
SEPARATING INVARIANTS FOR THE BASIC Ga-ACTIONS

JONATHAN ELMER AND MARTIN KOHLS

Abstract. We explicitly construct a finite set of separating invariants for

the basic Ga-actions. These are the finite dimensional indecomposable ra-
tional linear representations of the additive group Ga of a field of character-
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1. Introduction

A great many mathematical problems are special cases of the following: let
K be a field of arbitrary characterstic and let G be any group. Suppose G acts
on the K-vector space V and that v and w are points of V . Is there a g ∈ G
satisfying gv = w? In other words, are v and w contained in the same G-orbit?
Important examples include the case where G = GLn(K) acts on the vector space
V of n × n matrices by conjugation, and the case where G = SLn(K) acts on the
space V of binary forms of degree n. The classical approach to these problems is
to construct “invariant polynomials”. These are polynomial functions f : V → K
which satisfy f(v) = f(gv) for all g ∈ G and v ∈ V , and so are constant on G-
orbits. In fact, one can define an action of G on the set of polynomial functions
K[V ] via (g · f)(v) := f(g−1v) for which the invariant polynomials are the fixed
points, K[V ]G, and these form a subalgebra of K[V ] called the algebra of invariants.
Ideally, one would like to find a complete set of algebra generators of K[V ]G, then
use this set to distinguish as many orbits as possible.

This approach is not without its difficulties. For instance, it is not always possible
to distinguish all the orbits using invariant polynomials. As an example, consider
once more the case where GLn(K) acts on the vector space of n×n matrices over a
field K by conjugation. Provided K is an infinite field, the invariants are generated
by the coefficients of the characteristic polynomial [5, Example 2.1.3], but it is
well known that a pair of matrices with the same characteristic polynomial are not
necessarily conjugate. More problematically, if G is not reductive then the algebra
K[V ]G may not even be finitely generated. Even if it is, finding a set of generators
can be a very difficult problem. If, however, one is only interested in invariants from
the point of view of separating orbits, then finding a complete set of generators is
not always necessary. It is perhaps surprising, then, that Derksen and Kemper
made the following defininition [5, Definition 2.3.8] as recently as 2002.

Definition 1.1. A separating set for the ring of invariants K[V ]G is a subset
S ⊆ K[V ]G with the following property: given v, w ∈ V , if there exists an invariant
f satisfying f(v) 6= f(w), then there also exists s ∈ S satisfying s(v) 6= s(w).

There are many instances in which separating sets can be seen to have “nicer”
properties than generating sets. For example, it is well known that if G is finite and
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the characteristic of K does not divide |G|, then K[V ]G is generated by elements
of degree ≤ |G|, see [10, 11], but this is not necessarily true in the modular case
(i.e. when the characteristic of K divides |G|). On the other hand, the analogue for
separating invariants holds in arbitary characteristic [5, Theorem 3.9.13]. Mean-
while, even if K[V ]G is not finitely generated, it is guaranteed to contain a finite
separating set [5, Theorem 2.3.15]. The existence proof is non-constructive, which
raises the question how to actually construct separating sets. Kemper [15] gives
an algorithm for reductive groups, but using Gröbner bases it is only effective for
“small” cases. An example of a finite separating set for a non finitely generated
invariant ring is given in [8]. For finite groups, a separating set can always be
obtained as the coefficients of a rather large polynomial [5, Theorem 3.9.13]. With
refined methods, “nicer” separating sets have been obtained for several classes of
finite groups and representations, see for example [20]. This paper goes in the
same direction: for the basic actions of the additive group in characteristic zero,
we present a rather small separating set. See also [6, 7, 9, 16] for a small selection
of other recent publications in the area.

