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Abstract   Nature-inspired algorithms usually use some form of attraction 

and diffusion as a mechanism for exploitation and exploration. In this paper, 

we investigate the role of attraction and diffusion in algorithms and their 

ways in controlling the behaviour and performance of nature-inspired 

algorithms. We highlight different ways of the implementations of attraction 

in algorithms such as the firefly algorithm, charged system search, and the 

gravitational search algorithm. We also analyze diffusion mechanisms such 

as random walks for exploration in algorithms. It is clear that attraction can 

be an effective way for enhancing exploitation, while diffusion is a common 

way for exploration. Furthermore, we also discuss the role of parameter 

tuning and parameter control in modern metaheuristic algorithms, and then 

point out some key topics for further research.   
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1. Introduction 

 

Optimization problems are often challenging to solve, and highly nonlinear problems often 

necessitate new optimization methods such as nature-inspired metaheuristic algorithms [20, 

8]. Genetic algorithms (GA) and particle swarm optimization (PSO) [12] have been used in 

almost every area of science and engineering. During the last 10 years, new nature-inspired 

algorithms such as firefly algorithm (FA) and cuckoo search (CS) have also become popular 

and proved to be competitve compared to more established approaches [22, 24]. For 

example, CS was applied to engineering optimization and structural design problems, and 

obtained superior results [25, 7]. Other new algorithms such as the accelerated particle 

swarm optimization (APSO) and bat algorithm are also very promising [28,  29].  

     Two key components of any nature-inspired algorithm are exploitation and exploration, 

and different algorithms have different ways of realizing them. Most algorithms use some 

form of randomization or random walks to enhance exploration, while exploitation can be 

more deterministic. It is often very challenging to analyze and understand how these 

interacting components actually work and how they affect the efficiency of an algorithm.  

     This paper attempts to analyze attraction and diffusion as effective mechanisms for 

exploitation and exploration in nature-inspired algorithms. The novel idea of attraction was 

first introduced by Yang [20, 22] when he developed the firefly algorithm in 2007 and 

published a book chapter on this subject (Chapter 8) in 2008 [20]. The attraction action tends 

to aggregate all swarm agents into a smaller region, thus leading to quicker convergence. 

Random walks as a diffusion mechansim and thus a search mechanism have been used for 

many years, and can be traced back as early as the development of the Monte Carlo method. 

The main purpose of this paper is to gain further insight by analyzing these key components.  

      The paper is organized as follows: we first introduce the concepts of attraction and 

diffusion, and then analyze three algorithms: the firefly algorithm, the charged system search 

and the gravitational search algorithm. We then discuss parameter tuning and parameter 

control, and finally we discuss the implications and possible extension for further research. 
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2. Attraction in Nature-Inspired Algorithms  
 

2.1 Exploitation and Exploration 

 
In all nature-inspired algorithms, there are two key components: exploitation and 

exploration, or intensification and diversification [3]. Exploration means that the search 

space is sufficiently investigated on a rough level, while exploitation means that interesting 

areas (i.e., those aound local optima) are searched more intensively in order to allow for a 

good approximation to an optimum. The two concepts are characterized in [6] as follows: 

"Exploration is the process of visiting entirely new regions of a search space, whilst 

exploitation is the process of visiting those regions of a search space within the 

neighborhood of previously visited points."  For proper exploration, new solutions generated 

by an algorithm should be sufficiently far from the existing solulutions so that all the regions 

can be accessible by the explorative moves. On the other hand, proper exploitation means 

that new solutions should use information gained from exisiting good solutions so that the 

rate of convergence can be sped up, without wasting too many new moves. Exploitation is 

often achieved by using intensive local search information such as gradients [21], such 

information is usually landscape based, which is closely linked with the optimization 

objective,  while exploration is often carried out using some randomization techniques and 

random walks [21]. Depending on the step size (or the distance moved from existing 

solutions), such randomization can be either local (when step sizes are small) or global 

(when step sizes are large).  

