
Attraction and Diffusion in Nature-Inspired

Optimization Algorithms

Xin-She Yang
a
, Suash Deb

b
, Thomas Hanne

c
, and Xingshi He

d

a) School of Science and Technology, Middlesex University, Hendon Campus,

London NW4 4BT, UK.b) Cambridge Institute of Technology, Cambridge Village,

Tatisilwai, Ranchi-835103, Jharkhand, India.,

c) Corresponding author; University of Applied Sciences and Arts Northwestern

Switzerland, Riggenbachstr. 16, 4600 Olten, Switzerland

d) School of Science, Xi’an Polytechnic University, No. 19 Jinhua South Road,

Xi’an, China

[Accepted by Neural Computing and Applications

http://link.springer.com/article/10.1007%2Fs00521-015-1925-9]

Abstract Nature-inspired algorithms usually use some form of attraction

and diffusion as a mechanism for exploitation and exploration. In this paper,

we investigate the role of attraction and diffusion in algorithms and their

ways in controlling the behaviour and performance of nature-inspired

algorithms. We highlight different ways of the implementations of attraction

in algorithms such as the firefly algorithm, charged system search, and the

gravitational search algorithm. We also analyze diffusion mechanisms such

as random walks for exploration in algorithms. It is clear that attraction can

be an effective way for enhancing exploitation, while diffusion is a common

way for exploration. Furthermore, we also discuss the role of parameter

tuning and parameter control in modern metaheuristic algorithms, and then

point out some key topics for further research.

Key Words: Metaheuristics, Nature-Inspired Optimization Algorithms,

Analysis of Algorithms, Attraction, Diffusion

http://link.springer.com/article/10.1007%2Fs00521-015-1925-9

2

1. Introduction

Optimization problems are often challenging to solve, and highly nonlinear problems often

necessitate new optimization methods such as nature-inspired metaheuristic algorithms [20,

8]. Genetic algorithms (GA) and particle swarm optimization (PSO) [12] have been used in

almost every area of science and engineering. During the last 10 years, new nature-inspired

algorithms such as firefly algorithm (FA) and cuckoo search (CS) have also become popular

and proved to be competitve compared to more established approaches [22, 24]. For

example, CS was applied to engineering optimization and structural design problems, and

obtained superior results [25, 7]. Other new algorithms such as the accelerated particle

swarm optimization (APSO) and bat algorithm are also very promising [28, 29].

 Two key components of any nature-inspired algorithm are exploitation and exploration,

and different algorithms have different ways of realizing them. Most algorithms use some

form of randomization or random walks to enhance exploration, while exploitation can be

more deterministic. It is often very challenging to analyze and understand how these

interacting components actually work and how they affect the efficiency of an algorithm.

 This paper attempts to analyze attraction and diffusion as effective mechanisms for

exploitation and exploration in nature-inspired algorithms. The novel idea of attraction was

first introduced by Yang [20, 22] when he developed the firefly algorithm in 2007 and

published a book chapter on this subject (Chapter 8) in 2008 [20]. The attraction action tends

to aggregate all swarm agents into a smaller region, thus leading to quicker convergence.

Random walks as a diffusion mechansim and thus a search mechanism have been used for

many years, and can be traced back as early as the development of the Monte Carlo method.

The main purpose of this paper is to gain further insight by analyzing these key components.

 The paper is organized as follows: we first introduce the concepts of attraction and

diffusion, and then analyze three algorithms: the firefly algorithm, the charged system search

and the gravitational search algorithm. We then discuss parameter tuning and parameter

control, and finally we discuss the implications and possible extension for further research.

3

2. Attraction in Nature-Inspired Algorithms

2.1 Exploitation and Exploration

In all nature-inspired algorithms, there are two key components: exploitation and

exploration, or intensification and diversification [3]. Exploration means that the search

space is sufficiently investigated on a rough level, while exploitation means that interesting

areas (i.e., those aound local optima) are searched more intensively in order to allow for a

good approximation to an optimum. The two concepts are characterized in [6] as follows:

"Exploration is the process of visiting entirely new regions of a search space, whilst

exploitation is the process of visiting those regions of a search space within the

neighborhood of previously visited points." For proper exploration, new solutions generated

by an algorithm should be sufficiently far from the existing solulutions so that all the regions

can be accessible by the explorative moves. On the other hand, proper exploitation means

that new solutions should use information gained from exisiting good solutions so that the

rate of convergence can be sped up, without wasting too many new moves. Exploitation is

often achieved by using intensive local search information such as gradients [21], such

information is usually landscape based, which is closely linked with the optimization

objective, while exploration is often carried out using some randomization techniques and

random walks [21]. Depending on the step size (or the distance moved from existing

solutions), such randomization can be either local (when step sizes are small) or global

(when step sizes are large).