From this point onwards, k denotes a field of characterstic zero. In this article
we will concentrate on linear actions of the additive group Ga of the ground field k.
The finite dimensional indecomposable rational linear representations of Ga are
called the basic Ga-actions. There is one such action in each dimension, and these
are described below:

Definition 1.2. Let Xn := 〈x0, . . . , xn〉k be a vector space of dimension n + 1.
Then Ga is said to act basically on Xn (with respect to the given basis) if the
action of Ga on Xn is given by the formula

a ∗ xi =
i∑

j=0

aj

j!
xi−j , for all a ∈ Ga, i = 0, . . . , n.

Note the isomorphisms Xn
∼= X∗n

∼= Sn(X1) for all n, where Sn denotes the
nth symmetric power. Let {x0, x1, . . . , xn} be the set of coordinate functions on a
n+ 1 dimensional vector space Vn, so we consider Xn = V ∗n . As k is infinite, k[Vn]
can be viewed as the polynomial ring Rn := S(Xn) = k[x0, x1, . . . , xn]. If Ga acts
basically on Xn, one can then check that the induced action of Ga on Rn is given
by the formula

a ∗ f = exp(aDn)f for all a ∈ Ga, f ∈ Rn,
where Dn is the Weitzenböck derivation

Dn := x0
∂

∂x1
+ . . .+ xn−1

∂

∂xn
on Rn.

Furthermore, the algebra of invariants k[Vn]Ga is precisely the kernel of Dn. We
denote this by An. The algebras An have been objects of intensive study for well
over a hundred years, owing to their connection with the classical invariants and
covariants of binary forms. While they are known to be finitely generated by the
Maurer-Weitzenböck Theorem [24], the number of generators appears to increase
rapidly with dimension, and explicit generating sets are (reliably!) known only for
n ≤ 7 (see also the table in section 2). In this article, we shall instead construct
explicit separating sets for all values of n.

This article is organised as follows: in Section 2 we state our main results, and
explain briefly the connection between the algebras An and the covariants of binary
forms. In Section 3 we prove a crucial lemma on the radical of the Hilbert ideal
of An which may be of independent interest. Section 4 contains the main body of
the proof of our result, while Section 5 is devoted to the proof of a technical lemma
which is required in order to construct a separating set for An when n ≡ 0 mod 4.
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2. Background and statement of results

Let Un denote the k-vector space of binary forms of degree n, which are homo-
geneous polynomials of the form

∑n
i=0 aiX

iY n−i in the variables X and Y , ai ∈ k.
This is a vector space of dimension n + 1 with basis the set of monomials in X
and Y of degree n. The natural action of the group G := SL2(k) on a two dimen-
sional vector space with basis {X,Y } induces an action of G on the vector space
Un. Classically speaking, an invariant is a polynomial in the coefficients ai which is
unchanged under the action of G - in modern notation, an element of k[Un]G. Note
that the additive group Ga is embedded in G as the subgroup of matrices of the form(

1 ∗
0 1

)
, and the subgroup Ga acts basically on Un (with respect to the basis

{ 1
k!X

n−kY k : k = 0, . . . , n}). The pioneers of invariant theory also studied “covari-
ants”, which are polynomials in both the coefficients ai and the variables X and Y
themselves which are fixed under the action of G. In modern notation, the algebra
of covariants is k[Un⊕U∗1 ]G. There is, in fact, an even stronger connection between
covariants and the basic actions of Ga: the algebras k[Un ⊕ U∗1 ]G and k[Un]Ga are
actually isomorphic. Let us identify the algebra k[Un ⊕ U∗1 ] with the polynomial
ring k[a0, a1, . . . , an, X, Y ] (we abuse notation by using the same letters ai for co-
ordinates and coordinate functions). Define a mapping Φ : k[Un⊕U∗1 ]G → k[Un]Ga

by

(1) Φ(f(a0, a1, a2, . . . , an, X, Y )) := f(a0, a1, a2, . . . , an, 0, 1).