The most extensive use of exploitation is probably the use of the gradient information of 

the objective function of an optimization problem of interest. In fact, gradient-based methods 

such as the well-known Newton-Raphson method are among the most widely used and they 

are very efficient for local search, though they have the drawbacks that they could not 

provide the global optimality for multimodal optimization problems.  For swarm intelligence 

based algorithms such as particle swarm optimization, it typically uses a forcing term (xbest-

xi) where xbest is the best solution found so far. This can be considered as a gradient term if 

we implicitly assume that the step size is fixed (or with a scaling factor). One of the exotic 

forms of exploitation is attraction which we will discuss in the next subsection.  

On the other hand, exploration is usually carried out by randomization, in terms of either 

simply random numbers or variables, random walks, or more sophisticated methods such as 

Lévy flights [22, 24]. From the statistical point of view, diffusion is a random walk, and is 

thus equivalent to a search mechanism.  
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For ensuring that an algorithm can reach a globally optimal solution (or a Pareto-optimal 

solution in the case of a multiobjective optimization problem), there must be a positive 

probability that such a solution can be obtained from a given starting solution. For a 

continuous optimization problem, this usually requires certain regularity properties of the 

problem and a random mechanism with a positive probability density around the global 

optimum or along a feasible exploration way towards the optimum [11]. 

Exploration and exploitation can be considered two sides of the same coin. Exploration 

tends to increase of the probability of finding the global optimality, but affect the rate of 

convergence, whereas exploitation tends to speed up the convergence but may sacrafice the 

chance of finding the global optimality. In factm, too much exploration and too little 

exploitation may almost guarantee the access of global optimality, but can significantly slow 

the convergence, and thus may render the algorithm almost useless in practice because it 

may take almost infinitely long to achieve the guaranteed global optimality. At the other 

extreme, too much exploitation and too little exploration can make the algorithm converge 

towards a local optimum, largely depending on its initial, starting point, which effectively 

turn a global optimizer into a local optimizer, with little probability of achieving true global 

optimality. Therefore, it is obvious that  an important issue is to balance exploitation and 

exploration during the search process so that an algorithm can produce a better, ideally an 

optimal, performance. However, there is no easy way to achieve this balance, and the fine 

balance itself is a tough optimization process, or an optimization problem of an optimizaiton 

algorithm. 

 

2.2 Attraction as an Exploitation Mechanism  

 

The basic idea of attraction is that solutions are attracted by other solutions 

when they are modified during the run of the algorithm. For a population of 

solutions, solutions can be ranked based on their fitness values or objective 

function values. If some moves allow the low-fitness solutions to move to-

wards higher (or even highest) fitness solutions, the overall fitness of the 

population can improve with such moves. One possible mechanism is to use 

attraction where the highest solution acts as an attractor, whereas the low 

fitness solutions are essentially the attractees. How far each attraction move 

can be will depend on the attraction mechanism. Thus, attraction is a mech-

anism prevents a purely random walk of solution.  
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     The novel idea of attraction via light intensity as an exploitation mecha-

nism was first used by Yang [20] in the firefly algorithm (FA). In FA, the 

attractiveness (and light intensity) is intrinsically linked with the inverse-

square law of light intensity variations and the absorption coefficient. As a 

result, the attraction  is calculated by  = 0exp[-r2
] where r is the 

distance between two solutions (or fireflies), 0 is a constant corresponding 

to the  attractiveness at the distance r=0, and >0 is the absorption 

coefficient [20,  22]. In essence, the brightest firefly (or the best solution) 

acts as a main attractor that exerts a ‘magic’ force so that other fireflies can 

move towards this best locationm, making the population potentially 

converge towards this current best location. 

     Other algorithms also used attraction based on the inverse-square laws, 

derived from nature. For example, the charged system search (CSS) used 

Coulomb’s law [13], while the gravitational search algorithm (GSA) used 

Newton’s law of gravitation [16]. 