The most extensive use of exploitation is probably the use of the gradient information of

the objective function of an optimization problem of interest. In fact, gradient-based methods

such as the well-known Newton-Raphson method are among the most widely used and they

are very efficient for local search, though they have the drawbacks that they could not

provide the global optimality for multimodal optimization problems. For swarm intelligence

based algorithms such as particle swarm optimization, it typically uses a forcing term (xbest-

xi) where xbest is the best solution found so far. This can be considered as a gradient term if

we implicitly assume that the step size is fixed (or with a scaling factor). One of the exotic

forms of exploitation is attraction which we will discuss in the next subsection.

On the other hand, exploration is usually carried out by randomization, in terms of either

simply random numbers or variables, random walks, or more sophisticated methods such as

Lévy flights [22, 24]. From the statistical point of view, diffusion is a random walk, and is

thus equivalent to a search mechanism.

4

For ensuring that an algorithm can reach a globally optimal solution (or a Pareto-optimal

solution in the case of a multiobjective optimization problem), there must be a positive

probability that such a solution can be obtained from a given starting solution. For a

continuous optimization problem, this usually requires certain regularity properties of the

problem and a random mechanism with a positive probability density around the global

optimum or along a feasible exploration way towards the optimum [11].

Exploration and exploitation can be considered two sides of the same coin. Exploration

tends to increase of the probability of finding the global optimality, but affect the rate of

convergence, whereas exploitation tends to speed up the convergence but may sacrafice the

chance of finding the global optimality. In factm, too much exploration and too little

exploitation may almost guarantee the access of global optimality, but can significantly slow

the convergence, and thus may render the algorithm almost useless in practice because it

may take almost infinitely long to achieve the guaranteed global optimality. At the other

extreme, too much exploitation and too little exploration can make the algorithm converge

towards a local optimum, largely depending on its initial, starting point, which effectively

turn a global optimizer into a local optimizer, with little probability of achieving true global

optimality. Therefore, it is obvious that an important issue is to balance exploitation and

exploration during the search process so that an algorithm can produce a better, ideally an

optimal, performance. However, there is no easy way to achieve this balance, and the fine

balance itself is a tough optimization process, or an optimization problem of an optimizaiton

algorithm.

2.2 Attraction as an Exploitation Mechanism

The basic idea of attraction is that solutions are attracted by other solutions

when they are modified during the run of the algorithm. For a population of

solutions, solutions can be ranked based on their fitness values or objective

function values. If some moves allow the low-fitness solutions to move to-

wards higher (or even highest) fitness solutions, the overall fitness of the

population can improve with such moves. One possible mechanism is to use

attraction where the highest solution acts as an attractor, whereas the low

fitness solutions are essentially the attractees. How far each attraction move

can be will depend on the attraction mechanism. Thus, attraction is a mech-

anism prevents a purely random walk of solution.

5

 The novel idea of attraction via light intensity as an exploitation mecha-

nism was first used by Yang [20] in the firefly algorithm (FA). In FA, the

attractiveness (and light intensity) is intrinsically linked with the inverse-

square law of light intensity variations and the absorption coefficient. As a

result, the attraction  is calculated by  = 0exp[-r2
] where r is the

distance between two solutions (or fireflies), 0 is a constant corresponding

to the attractiveness at the distance r=0, and >0 is the absorption

coefficient [20, 22]. In essence, the brightest firefly (or the best solution)

acts as a main attractor that exerts a ‘magic’ force so that other fireflies can

move towards this best locationm, making the population potentially

converge towards this current best location.