The theorem of Roberts [19] states that Φ is an isomorphism. In classical invariant
theory one often studies the basic actions of Ga in order to get a handle on the
covariants of binary forms using Roberts’ isomorphism. One word of caution is
needed at the point. While [16, Proposition 1] implies that a separating set for
k[Un ⊕ U∗1 ]SL2(k) must be mapped under Φ to a separating set for k[Un]Ga , the
converse is not necessarily true, so the separating sets we construct in this paper
most likely do not lift to give separating sets for the covariants of binary forms (cf.
[16, Remark 3]).

However, we owe the following observation to the anonymous referee: Roberts’
isomorphism induces a bijection between the SL2(k) orbits in Un × (U∗1 \ {0}) and
the Ga orbits in Un. In fact, for (u, (x, y)) ∈ Un×(U∗1 \{0}) choose σ ∈ SL2(k) with
σ(x, y) = (0, 1). Then the orbit SL2(k) · (u, (x, y)) corresponds to Ga · σ(u). Now,
if for a separating set S ⊆ k[Un]Ga and v, w ∈ Un× (U∗1 \{0}) we have f(v) = f(w)
for all f ∈ Φ−1(S), then f(v) = f(w) for all f ∈ k[Un ⊕ U∗1 ]SL2(k). In other words,
Φ−1(S) separates outside Un × {0} ⊆ Un ⊕ U∗1 .

We now state our main results. For any real number x, the symbol [x] denotes
the largest integer less than or equal to x. We begin by definining some important
invariants, namely

(2) fm :=
m−1∑
k=0

(−1)kxkx2m−k +
1
2

(−1)mx2
m ∈ kerDn for m = 1, . . . , [

n

2
]

and f0 := x0. Note that these elements are semitransvectants, see Section 5.
Further, we define the elements

(3) sm :=
m∑
k=0

(−1)k
2m+ 1− 2k

2
xkx2m+1−k ∈ Rn for m = 1, . . . , [

n− 1
2

]

and s0 := x1, which satisfy

Dnsm = fm for m = 0, . . . , [
n− 1

2
],
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and in particular Dnsm ∈ An \ {0}. Elements with this property are called local
slices.

For any a ∈ Rn \ {0}, let ν(a) denote the nilpotency index ν(a) := min{m ∈ N :
Dm+1
n (a) = 0}, and ν(0) := −∞. If s ∈ Rn is a local slice, then for any a ∈ Rn we

define

εs(a) := (exp(tDn)a)|t:=−s/Dns · (Dns)ν(a)

=
ν(a)∑
k=0

(−1)k

k!
(Dk

na)sk(Dns)ν(a)−k ∈ An.

By the Slice Theorem [12, Corollary 1.22], we have

An ⊆ k[εs(x0), . . . , εs(xn)]Dns.

When s = x1 and so Dns = x0, this is the first stage in Lin Tan’s (and van den
Essen’s) algorithm for producing a generating set for An [22, 23].

Theorem 2.1. Given n, we define a set En consisting of the following elements:

f0, f1, . . . , f[ n
2 ],

εs0(x2), . . . , εs0(xn),

εs1(x1), . . . , εs1(xn),

εs2(x2), . . . , εs2(xn),

εs3(x3), . . . , εs3(xn),

...

εs
[ n−1

2 ]
(x[ n−1

2 ]), . . . , εs[ n−1
2 ]

(xn).

If n ≡ 0 mod 4 we also append to En an extra invariant w which is defined in
Lemma 5.4. Then the set En is a separating set for An.

Note that εs0(x0) = f0 and εs0(x1) = 0. The size of this separating set is about
3
8n

2. The following table shows its exact size for some values of n. The lower line
gives the size cn of a minimal generating set for An, see Olver [17, p. 40]. Olver says
this list can not be trusted for n ≥ 7. For c7, we use Bedratyuk’s value c7 = 147
[2], while in Olver’s list values c7 = 124 or c7 = 130 are offered, depending on
the source. We also want to remark that for n ≥ 5, we could save 5 elements by
replacing the 10 elements of E4 \ {w} appearing in En by the 5 generators of A4.
(For n = 4 we could save 6 elements). Note that generators for n ≤ 7 are listed
explicitly in [3, 2].