    In other nature-inspired algorithms, the mechanism of attraction is 

possibly less obvious but nevertheless important for convergence. For 

instance, in evolutionary algorithms genetic information is exchanged 

between solutions from a given population. This mechanism which is called 

recombination and cross-over leads, together with a more likely selection of 

better solutions, to an increase of their genetic "material". This can be 

interpreted as an attraction towards the superior solutions. For a rigourous 

convergence analysis, usually further properties of the methods are required 

such as, for instance, elitism which means that best solutions are preserved 

during optimization runs [9, 11]. This mechanism also facilitates the 

attraction towards the best found solutions. 

     The main function of such an attraction is to enable an algorithm to 

converge quickly because these multi-agent systems evolve, interact and 

attract, leading to some self-organized behaviour and attractors. As the 
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swarming agents evolve, it is possible that their attractor states will move 

towards the true global optimum under appropriate conditions, though each 

algorithm may behave differently in terms of the ways of converging towards 

the global optimum. 

 

2.3 Firefly Algorithm 

 

The Firefly Algorithm (FA) was first developed by Yang in 2007 and was 

based on the flashing patterns and behaviour of fireflies, and the work on 

FA was published in 2008 [20, 22]. The movement of firefly i (correspond-

ing to solution xi) attracted to another, more attractive (brighter, attractor) 

firefly j (solution xj) is determined by                             
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where 0 is the attractiveness at the distance rij=0, and the second term is 

due to the attraction. The third term is randomization with  being the ran-

domization parameter, and i
t
 a vector of random numbers drawn from a 

Gaussian distribution, or other distributions, at time t. If 0=0, it becomes a 

simple random walk. Furthermore, the randomization i
t
 can easily be ex-

tended to other distributions such as Lévy flights. 

     The above updating Eq. (1) has a nonlinear attraction term (the second 

term). As the attraction decreases as the distance increase, the main attrac-

tion force can be visible in a domain of the radius of the order of 𝐿 =

𝑂 (
1

√𝛾
). Outside this domain, the attraction force becomes very weak. There-

fore, the above equation provides a novel and yet efficient mechanism to al-

low the agents to move and attract each other in the neighbourhood. Since 

the short-range attraction is stronger than long-range attraction, agents in the 

whole population can subdivide into multiple subswarms due to the strong 

local, short-range attractions. Such automatic division of the whole popula-
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tion can be advantageous because each smaller subgroup or subswarm can 

swarm around a local optimum or mode in the multimodal, objective land-

scape. Obviously, among all the modes, there is the global optimum, and FA 

will usually find this global optimality very efficiently. Since this subdivi-

sion is purely based on the fact that short-distance attraction is stronger than 

long-distance attraction, there is no need to intervene by the user. The single 

update equation governs such behaviour, and the division is automatic and 

intrinsic. Therefore, we can say that , the concept of multi-swarm is intrinsi-

cally built into the firefly algorithm. Obviously, if the number of modes is 

m, then the population size n must be sufficient large (𝑛 ≫ 𝑚) so that all 

the modes can be detected and obtained simultaneously.   

     However, the proper convergence and stability require good parameter 

setting,  as it is true for almost all metaheuristic algorithms, an insufficient 

parameter setting or other circumstances may lead to premature conver-

gence (i.e. convergence to a non-optimal solution) [1]. 

  Compared with other algorithms, FA has three distinct advantages: 1) au-

tomatic subdivision of the whole population into subgroups; 2) the natural 

capability of dealing with multimodal optimization; 3) high ergodicity and 

diversity in the solutions. All these advantages make FA very efficient. This 

novel attraction mechanism is the first of its kind in the literature of nature-

inspired computation and computational intelligence. This also motivated 

and inspired others to design similar or other types of attraction mecha-

nisms. Whatever the attraction mechanism may be, from the metaheuristic 

point of view, the fundamental principles are the same: that is, they allow 

the swarming agents to interact with one another and provide a forcing term 

to guide the convergence of the population [20, 28].  