 Other algorithms also used attraction based on the inverse-square laws,

derived from nature. For example, the charged system search (CSS) used

Coulomb’s law [13], while the gravitational search algorithm (GSA) used

Newton’s law of gravitation [16].

 In other nature-inspired algorithms, the mechanism of attraction is

possibly less obvious but nevertheless important for convergence. For

instance, in evolutionary algorithms genetic information is exchanged

between solutions from a given population. This mechanism which is called

recombination and cross-over leads, together with a more likely selection of

better solutions, to an increase of their genetic "material". This can be

interpreted as an attraction towards the superior solutions. For a rigourous

convergence analysis, usually further properties of the methods are required

such as, for instance, elitism which means that best solutions are preserved

during optimization runs [9, 11]. This mechanism also facilitates the

attraction towards the best found solutions.

 The main function of such an attraction is to enable an algorithm to

converge quickly because these multi-agent systems evolve, interact and

attract, leading to some self-organized behaviour and attractors. As the

6

swarming agents evolve, it is possible that their attractor states will move

towards the true global optimum under appropriate conditions, though each

algorithm may behave differently in terms of the ways of converging towards

the global optimum.

2.3 Firefly Algorithm

The Firefly Algorithm (FA) was first developed by Yang in 2007 and was

based on the flashing patterns and behaviour of fireflies, and the work on

FA was published in 2008 [20, 22]. The movement of firefly i (correspond-

ing to solution xi) attracted to another, more attractive (brighter, attractor)

firefly j (solution xj) is determined by

,)(
2

0

1 t

i

t

i

t

j

rt

i

t

i xxexx ij 



 (1)

where 0 is the attractiveness at the distance rij=0, and the second term is

due to the attraction. The third term is randomization with  being the ran-

domization parameter, and i
t
 a vector of random numbers drawn from a

Gaussian distribution, or other distributions, at time t. If 0=0, it becomes a

simple random walk. Furthermore, the randomization i
t
 can easily be ex-

tended to other distributions such as Lévy flights.

 The above updating Eq. (1) has a nonlinear attraction term (the second

term). As the attraction decreases as the distance increase, the main attrac-

tion force can be visible in a domain of the radius of the order of 𝐿 =

𝑂 (
1

√𝛾
). Outside this domain, the attraction force becomes very weak. There-

fore, the above equation provides a novel and yet efficient mechanism to al-

low the agents to move and attract each other in the neighbourhood. Since

the short-range attraction is stronger than long-range attraction, agents in the

whole population can subdivide into multiple subswarms due to the strong

local, short-range attractions. Such automatic division of the whole popula-

7

tion can be advantageous because each smaller subgroup or subswarm can

swarm around a local optimum or mode in the multimodal, objective land-

scape. Obviously, among all the modes, there is the global optimum, and FA

will usually find this global optimality very efficiently. Since this subdivi-

sion is purely based on the fact that short-distance attraction is stronger than

long-distance attraction, there is no need to intervene by the user. The single

update equation governs such behaviour, and the division is automatic and

intrinsic. Therefore, we can say that , the concept of multi-swarm is intrinsi-

cally built into the firefly algorithm. Obviously, if the number of modes is

m, then the population size n must be sufficient large (𝑛 ≫ 𝑚) so that all

the modes can be detected and obtained simultaneously.

 However, the proper convergence and stability require good parameter

setting, as it is true for almost all metaheuristic algorithms, an insufficient

parameter setting or other circumstances may lead to premature conver-

gence (i.e. convergence to a non-optimal solution) [1].

 Compared with other algorithms, FA has three distinct advantages: 1) au-

tomatic subdivision of the whole population into subgroups; 2) the natural

capability of dealing with multimodal optimization; 3) high ergodicity and

diversity in the solutions. All these advantages make FA very efficient. This

novel attraction mechanism is the first of its kind in the literature of nature-

inspired computation and computational intelligence. This also motivated

and inspired others to design similar or other types of attraction mecha-

nisms. Whatever the attraction mechanism may be, from the metaheuristic

point of view, the fundamental principles are the same: that is, they allow

the swarming agents to interact with one another and provide a forcing term

to guide the convergence of the population [20, 28].