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|En| 11 16 20 28 34 43 49 61 69 82 90 106 116 133 143 163 175
cn 5 23 26 147 69 415 475 949 ? ? ? ? ? ? ? ? ?

It is also worth noting that our separating set consists of invariants whose degree
is at most 2n+ 1.
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3. The radical of the Hilbert ideal

Let Rn, Dn and An be as in the introduction. For any m < n we have the
algebra homomorphism

πm,n : Rn → Rm, f(x0, x1, . . . , xn) 7→ f( 0, . . . , 0︸ ︷︷ ︸
n−m times

, x0, . . . , xm)

which satisfies πm,n ◦Dn = Dm ◦ πm,n and thus induces a map An → Am.
Consider the Hilbert ideal In := An,+Rn � Rn. With the invariants fm defined

in (2), we get the following inclusion for its radical:

(4) (x0, . . . , x[ n
2 ])Rn =

√
(f0, f1, . . . , f[ n

2 ])Rn ⊆
√
In.

The main purpose of this section is to prove that the reverse inclusion holds too.

Proposition 3.1. (a) The radical of the Hilbert ideal is given by√
In = (x0, . . . , x[ n

2 ])Rn.

(b) πn−[ n
2 ]−1,n(An) = k.

(c) πm,2m(A2m) = k[x2
0] for m odd.

(d) πm,2m(A2m) = k[x2
0, x

3
0] for m even.

Proof. We will make use of Roberts’ isomorphism as defined in the previous section,
with the only difference that we will choose variables so that the Ga-actions become
basic, using the notations of the introduction. Additionally, let Ga act basically on
〈y0, y1〉k. The action of Ga on R̃n := Rn[y0, y1] extends to an action of SL2(k) on
R̃n such that the following holds:

(1) for any a ∈ k\{0} and µa :=
(
a−1 0
0 a

)
∈ SL2 we have µa(xk) = a2k−nxk

for k = 0, . . . , n and µa(yk) = a2k−1yk for k = 0, 1.

(2) for τ :=
(

0 −1
1 0

)
∈ SL2 we have τ(xk) = (−1)k (n−k)!

k! xn−k for k =

0, . . . , n and τ(yk) = (−1)ky1−k for k = 0, 1.
Recall from section 2 that the algebra map

Φ : R̃n → Rn, f(x0, . . . , xn, y0, y1) 7→ f(x0, . . . , xn, 0, 1)

induces an isomorphism of invariant rings R̃SL2
n → RGa

n = An. Now let f ∈ An and
F ∈ R̃SL2

n with Φ(F ) = f . Then we also have f = Φ(µa · F ) for all a ∈ k \ {0}, i.e.

f(x0, . . . , xn) = F (a−nx0, a
−n+2x1, . . . , a

nxn, 0, a) for all a ∈ k \ {0}.
Thus,

πn−[ n
2 ]−1,n(f) = F (0, . . . , 0, a2([ n

2 ]+1)−nx0, . . . , a
nxn−[ n

2 ]−1, 0, a) for all a ∈ k\{0},
and since this equation is polynomial in a and k is an infinite field, it also holds
for a = 0. Therefore, πn−[ n

2 ]−1,n(f) = F (0, . . . , 0) ∈ k, which proves (a) and (b).
Similarly, for n = 2m we find

πm,2m(f) = F (0, . . . , 0, x0, a
2x1, . . . , a

2mxm, 0, a) for all a ∈ k \ {0},
which is again polynomial in a. When a = 0, we get

πm,2m(f) = F (0, . . . , 0, x0, 0, . . . , 0) = p(x0)

for some polynomial p(x0) ∈ k[x0], so πm,2m(A2m) ⊆ k[x0]. Since πm,2m(fm) =
1
2 (−1)mx2