 

2.4 Charged System Search 
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The charged system search (CSS) was based on the fundamental Coulomb’s 

law of charged systems [13]. Though its actual formulae are no longer simi-

lar to the actual attraction of charges, they still have some attraction term 

that was initially based on the physical mechanism. In the CSS, they used a 

normalized distance  
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where  is a small positive number to avoid singularity. However, this singu-

larity may cause potential problems if not handled properly, especially when 

the current solution is already close to a local optimum.  For example, when 

xi=xj=xbest, the distance would become 0, unless >0. In addition to this nor-

malized distance, they also used the goodness (or badness) factor of attrac-

tion pij {0, 1}. This factor determines whether a solution (charged particle) 

attracts another charged particle. In general good solutions can act as attrac-

tors to attract bad solutions, but the opposite mechanism is also possible. 

While the first type of attraction mainly serves an exploitation purpose, the 

second type can allow for a better exploration if it is strong enough. 

       Due to the rescaled characteristics of the true distance, the attraction is 

also normalized, which gives a weakened force than its physical counter 

part. In addition, as there is no exponential term as that in FA, the combina-

tion of normalization and linearization make the CSS lose the subdivision 

capability. Though as one of the reviewers has pointed out, it may be possi-

ble to write the CSS as  

 1 ,t t t t

i i j ix x A x x B                                               (3) 

where A and B are constant, though A should be dependent on the distance. 

However, the form of variation of A has a peak value at r=1, which means 

the attraction is weaker when the normalized distance is less 1. This means 

that aggregation of short distance swarms are weaker and slower. Thus, the 

population cannot be split up into subgroups which may evolve more or less 
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independently. This can be seen in the overall behaviour of the CSS algo-

rithm. At least, up to now, there is no subdivision of CSS observed in the 

literature. Despite these drawbacks, CSS can be efficient in solving optimi-

zation problems [13] and  structural design optimization problems [31,32].   

 

2.5 Gravitational Search Algorithm 

 

The gravitational search algorithm (GSA) was based on Newton’s law of 

gravitation [16], though the actual form of the algorithm was also somehow 

different from reality in the sense that the gravitational constant varies and 

the distances are rescaled. For example, in GSA, the attraction or force term 

was written as 

  

 
i j

j i

ij
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
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                                  (4) 

 

where Rij is the Euclidean distance. Again,  is a small positive number to 

avoid singularity. The mass Mi of each particle i is encoded and linked with 

the objective function through the following equations: 
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Here, fiti(t) is the fitness value of agent/particle xi at time t, worst(t) is the 

fitness of the worst agent/particle (xworst) in generation t, and best(t) is the 

fitness of the best agent/particle (xbest) in generation t. However, there is a 

potential singularity problem when the system fully converges; that is, in the 

special case of best(t)=worst(t) when all particles converge at the same 
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points for simple unimodal functions. In addition, they also used the veloci-

ty updating rules, similar to that of PSO, to calculate new positions and ve-

locities. Though the gravitational constant G(t) can be treated as a constant, 

however, it can also be varied. In the standard GSA, there is no suggestion 

what is the best way to vary G(t). In the original GSA [16], the variation of 

G(t) obeys the following form𝐺(𝑡) = 𝐺(𝑡0) (
𝑡0

𝑡
)

𝛽

,   𝛽 < 1,                               

(6) 

where G(t0)  is the initial value of the gravitation constant at the time t0. However, such 

variation may be physically realistic, but from the algorithmic point of view, 

it may not be useful. Late variants suggest the following variation   

 0 maxG(t) G exp[ t / t ],                                         (7) 

Here, G0 is the initial value of G, and α is a positive constant. Here, tmax is 

the maximum number of iterations [30]. . There are a few parameter in the 

GSA: population size (n), G0, α and δ. The rescaling of the fitness and 

masses weaken the ability of subdivision, though the modification using 

niche GSA (called NSGA) can indeed bring back the multi-swarm capabil-

ity [30], however, the   complication of introducing more parameters such as 

the size of neighburs K and other niche-related parameters in this algorithm 

makes the tuning of the algorithm difficult. Even with these complicated is-

sues, GSA can be efficient and can provide results comparable with PSO for 

function optimization problems.  