2.4 Charged System Search

8

The charged system search (CSS) was based on the fundamental Coulomb’s

law of charged systems [13]. Though its actual formulae are no longer simi-

lar to the actual attraction of charges, they still have some attraction term

that was initially based on the physical mechanism. In the CSS, they used a

normalized distance

2

i j

ij

i j best

|| x x ||
r

||(x x) / x ||




  
, (2)

where  is a small positive number to avoid singularity. However, this singu-

larity may cause potential problems if not handled properly, especially when

the current solution is already close to a local optimum. For example, when

xi=xj=xbest, the distance would become 0, unless >0. In addition to this nor-

malized distance, they also used the goodness (or badness) factor of attrac-

tion pij {0, 1}. This factor determines whether a solution (charged particle)

attracts another charged particle. In general good solutions can act as attrac-

tors to attract bad solutions, but the opposite mechanism is also possible.

While the first type of attraction mainly serves an exploitation purpose, the

second type can allow for a better exploration if it is strong enough.

 Due to the rescaled characteristics of the true distance, the attraction is

also normalized, which gives a weakened force than its physical counter

part. In addition, as there is no exponential term as that in FA, the combina-

tion of normalization and linearization make the CSS lose the subdivision

capability. Though as one of the reviewers has pointed out, it may be possi-

ble to write the CSS as

 1 ,t t t t

i i j ix x A x x B     (3)

where A and B are constant, though A should be dependent on the distance.

However, the form of variation of A has a peak value at r=1, which means

the attraction is weaker when the normalized distance is less 1. This means

that aggregation of short distance swarms are weaker and slower. Thus, the

population cannot be split up into subgroups which may evolve more or less

9

independently. This can be seen in the overall behaviour of the CSS algo-

rithm. At least, up to now, there is no subdivision of CSS observed in the

literature. Despite these drawbacks, CSS can be efficient in solving optimi-

zation problems [13] and structural design optimization problems [31,32].

2.5 Gravitational Search Algorithm

The gravitational search algorithm (GSA) was based on Newton’s law of

gravitation [16], though the actual form of the algorithm was also somehow

different from reality in the sense that the gravitational constant varies and

the distances are rescaled. For example, in GSA, the attraction or force term

was written as

i j

j i

ij

M M
F G(t) (x x),

R (t)


 


 (4)

where Rij is the Euclidean distance. Again,  is a small positive number to

avoid singularity. The mass Mi of each particle i is encoded and linked with

the objective function through the following equations:

i

i

fit (t) worst(t)
m (t) ,

best(t) worst(t)






1

i
i N

j

j

m (t)
M (t) .

m (t)





 (5)

Here, fiti(t) is the fitness value of agent/particle xi at time t, worst(t) is the

fitness of the worst agent/particle (xworst) in generation t, and best(t) is the

fitness of the best agent/particle (xbest) in generation t. However, there is a

potential singularity problem when the system fully converges; that is, in the

special case of best(t)=worst(t) when all particles converge at the same

10

points for simple unimodal functions. In addition, they also used the veloci-

ty updating rules, similar to that of PSO, to calculate new positions and ve-

locities. Though the gravitational constant G(t) can be treated as a constant,

however, it can also be varied. In the standard GSA, there is no suggestion

what is the best way to vary G(t). In the original GSA [16], the variation of

G(t) obeys the following form𝐺(𝑡) = 𝐺(𝑡0) (
𝑡0

𝑡
)

𝛽

, 𝛽 < 1,

(6)

where G(t0) is the initial value of the gravitation constant at the time t0. However, such

variation may be physically realistic, but from the algorithmic point of view,

it may not be useful. Late variants suggest the following variation

 0 maxG(t) G exp[t / t],  (7)

Here, G0 is the initial value of G, and α is a positive constant. Here, tmax is

the maximum number of iterations [30]. . There are a few parameter in the

GSA: population size (n), G0, α and δ. The rescaling of the fitness and

masses weaken the ability of subdivision, though the modification using

niche GSA (called NSGA) can indeed bring back the multi-swarm capabil-

ity [30], however, the complication of introducing more parameters such as

the size of neighburs K and other niche-related parameters in this algorithm

makes the tuning of the algorithm difficult. Even with these complicated is-

sues, GSA can be efficient and can provide results comparable with PSO for

function optimization problems.