0, we get the inclusion k[x2
0] ⊆ πm,2m(A2m). Using that F is also invariant

under τ , we find in the same manner as before

πm,2m(f) = πm,2m(Φ(τµa−1F ))|a=0 = F (0, . . . , 0, (−1)mx0, 0, . . . , 0) = p((−1)mx0).
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Therefore, for m odd we get πm,2m(f) = p(x0) = p(−x0) ∈ k[x2
0], which proves

(c). For m even, to prove (d), we refer to Lemma 5.4, which gives a w ∈ A2m with
πm,2m(w) = x3

0, so k[x2
0, x

3
0] ⊆ πm,2m(A2m) ⊆ k[x0]. Since x0 generates the degree

one elements of A2m and πm,2m(x0) = 0, we are done. 2

We want to mention here that the method of proof for Proposition 3.1 (a) also
works for decomposable actions. Consider

R := k[x0,1, . . . , xn1,1, . . . , x0,k, . . . , xnk,k]

and D = Dn1 + . . . + Dnk
with Dni

= x0,i
∂

∂x1,i
+ . . . + xni−1,i

∂
∂xni,i

. Using an
algebra homomorphism π which behaves on each subalgebra k[x0,i, . . . , xni,i] as
πni−[

ni
2 ]−1,ni

, we get with the same proof

Theorem 3.2. The radical of the Hilbert ideal of kerD is given by

(x0,1, . . . , x[
n1
2 ],1, . . . , x0,k, . . . , x[

nk
2 ],k)R.

4. Construction of a separating set

In this section, we prove our main result.

Proof of Theorem 2.1. For Vn = kn+1 with k[Vn] = Rn, assume there are two
elements a = (a0, . . . , an) and b = (b0, . . . , bn) of Vn such that f(a) = f(b) for all
f ∈ En. We have to show that f(a) = f(b) for all f ∈ An. As x0 ∈ En, we
have a0 = b0. Assume first a0 = b0 6= 0. By the Slice Theorem, An ⊆ k[En]x0 .
Therefore, f ∈ An can be written as f = p

xl
0

with p ∈ k[En] and l ≥ 0. By

assumption, p(a) = p(b) and al0 = bl0 6= 0, so f(a) = p(a)/al0 = p(b)/bl0 = f(b).
Now assume a0 = b0 = 0 and let m be maximal such that a0 = a1 = . . . = am = 0,
so am+1 6= 0 (if m < n). By induction on k, we shall show that bk = 0 for
k = 0, . . . ,min{m, [n2 ]}. By assumption this holds for k = 0, so assume it holds for
some k < min{m, [n2 ]}. Then

(5)
(−1)k+1

2
a2
k+1 = fk+1(a) = fk+1(b) =

(−1)k+1

2
b2k+1,

so bk+1 = 0 since ak+1 = 0. If m ≥ [n2 ], then f(a) = f(0) = f(b) for any f ∈ An
by Proposition 3.1, so now assume 0 ≤ m < [n2 ]. Equation (5) for k = m shows
0 6= a2

m+1 = b2m+1. We now distinguish different cases.
1st Case: m < [n−1

2 ]. Then sm+1 is defined, and by the Slice Theorem

An ⊆ k[εsm+1(x0), . . . , εsm+1(xn)]fm+1 .

Applying π := πn−m−1,n on both sides yields

π(An) ⊆ k[π(εsm+1(xm+1)), . . . , π(εsm+1(xn))]π(fm+1),

where we used that πn−m−1,n(εsm+1(xk)) = 0 for k = 0, . . . ,m. The right hand
side is included in k[π(En)]π(fm+1). Therefore, for any f ∈ An there is p ∈ k[En]
and l ≥ 0 such that π(f) = π(p)

π(fm+1)l . Let

γ : Vn → Vn−m−1, (c0, . . . , cn) 7→ (cm+1, . . . , cn).

Then

f(a) = π(f)(γ(a)) =
π(p)

π(fm+1)l
(γ(a)) =

π(p)(γ(a))
(π(fm+1)(γ(a)))l

=
p(a)

fm+1(a)l

=
p(b)

fm+1(b)l
=

π(p)(γ(b))
(π(fm+1)(γ(b)))l

= π(f)(γ(b)) = f(b).