3. Diffusion in Nature-Inspired Algorithms 
 

Attraction mainly provides the mechanisms for exploitation only, but with 

proper randomization it is also possible to carry out some degree of 

exploration. However, the exploration is better analyzed in the framework of 

random walks and diffusive randomization.  

From the Markov chain point of view, random walks and diffusion are 

both Markov chains because new solutions will primarily depend on the 
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current set of solutions and the way to generate new solutions (transition 

probability). In fact, Brownian diffusion such as the dispersion of an ink drop 

in water is a random walk. For example, the most fundamental random walks 

for an agent or solution xi can be written in the following form: 

 

,1  t

i

t

i xx     (8) 

where t is an iterative counter of steps. Here,  is a random number drawn 

from a Gaussian normal distribution with a zero mean. This gives an average 

diffusion distance of a particle or agent that is proportional to the square root 

of the finite number of steps t. That is, the distance is the order of (D t)
1/2

 

where D is the diffusion coefficient. To be more specific, the variance 
2
 of 

the random walks in a d-dimensional case (variance of the covered distances 

depending on the number of iterations, t) can be written as 

2 2 2

0( ) =| | (2 ) ,t v t dD t                                (9) 

where v0 is the drifting velocity.  This means it is possible to cover the 

whole search domain if t is sufficiently large. Therefore, the steps in the 

Brownian motions B(t) essentially follow a Gaussian distribution with a 

zero mean and time-dependent variance. A diffusion process can be viewed 

as a series of Brownian motion, which obeys a Gaussian distribution. For 

this reason, standard diffusion is often referred to as the Gaussian diffusion. 

If the motion at each step is not Gaussian, then the diffusion is called non-

Gaussian diffusion. In this sense, the characteristics of diffusion (and thus 

the search behaviour) will largely depend on the probability distribution of 

the step sizes, and different distributions may result in different forms of 

random walks.  

    In general, random walks can take many forms. If the step lengths obey 

other distributions, we have to deal with more generalized random walks. A 

very special case is when step lengths obey the Lévy distribution, such a 

random walk is called Lévy flights or Lévy walks [14]. For example, when 
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steps are large, Lévy distribution can be approximated as a simple power-

law   

1( ) | | ,L s s                              (10) 

 

where 0 < 2  is an index or exponent [20, 24]. This randomization 

technique has been used in cuckoo search (CS) which was found to be very 

efficient. One of the advantage of Lévy flights is that large steps or long 

jumps occasionally exist, enabling the algorithm with an ability to escape 

any local optima, and thus increasing the probability of finding the true 

global optimal solutions. 

        Cuckoo search (CS) was developed in 2009 by Yang and Deb [24, 25]. 

CS is based on the brood parasitism of some cuckoo species. In addition, this 

algorithm is enhanced by the so-called Lévy flights, rather than by simple 

isotropic random walks. Recent studies show that CS is potentially far more 

efficient than PSO and genetic algorithms [25, 7]. One of the key steps in CS 

is   

1 = ( ),t t

i ix x L  
                                             (11)

 

where L is the step size drawn from a Lévy distribution, and  is a scaling 

factor. The other key steps in CS are the generation of new solutions and the 

replacement of the not-so-good solutions with a probability pa. This can be 

represented mathematically as   

      
1 = ( ) ( ),t t t t

i i a j kx x s H p x x                (12) 

where ,i jx x  and kx  are three different solutions. Here H(u) is a Heaviside 

function of u , and   is a random number drawn from a uniform distribution 

in [0,1]. In addition, s  is the step size vector. 

Lévy flights are more efficient than Brownian random walks in exploring 

the unknown, large-scale search space [23]. There are many reasons to 

explain this high efficiency, and one simple reason is that the variance of 
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consecutive Lévy moves is unbounded as it increases with iterations t  in the 

following manner   

2 3( ) , 1 2,t t                                      (13) 

which is faster than that for Brownian walks [26, 15].  

