = 0. Then AnnRG(α) ≥ IG

N .

1Here, “< P” means the set of all proper subgroups of P .
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Proof. Let x ∈ RN . Then we have TrG
N (x) · α = TrG

N (x · resG
N (α)) = 0. �

Corollary 2.2. Suppose α ∈ Hm(G, R) and define

χ(α) := {X ≤ P | resG
X(α) = 0}. (3)

Then AnnRG(α) ≥ IG
χ(α).

Remark: Since the Sylow-p-subgroups of G are conjugate and TrG
Xg (x) =

TrG
X(xg), we gain nothing by considering the set of all subgroups X ≤ G on which

resG
X(α) = 0.

The following result on annihilators is the key to proving our main theorem.

Lemma 2.3. Let 0 6= α ∈ Hm(G, R). Then we have

AnnRG(α) ≤
√

IG
<P = I(V P ) ∩RG.

Proof. The second statement is just (2) applied to the set {< P} of all proper
subgroups of P . The first is [7], Corollary 2.2, which is itself a consequence of a
much more general result of Kemper ([10], Proposition 1.2). �

Lemma 2.4. Let 0 6= α ∈ Hm(G, R). Then we have√
IG
χ(α) =

⋂
X∈χ′(α)

(I(V X)) ∩RG

where χ′(α) := {X ≤ P | resG
X(α) 6= 0}.

Proof. Using (2), we must show that χ′(α) as defined above is equal to

{X ≤ P |X 6≤ Y g for any g ∈ G and Y ∈ χ(α)}.
This is tantamount to proving that resG

X(α) = 0 implies resG
Xg = 0 for all g ∈ G,

which is well known and follows from the fact that conjugation map (−)g−1
:

Xg → X induces an isomorphism i : H∗(X, R) → H∗(Xg, R) satisfying resG
X =

i ◦ resG
Xg . �

Our main theorem now follows from the following result:

Proposition 2.5. Suppose α ∈ Hm(G, R) and χ(α) is defined as in Corollary 2.2.
Then √

AnnRG(α) =
√

IG
χ(α)

Remark: Suppose α ∈ H1(G, k). Then α can be viewed as a homomorphism
from G to k, which has a well-defined kernel N . Kemper ([9], Proposition 3.4)2

proved that
√

AnnRG(α) =
√

IG
N . For any subgroup X ≤ G, we have resG

X(α) = 0
if and only if X ≤ Ng for some g ∈ G. So Proposition 2.5 may be viewed as a
generalisation of this result.

2Kemper actually proved this result under the assumption that k is algebraically closed, although

since Fleischmann’s formulae (2) hold for an arbitrary field of characteristic p, the generalisation
of his result to any field of characteristic p is easily obtained.
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Proof. That
√

AnnRG(α) ≥
√

IG
χ(α) is an immediate consequence of Corollary 2.2.

To prove the reverse, let yn ∈ AnnRG(α) for some n ≥ 0. Let Q ∈ χ′(α) and define
β := resG

Q(α) 6= 0. Then we have

0 = yn · α = resG
Q(yn · α) = yn · β

since resG
Q : H∗(G, R) → H∗(Q,R) is a ring homomorphism which specialises to

the inclusion RG → RQ on the degree zero part. This means that yn ∈ AnnRQ(β),
so yn ∈ I(V Q) ∩ RQ by Lemma 2.3, and since this holds for every Q ∈ χ′(α) we
have

yn ∈ RG ∩
⋂

X∈χ′(α)

((I(V X)) ∩RX) = RG ∩
⋂

X∈χ′(α)

(I(V X)) =
√

IG
χ(α)

where the final equality follows from Lemma 2.4. Therefore y ∈
√

IG
χ(α) as required.

This completes the proof of Proposition 2.5, and since the associated primes of
H+(G, R) are those annihilators of homogeneous α ∈ H+(G, R) which are prime
ideals, this completes the proof of Theorem 1.1 too.

�
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