Here we used that the elements p and fm+1 of En take the same value on a, b by
assumption, and fm+1(a) = fm+1(b) 6= 0.
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2nd Case: [n−1
2 ] = m < [n2 ]. In this case, n has to be even, and n = 2m′ with

m′ = m + 1. Let π and γ be as before, so π = πm′,2m′ and γ : V2m′ → Vm′ . First
assume m′ is odd. By Proposition 3.1 (c) we have

π(An) = k[x2
0] = k[π(fm′)].

If m′ is even, by Proposition 3.1 (d) we have

π(An) = k[x2
0, x

3
0] = k[π(fm′), π(w)],

with w the element of Lemma 5.4. In both cases, π(An) = k[π(En)], so for any
f ∈ An, there exists p ∈ k[En] such that π(f) = π(p). Therefore,

f(a) = π(f)(γ(a)) = π(p)(γ(a)) = p(a) = p(b) = π(p)(γ(b)) = π(f)(γ(b)) = f(b).

We have shown: for any f ∈ An we have f(a) = f(b), and so we are done. 2

5. The existence of w.

In this section we prove Lemma 5.4, which requires some more machinery. Note
that we need this Lemma in order to construct a separating set only in the case
where n ≡ 0 mod 4 — in the other cases, w is not contained in our separating
set. We will make use of semitransvectants, which are the classical transvectants
transformed under Roberts’ isomorphism, see for example [2, 4, 17]. Recall that for
a covariant F ∈ R̃SL2

n = Rn[y0, y1]SL2 , its total degree in y0, y1 is called the order
of F . For covariants F and G of orders l and m respectively, we can construct new
covariants given by

〈F,G〉(r) :=
r∑

k=0

(−1)k
(
r
k

)
∂rF

∂yr−k0 ∂yk1

∂rG

∂yk0∂y
r−k
1

r ≤ min(l,m),

which is called the rth transvectant of F and G (see [17, p. 88]). Transvectants play
a key role in Gordan’s famous proof of the finite generation of covariants of binary
forms [13]. The transformation of this construction under Roberts’ isomorphism
leads the following definition (see also [1]).

Definition 5.1. Let Φ : Rn[y0, y1]SL2 → RGa
n = An be Roberts’ isomorphism,

given by substituting y0 := 0, y1 := 1. Let f and g be a pair of invariants in An.
Then for r ≤ min(l,m), where l and m are the orders of Φ−1(f) and Φ−1(g) as
above, we define the rth semitransvectant of f and g by

[f, g](r) := Φ(〈Φ−1(f),Φ−1(g)〉(r)).

In order to get an explicit expression for the semitransvectant, we introduce a
second derivation on Rn, which is somewhat inverse to Dn:

∆n :=
n∑
k=0

(n− k)(k + 1)xk+1
∂

∂xk
.

This derivation comes from the other canonical embedding of Ga in SL2, namely

for f ∈ Rn, a ∈ k we have
(

1
a 1

)
∗ f = exp(a∆n)f . Let ord(f) denote the

nilpotency index of f with respect to ∆n. Assume F ∈ Rn[y0, y1]SL2 is homogeneous
of degree m in the variables y0, y1, so it can be written in the form F = fym1 +
y0 · (. . . ) with f ∈ Rn. Then Φ(F ) = f , and invariance of F under the torus
action implies all terms xa0

0 . . . xan
n in f satisfy m =

∑n
k=0(n−2k)ak. A polynomial

f ∈ RGa
n with this property is called isobaric of weight m, and then we have
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m = ord(f). For an isobaric f ∈ RGa
n , by [14, p. 43] the inverse of Roberts’

isomorphism is given by

Φ−1(f) =
ord(f)∑
i=0

(−1)i
∆i
n(f)
i!

yi0y
ord(f)−i
1 .