      Now let us give a very crude but yet useful estimate of the number of 

steps needed for simple random walks for a given domain size W and 

dimension d. If we wish to achieve an accuracy (distance of an obtained 

solution from an optimum solution) of 4=10 , we can estimate the 

number of steps or iterations tmax needed by pure random walks. This is 

essentially the upper bound for   

2

max 2
.

W
t

d



                                                 (14) 

 For example, for W=10  and d=100, we have   

8

max 4 2

1
10 ,

(10 ) 100
t


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
                                       (15) 

 

which is a huge number that is not easily achievable in practice. Even so, 

this number is still much smaller than a brute force search method. In 

reality, most metaheuristics require far fewer iterations. 

    It is straightfoward to show that Lévy flights are more efficient than 

standard random walks [23]. For Lévy flights, we have an estimate   

2
1/(3 )

max 2
( ) .
W

t
d
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
                                  (16) 

With =1.5, we have 5

max 2 10 .t    That is to say, Lévy flights can reduce 

the number of iterations by about two or three orders. For other cases, the 

reduction can be  even more significant.  

 

4. Parameter Tuning and Parameter Control 
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In the abvove discussion, our emphasis has been on the role of attraction 

and diffusion in controlling the characteristics and behaviour of nature-

inspired algorithms. This is one side of the algorithmic ‘coin’. Even with the 

fixed mechanisms of attraction and diffusion, the performance of an 

algorithm will also be heavily influenced by its parameter settings.  

      Almost all algorithms have algorithm-dependent parameters. Some 

algorithms have fewer parameters than others, but the influence of each 

parameter can be sutble. For different parameter values or settings of an 

algorithm usually result in different performance of the algorithm. Based on 

both empirical observations and some preliminary theoretical analysis [20, 

27], parameter settings can have some significant influence on the 

performance of an algorithm. Therefore, how to tune the parameters of an 

algorithm so as to maximize the performance of the algorithm is a major 

challenge.   

     One way of understanding the importance of parameter tuning is that 

such parameter values may implicitly linked to the ways how exploration 

and exploitation are carried out. It is almost theoretically impossible to 

figure out any explicit relationship between parameter values and 

exploration or exploitation. As we mentioned earlier, one of the most 

challenging issues for nature-inspired metaheuristic algorithms is probably 

to control exploration and exploitation properly, which is still an open 

question. Consequently,  it is also a challenging task to control attraction 

and diffusion in algorithms that use such features so that the performance of 

an algorithm can be influenced in the right way. Ideally, we should have 

some mathematical relationship that can explicitly show how parameters 

can affect the performance of an algorithm, but this is an unsolved problem. 

In fact, apart from very simple cases under very strict, sometimes, 

unrealistic assumptions, there is no theoretical result at all.  

  As an algorithm is a set of interacting Markov chains, we can in general 

write an algorithm as 
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1

1 1

i 1 k[x , (t), p (t),..., p (t)]

t t

n n

x x

A ,

x x



   
   

 
   
      

                                 (17) 

 

which generates a set of n new solutions (x1, …, xn)
t+1

 from the current 

population of n solutions.  This behaviour of the algorithm in question is 

largely determined by the eigenvalues of the matrix A that are in turn 

controlled by the parameters pk(t) and the randomness vector (t). From the 

Markovian theory, we know that the largest eigenvalue is typically 1, and 

therefore, the convergence rate of an algorithm is mainly controlled by the 

second largest eigenvalue 2 of A. However, it is in general extremely 

difficult to find this eigenvalue. Therefore, the tuning of parameters 

becomes a very challenging task. 

      In fact, parameter-tuning is an important topic under active research. 

The aim of parameter-tuning is to find the best parameter setting so that an 

algorithm can perform best for a wider range of problems. At the moment, 

paramerter-tuning is mainly carried out by detailed, extensive parametric 

studies, and there is no efficient method in general. In essence, parameter-

tuning itself is an optimization problem which requires the tackling of 

higher-level optimization methods.  

      Related to parameter-tuning, there is another issue of parameter control. 

Parameter values after parameter-tuning are often fixed during iterations, 

while parameters should vary for parameter control. The idea of parameter 

control is to vary the parameters so that the algorithm of interest can provide 

the best convergence rate and thus may achieve the best performance. 