3. Diffusion in Nature-Inspired Algorithms

Attraction mainly provides the mechanisms for exploitation only, but with

proper randomization it is also possible to carry out some degree of

exploration. However, the exploration is better analyzed in the framework of

random walks and diffusive randomization.

From the Markov chain point of view, random walks and diffusion are

both Markov chains because new solutions will primarily depend on the

11

current set of solutions and the way to generate new solutions (transition

probability). In fact, Brownian diffusion such as the dispersion of an ink drop

in water is a random walk. For example, the most fundamental random walks

for an agent or solution xi can be written in the following form:

,1  t

i

t

i xx (8)

where t is an iterative counter of steps. Here,  is a random number drawn

from a Gaussian normal distribution with a zero mean. This gives an average

diffusion distance of a particle or agent that is proportional to the square root

of the finite number of steps t. That is, the distance is the order of (D t)
1/2

where D is the diffusion coefficient. To be more specific, the variance 
2
 of

the random walks in a d-dimensional case (variance of the covered distances

depending on the number of iterations, t) can be written as

2 2 2

0() =| | (2) ,t v t dD t (9)

where v0 is the drifting velocity. This means it is possible to cover the

whole search domain if t is sufficiently large. Therefore, the steps in the

Brownian motions B(t) essentially follow a Gaussian distribution with a

zero mean and time-dependent variance. A diffusion process can be viewed

as a series of Brownian motion, which obeys a Gaussian distribution. For

this reason, standard diffusion is often referred to as the Gaussian diffusion.

If the motion at each step is not Gaussian, then the diffusion is called non-

Gaussian diffusion. In this sense, the characteristics of diffusion (and thus

the search behaviour) will largely depend on the probability distribution of

the step sizes, and different distributions may result in different forms of

random walks.

 In general, random walks can take many forms. If the step lengths obey

other distributions, we have to deal with more generalized random walks. A

very special case is when step lengths obey the Lévy distribution, such a

random walk is called Lévy flights or Lévy walks [14]. For example, when

12

steps are large, Lévy distribution can be approximated as a simple power-

law

1() | | ,L s s   (10)

where 0 < 2 is an index or exponent [20, 24]. This randomization

technique has been used in cuckoo search (CS) which was found to be very

efficient. One of the advantage of Lévy flights is that large steps or long

jumps occasionally exist, enabling the algorithm with an ability to escape

any local optima, and thus increasing the probability of finding the true

global optimal solutions.

 Cuckoo search (CS) was developed in 2009 by Yang and Deb [24, 25].

CS is based on the brood parasitism of some cuckoo species. In addition, this

algorithm is enhanced by the so-called Lévy flights, rather than by simple

isotropic random walks. Recent studies show that CS is potentially far more

efficient than PSO and genetic algorithms [25, 7]. One of the key steps in CS

is

1 = (),t t

i ix x L  
 (11)

where L is the step size drawn from a Lévy distribution, and  is a scaling

factor. The other key steps in CS are the generation of new solutions and the

replacement of the not-so-good solutions with a probability pa. This can be

represented mathematically as

1 = () (),t t t t

i i a j kx x s H p x x      (12)

where ,i jx x and kx are three different solutions. Here H(u) is a Heaviside

function of u , and  is a random number drawn from a uniform distribution

in [0,1]. In addition, s is the step size vector.

Lévy flights are more efficient than Brownian random walks in exploring

the unknown, large-scale search space [23]. There are many reasons to

explain this high efficiency, and one simple reason is that the variance of

13

consecutive Lévy moves is unbounded as it increases with iterations t in the

following manner

2 3() , 1 2,t t     (13)

which is faster than that for Brownian walks [26, 15].

 Now let us give a very crude but yet useful estimate of the number of

steps needed for simple random walks for a given domain size W and

dimension d. If we wish to achieve an accuracy (distance of an obtained

solution from an optimum solution) of 4=10 , we can estimate the

number of steps or iterations tmax needed by pure random walks. This is

essentially the upper bound for

2

max 2
.

W
t

d



 (14)

 For example, for W=10 and d=100, we have

8

max 4 2

1
10 ,

(10) 100
t


 


 (15)

which is a huge number that is not easily achievable in practice. Even so,

this number is still much smaller than a brute force search method. In

reality, most metaheuristics require far fewer iterations.