Proposition 5.2. Let f, g ∈ RGa
n be isobaric. Then for r ≤ min(ord(f), ord(g)),

the rth semitransvectant of f and g is given by the formula

[f, g](r) =
r∑

k=0

(−1)k
(
r
k

)
∆k
n(f)

(ord(f)− k)!
(ord(f)− r)!

∆r−k
n (g)

(ord(g)− r + k)!
(ord(g)− r)!

.

Proof. Let ∆i
n(f)
i! := λi and ∆i

n(g)
i! := µi. Then

∂rΦ−1(f)
∂yr−k0 ∂yk1

=
ord(f)−k∑
i=r−k

(−1)iλi
i!

(i− r + k)!
(ord(f)− i)!

(ord(f)− i− k)!
yi−r+k0 y

ord(f)−i−k
1

and

∂rΦ−1(g)
∂yk0∂y

r−k
1

=
ord(g)−r+k∑

i=k

(−1)iµi
i!

(i− k)!
(ord(g)− i)!

(ord(g)− i− r + k)!
yi−k0 y

ord(g)−i−r+k
1 ,

therefore

Φ
(
∂rΦ−1(f)
∂yr−k0 ∂yk1

)
= (−1)r−kλr−k

(r − k)!(ord(f)− r + k)!
(ord(f)− r)!

and

Φ
(
∂rΦ−1(g)
∂yk0∂y

r−k
1

)
= (−1)kµk

k!(ord(g)− k)!
(ord(g)− r)!

.

Using the fact that Φ is an algebra homomorphism we have

[f, g](r) =
r∑

k=0

(−1)k+r

(
r
k

)
λr−k

(r − k)!(ord(f)− r + k)!
(ord(f)− r)!

µk
k!(ord(g)− k)!
(ord(g)− r)!

,

=
r∑

k=0

(−1)k+r

(
r
k

)
∆r−k
n (f)

(ord(f)− r + k)!
(ord(f)− r)!

∆k
n(g)

(ord(g)− k)!
(ord(g)− r)!

=
r∑

k=0

(−1)k
(
r
k

)
∆k
n(f)

(ord(f)− k)!
(ord(f)− r)!

∆r−k
n (g)

(ord(g)− r + k)!
(ord(g)− r)!

as required. 2

Remark 5.3. This is analogous to [1, Lemma 1], using a different basis.

The formula shows that, up to some scalar factor, fm (from (2)) equals [x0, x0](2m)

(while [x0, x0](r) = 0 for r odd), and εsm
(x1) equals [x0, fm](1). We wonder whether

there is also a connection between εsm
(xj) and [x0, f

j
m](j).

Lemma 5.4. Suppose n is divisible by 4, so n = 2m = 4p. Then there is an
invariant w ∈ An satisfying πm,n(w) = x3

0.

Proof. Throughout the proof we use the shorthand π := πm,n, and we set f := fp =
1
2

∑m
i=0(−1)ixixm−i (which is proportional to [x0, x0](m)). Obviously, f is isobaric

of weight (n− 2i) + (n− 2(m− i)) = 2n− 2m = n = ord(f). Thus we may define

w̄ := [x0, f ](n) =
n∑
k=0

(−1)k
n!2k!

(n− k)!
xk∆n−k

n (f) =
n∑
k=0

(−1)k
n!2(n− k)!

k!
xn−k∆k

n(f),
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where we used Proposition 5.2. Thus,

π(w̄) =
m∑
k=0

(−1)k
n!2(n− k)!

k!
xm−kπ(∆k

n(f)).

Using Leibniz’s formula for iterated differentiation of products, we have

π(∆k
n(xixm−i)) =

k∑
j=0

(
k
j

)
π(∆j

nxi)π(∆k−j
n xm−i)

=
k−i∑

j=m−i

(
k
j

) (i+ j)!(n− i)!
i!(n− i− j)!

π(xi+j)
(m− i+ k − j)!(m+ i)!
(m− i)!(m+ i− k + j)!