Again, parameter control is another tough optimization problem yet to be 

solved. In essence, both parameter tuning and control can be considered a 

higher-level optimization problem, and it is still not clear which has more 

influence on the performance of an algorithm. In addition, even with a good 
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set of parameter and its control sequence, such settings may also depend on 

the type of problem to be solved. In this case, parameter tuning and control 

not only depend on the algorithm but also depend on the type of objective 

landscape. All this makes it even more challenging. 

     Probably the earliest approach to parameter control in nature-inspired 

algorithms is the 1/5 rule worked out by Rechenberg already in the early 

1970s for the evolution strategy algorithm [17]. Based on a theoretical 

model, he found that about 1/5 of newly generated solutions should be better 

than their parent solutions. To achieve this, the mutation rates should be 

appropriately increased or decreased. Many other concepts of parameter 

control have been developed for evolutionary algorithms, including 

approaches for self-adaptation [2]. Self-adaptation means that parameters 

are not controlled by some fixed rule or according to a given schedule but 

by means of the algorithm logic itself. As the problem of good parameter 

selection can be formulated as an own optimization problem, it is possible to 

treat it just like the original optimization problem, e.g., by means of 

mutation, recombination, and selection in the case of evolutionary 

algorithms. In that context, the problem of parameter tuning is often denoted 

as meta-optimization [4] or meta decision making [10] and approaches for 

dealing with the the problem of choosing, constructing, or tuning 

optimization algorithms are also known as hyper-heuristics [5]. 

    An example of adapting parameters of an evolutionary algorithm with a 

particular focus on a better balance of exploration and exploitation is given 

by Tan et al. [18, 19]. Another more recent example of parameter control 

can be found in the bat algorithm. Here, some basic form of parameter 

control has been attempted and found to be very efficient [29]. By 

controlling the loudness and pulse emission rate, BA can automatically 

switch from explorative moves to local exploitation that focuses on the 

promising regions when the global optimality may be nearby. Similarly, the 
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cooling schedule in simulated annealing can be considered as a form of 

basic parameter control.  

   On the other hand, eagle strategy (ES) is a two-stage iterative strategy 

with iterative switches [26, 27]. ES starts with a population of agents in the 

explorative mode, and then switches to the exploitation stage for local 

intensive search. Then it starts again with another set of explorative moves 

and subsequently turns into a new exploitation stage. This iterative, restart 

strategy has been found to be very efficient.    

   Both parameter-tuning and parameter control are under active research. 

More efficient methods are urgently needed for this purpose.    

5. Conclusions  

 

Nature-inspired metaheuristic algorithms can have many different forms of 

realization or manifestion in terms of exploration and exploitation, or 

diversification and intensification. Attraction can be an efficient form of 

exploitation, while randomization is usually efficient for exploration. In this 

paper, we have reviewed the ways of attraction in nature-inspired 

algorithms, including firefly algorithm, charged system search and 

gravitational search algorithm. We also discussed diffusion as a form of 

randomization technique for exploration in metaheuristics. 

      At the same time, parameter-tuning and parameter control are also 

extremely important for balancing exploration and exploitation and, thus, to 

control the behaviour and performance of an algorithm. Although, often 

investigated in the past, both parameter tuning and parameter control are 

tough, higher-level, optimization problems that require further research in 

the future.  

      Despite the above in-depth review and discussions, there are still many 

topics that will be very useful to explore. For example, it will be useful to 

carry out the comparison and application of current algorithms in order to 
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study large-scale problems in real-world applications. After all, real-world 

problems are nonlinear, and good solutions to such problems could have an 

important impact by which  both academic research and industries would 

greatly benefit.  Obviously, solving large-scale problems can be very 

challenging but will be extremely useful. 

     Another key research area should focus on the validation of current 

methods and the development of new methods or framework for tuning and 

controlling parameters in metaheuristic algorithms so that they can solve 

more challenging problems more efficiently.  
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