 It is straightfoward to show that Lévy flights are more efficient than

standard random walks [23]. For Lévy flights, we have an estimate

2
1/(3)

max 2
() .
W

t
d

 


 (16)

With =1.5, we have 5

max 2 10 .t   That is to say, Lévy flights can reduce

the number of iterations by about two or three orders. For other cases, the

reduction can be even more significant.

4. Parameter Tuning and Parameter Control

14

In the abvove discussion, our emphasis has been on the role of attraction

and diffusion in controlling the characteristics and behaviour of nature-

inspired algorithms. This is one side of the algorithmic ‘coin’. Even with the

fixed mechanisms of attraction and diffusion, the performance of an

algorithm will also be heavily influenced by its parameter settings.

 Almost all algorithms have algorithm-dependent parameters. Some

algorithms have fewer parameters than others, but the influence of each

parameter can be sutble. For different parameter values or settings of an

algorithm usually result in different performance of the algorithm. Based on

both empirical observations and some preliminary theoretical analysis [20,

27], parameter settings can have some significant influence on the

performance of an algorithm. Therefore, how to tune the parameters of an

algorithm so as to maximize the performance of the algorithm is a major

challenge.

 One way of understanding the importance of parameter tuning is that

such parameter values may implicitly linked to the ways how exploration

and exploitation are carried out. It is almost theoretically impossible to

figure out any explicit relationship between parameter values and

exploration or exploitation. As we mentioned earlier, one of the most

challenging issues for nature-inspired metaheuristic algorithms is probably

to control exploration and exploitation properly, which is still an open

question. Consequently, it is also a challenging task to control attraction

and diffusion in algorithms that use such features so that the performance of

an algorithm can be influenced in the right way. Ideally, we should have

some mathematical relationship that can explicitly show how parameters

can affect the performance of an algorithm, but this is an unsolved problem.

In fact, apart from very simple cases under very strict, sometimes,

unrealistic assumptions, there is no theoretical result at all.

 As an algorithm is a set of interacting Markov chains, we can in general

write an algorithm as

15

1

1 1

i 1 k[x , (t), p (t),..., p (t)]

t t

n n

x x

A ,

x x



   
   

 
   
      

 (17)

which generates a set of n new solutions (x1, …, xn)
t+1

 from the current

population of n solutions. This behaviour of the algorithm in question is

largely determined by the eigenvalues of the matrix A that are in turn

controlled by the parameters pk(t) and the randomness vector (t). From the

Markovian theory, we know that the largest eigenvalue is typically 1, and

therefore, the convergence rate of an algorithm is mainly controlled by the

second largest eigenvalue 2 of A. However, it is in general extremely

difficult to find this eigenvalue. Therefore, the tuning of parameters

becomes a very challenging task.

 In fact, parameter-tuning is an important topic under active research.

The aim of parameter-tuning is to find the best parameter setting so that an

algorithm can perform best for a wider range of problems. At the moment,

paramerter-tuning is mainly carried out by detailed, extensive parametric

studies, and there is no efficient method in general. In essence, parameter-

tuning itself is an optimization problem which requires the tackling of

higher-level optimization methods.

 Related to parameter-tuning, there is another issue of parameter control.

Parameter values after parameter-tuning are often fixed during iterations,

while parameters should vary for parameter control. The idea of parameter

control is to vary the parameters so that the algorithm of interest can provide

the best convergence rate and thus may achieve the best performance.

Again, parameter control is another tough optimization problem yet to be

solved. In essence, both parameter tuning and control can be considered a

higher-level optimization problem, and it is still not clear which has more

influence on the performance of an algorithm. In addition, even with a good

16

set of parameter and its control sequence, such settings may also depend on

the type of problem to be solved. In this case, parameter tuning and control

not only depend on the algorithm but also depend on the type of objective

landscape. All this makes it even more challenging.