π(xm−i+k−j)

=
k−m∑
j=0

(
k

j + m− i

) (m+ j)!(n− i)!
i!(m− j)!

π(xm+j)
(k − j)!(m+ i)!

(m− i)!(n− k + j)!
π(xk−j).

In particular, π(∆k
n(xixm−i)) = 0 for all k < m, and since f is a linear combination

of terms of the form xixm−i, we have π(∆k
n(f)) = 0 for all k < m. From this,

remembering m is even, it follows that π(w̄) = n!2x0π(∆m
n (f)). Therefore, since

π(∆m
n (xixm−i)) =

(
m

m− i

)
x2

0

(n− i)!
i!

(m+ i)!
(m− i)!

,

and f = 1
2

∑m
i=0(−1)ixixm−i, we obtain

π(∆m
n (f)) =

1
2
x2

0

m∑
i=0

(−1)i
(
m
i

)
(n− i)!
i!

(m+ i)!
(m− i)!

=
((2p)!)2

2
x2

0

2p∑
i=0

(−1)i
(

2p
i

)(
4p− i

2p

)(
2p+ i
i

)
.

Thus, π(w̄) = n!2x0π(∆m
n (f)) is a nonzero multiple of x3

0 if the sum above is
nonzero. This follows from Lemma 5.6. 2

Remark 5.5. With g := ∆n
n(f), we have w̄ = c ·

∑n
k=0(−1)kxkDkg with c ∈ k.

Lemma 5.6. For all p ≥ 1 we have
2p∑
k=0

(−1)k
(

2p
k

)(
4p− k

2p

)(
2p+ k
k

)
= (−1)p

(3p)!
(p!)3

.

Proof. The argument which follows was produced using the implementation of Zeil-
berger’s algorithm [25] in the remarkable EKHAD package for Maple [18]. Let

F (p, k) :=

 (−1)k
(

2p
k

)(
4p− k

2p

)(
2p+ k
k

)
0 ≤ k ≤ 2p

0 Otherwise,

and let S(p) :=
∑2p
k=0 F (p, k). We show that the following recurrence relation holds:

(6) 6(3p+ 2)(3p+ 1)S(p) + 2(p+ 1)2S(p+ 1) = 0.

To do this, we consider the function

G(p, k) :=
1
2
k2(180− 184k + 1036p+ 59k2 + 2192p2 − 790pk − 1116p2k + 168pk2

+2024p3 − 8k3 + 688p4 + k4 − 520p3k + 120p2k2 − 10pk3)(−4p+ k − 1)
F (p, k)
R(p, k)
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where R(p, k) = (2p+1)(−2p−2+k)2(−2p−1+k)2. For 0 ≤ k ≤ 2p−1 it satisfies
the relation

G(p, k + 1)−G(p, k) = 6(3p+ 2)(3p+ 1)F (p, k) + 2(p+ 1)2F (p+ 1, k).

Summing both sides over 0 ≤ k ≤ 2p − 1 (and adding remaining terms) produces
(6), and an easy inductive argument then shows that S(p) = (−1)p (3p)!

(p!)3 . 2

Remark 5.7. The sum S(p) is the well-poised hypergeometric series(
4p
2p

) ∞∑
k=0

(−2p)k(2p+ 1)k(−2p)k
(1)k(−4p)kk!

=
(

4p
2p

)
3F2[−2p, 2p+ 1,−2p; 1,−4p; 1].

Surprisingly, the series is not summable by any classical hypergeometric sum the-
orem (e.g. Dixon’s theorem, Watson’s theorem) because the series 3F2[−2p, 2p +
1,−2p; 1,−4p; z], p not an integer, does not converge when z = 1, see [21, Chap-
ter 2]. For this reason, we have to apply Zeilberger’s algorithm for partial sums in
order to sum the series. In the language of WZ-theory, F̄ , G is a WZ-pair, where
F̄ (p, k) := (−1)p (p!)3F (p,k)

(3p)! , and R(p, k) is the corresponding WZ-proof certificate.
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