 Probably the earliest approach to parameter control in nature-inspired

algorithms is the 1/5 rule worked out by Rechenberg already in the early

1970s for the evolution strategy algorithm [17]. Based on a theoretical

model, he found that about 1/5 of newly generated solutions should be better

than their parent solutions. To achieve this, the mutation rates should be

appropriately increased or decreased. Many other concepts of parameter

control have been developed for evolutionary algorithms, including

approaches for self-adaptation [2]. Self-adaptation means that parameters

are not controlled by some fixed rule or according to a given schedule but

by means of the algorithm logic itself. As the problem of good parameter

selection can be formulated as an own optimization problem, it is possible to

treat it just like the original optimization problem, e.g., by means of

mutation, recombination, and selection in the case of evolutionary

algorithms. In that context, the problem of parameter tuning is often denoted

as meta-optimization [4] or meta decision making [10] and approaches for

dealing with the the problem of choosing, constructing, or tuning

optimization algorithms are also known as hyper-heuristics [5].

 An example of adapting parameters of an evolutionary algorithm with a

particular focus on a better balance of exploration and exploitation is given

by Tan et al. [18, 19]. Another more recent example of parameter control

can be found in the bat algorithm. Here, some basic form of parameter

control has been attempted and found to be very efficient [29]. By

controlling the loudness and pulse emission rate, BA can automatically

switch from explorative moves to local exploitation that focuses on the

promising regions when the global optimality may be nearby. Similarly, the

17

cooling schedule in simulated annealing can be considered as a form of

basic parameter control.

 On the other hand, eagle strategy (ES) is a two-stage iterative strategy

with iterative switches [26, 27]. ES starts with a population of agents in the

explorative mode, and then switches to the exploitation stage for local

intensive search. Then it starts again with another set of explorative moves

and subsequently turns into a new exploitation stage. This iterative, restart

strategy has been found to be very efficient.

 Both parameter-tuning and parameter control are under active research.

More efficient methods are urgently needed for this purpose.

5. Conclusions

Nature-inspired metaheuristic algorithms can have many different forms of

realization or manifestion in terms of exploration and exploitation, or

diversification and intensification. Attraction can be an efficient form of

exploitation, while randomization is usually efficient for exploration. In this

paper, we have reviewed the ways of attraction in nature-inspired

algorithms, including firefly algorithm, charged system search and

gravitational search algorithm. We also discussed diffusion as a form of

randomization technique for exploration in metaheuristics.

 At the same time, parameter-tuning and parameter control are also

extremely important for balancing exploration and exploitation and, thus, to

control the behaviour and performance of an algorithm. Although, often

investigated in the past, both parameter tuning and parameter control are

tough, higher-level, optimization problems that require further research in

the future.

 Despite the above in-depth review and discussions, there are still many

topics that will be very useful to explore. For example, it will be useful to

carry out the comparison and application of current algorithms in order to

18

study large-scale problems in real-world applications. After all, real-world

problems are nonlinear, and good solutions to such problems could have an

important impact by which both academic research and industries would

greatly benefit. Obviously, solving large-scale problems can be very

challenging but will be extremely useful.

 Another key research area should focus on the validation of current

methods and the development of new methods or framework for tuning and

controlling parameters in metaheuristic algorithms so that they can solve

more challenging problems more efficiently.

References

[1] Arora S, Singh S (2013) The firefly optimization algorithm: convergence

analysis and parameter selection. International Journal of Computer Ap-

plications 69(3): 48-52

[2] Beyer H-G (1995) Toward a theory of evolution strategies: self-

adaptation. Evolutionary Computation 3(3): 311-347

[3] Blum C, Roli A (2003) Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Comput. Surv. 35: 268-308

[4] Branke J, Elomari JA (2012) Meta-optimization for parameter tuning

with a flexible computing budget. In: Soule T (ed) Proceedings of the

14th Annual Conference on Genetic and Evolutionary Computation

(GECCO '12), ACM, New York, pp 1245-1252

[5] Burke E, Gendreau K, Hyde M, Kendall M, Ochoa G, Özcan E, Qu R

(2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc

64(12): 1695-1724

[6] Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in

evolutionary algorithms: A survey. ACM Comput. Surv. 45(3): 35:1-

35:33

[7] Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a

metaheuristic approach to solve structural optimization problems. Engi-

neering with Computers 29(1): 17-35

[8] Goldberg DE (1989) Genetic algorithms in search, optimization and ma-

chine learning. Addison Wesley, Reading, Mass.

[9] Hanne T (1999) On the convergence of multiobjective evolutionary al-

gorithms. European Journal of Operational Research 117(3): 553-564

[10] Hanne T (2001) Intelligent strategies for meta multiple criteria decision

making. Springer, Berlin

19

[11] Hanne T (2007) A multiobjective evolutionary algorithm for approxi-

mating the efficient set. European Journal of Operational Research

176(3): 1723-1734

[12] Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc.

of IEEE International Conference on Neural Networks, Piscataway, NJ.,

pp 1942-1948

[13] Kaveh A, Talatahari S (2010) A novel heuristic optimization method:

charged system search. Acta Mechanica 213(3-4): 267-289

[14] Mantegna RN (1994) Fast, accurate algorithm for numerical simulation

of Lévy stable stochastic processes. Phys. Rev. E 49: 4677-4683

[15] Pavlyukevich I (2007) Lévy flights, non-local search and simulated an-

nealing. J. Computational Physics 226: 1830-1844

[16] Rashedi E, Nezamabadi-pour H, Saryazdi S (2009): GSA: a gravita-

tional search algorithm. Information Science 179, 13, 2232-2248

[17] Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Sys-

teme nach Prinzipien der biologischen Evolution (Evolution strategy: op-

timization of technical systems based on concepts from biological evolu-

tion). Fromman-Holzboog, Stuttgart, Germany

[18] Tan KC, Goh CK, Yang YJ, Lee TH (2006) Evolving better population

distribution and exploration in evolutionary multi-objective optimization.

European Journal of Operational Research 171(2): 463-495

[19] Tan KC, Chiam SC, Mamun AA, Goh CK (2009) Balancing explora-

tion and exploitation with adaptive variation for evolutionary multi-

objective optimization. European Journal of Operational Research 197(2):

701-713

[20] Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver

Press, Bristol, UK

[21] Yang XS (2008b) Introduction to computational mathematics. World

Scientific Publishing, Singapore

[22] Yang XS (2009) Firefly algorithms for multimodal optimization. In:

Watanabe O, Zeugmann T (eds), Proc. 5th Symposium on Stochastic Al-

gorithms, Foundations and Applications, SAGA 2009, Springer, Heidel-

berg Berlin, pp 169-178

[23] Yang XS (2011) Metaheuristic optimization: algorithm analysis and

open problems. In: Pardalos PM, Rebennack S (eds.), Experimental Algo-

rithms, Springer, Berlin Heidelberg, Germany, pp 21-32

[24] Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceed-

ings of World Congress on Nature & Biologically Inspired Computing

(NaBIC 2009, India), IEEE Publications, USA, pp 210-214

[25] Yang XS, Deb S (2010) Engineering optimization by cuckoo search.

Int. J. Mathematical Modeling and Numerical Optimization 1(4): 330-343

[26] Yang, XS, Deb S (2010b) Eagle strategy using Lévy walk and firefly

algorithms for stochastic optimization. In: Nature Inspired Cooperative

Strategies for Optimization (NICSO 2010), Springer, Berlin, pp 101-111

20

[27] Yang XS, Deb S (2012): Two-stage eagle strategy with differential

evolution, Int. J. Bio-Inspired Computation 4(1): 1-5

[28] Yang XS, Deb S, Fong S (2011) Accelerated particle swarm optimiza-

tion and support vector machine for business optimization and applica-

tions, In: Networked Digital Technologies (NDT2011), Communications

in Computer and Information Science, vol 136, Springer, Berlin, pp 53-66

[29] Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for

global engineering optimization. Engineering Computations 29(5): 464-

483

[30] Yazdani S, Nezamabadi-pour H, Kamyab S, (2014). A gravitational

search algorithm for multimodal optimization, Swarm and Evolutionary

Computation, 14(1),1-14.

[31] Talatahari S and Jahani Y, (2015). Hybrid charged system search-

particle swarm optimization for designof single-layer barrel vault struc-

tures, Asian Journal of Civil Engineering, 16(2015)515-533.

[32] Kaveh A and Talatahari S, (2012). Charged system search for optimal

design of frame structures, Applied Soft Computing, 12(2012) 382-393.

