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Abstract—The grounding of high-level semantic concepts is a thus correspond appropriately to low-level features ex¢ich
key requirement of video annotation systems. Rule induction can vjg computer-vision and computer-audio techniques. Withi

thus constitute an invaluable intermediate step in characterizing protocol-governed domains such as broadcast sports fgotag
protocol-governed domains, such as broadcast sports footagé/e fi t il th tvoicall lat ithl

here set out a novel “clause grammar template” approach to semanticconcepts w us typically correlate withle-
the problem of rule-induction in video footage of court games 'elevant structureswithin the game such as players, court-

that employs a second-order meta-grammar for Markov Logic locations etc. The utilization of high-level rules in speideo
Network construction. The aim is to build an adaptive system for agnnotation consequently has a long histoy, [and while
sports video annotation capable, in principle, both of learningab generally these rules are specifizgriori, rule induction has

Irrlljlltclaod?)rr]r?ai{ﬂ:.o adaptively transferring learning between distinct been found to be useful in this contex] [5]. Generally,

The method is tested with respect to both a simulated game game protocols are expressed by first-order logical rules (o
predicate generator and also real data derived from tennis at least logics equipped with variables and universal quan-
footage via computer-vision based approaches including HOG3D tification). However, induction of first-order logical rsldas
based_player-actlon classmcatlon, Houg_h-transform-based caot (to date) been accomplished only via the processesilef
detection, and graph-theoretic ball-tracking. .. . . .

Experiments demonstrate that the method exhibits both error mlnlnggndlnductlve |f°9'c Programmlng (ILPBoth of these
resilience and leaming transfer in the court domain context. have disadvantages in an annotation-based context; theefor
Moreover the clause template approach naturally generalizes typically does not establish a full set of rules and the fatte

to any suitably-constrained, protocol-governed video domain typically has too large a search space to be computationally

characterized by feature noise or detector error. __tractable for complex domains. It will be the task of this ap
keywords: Video Annotation, Markov processes, Stochastlct tify this b . Linducti thodol it

Logic, Markov logic network (MLN), Action Recognition, Be- o rectify this yproposmg anovel inductive metho o_ogy

havior discovery, Statistical Relational Reasoning employs MLNs (which are generally assumed to be incapable

of rule inference) to provide a complete, and computatignal
tractable solution.
|. INTRODUCTION Thus, while sports video annotation is a well established

Automated video annotation is a well-established reseangtoblem area in machine vision, for which manifestly susees
problem within computer vision and includes various chaful techniques are available, most existing machine atioota
lenges such as event detection and action recognitiof]. [ systems tend to be crafted for individual domains and have
Application domains range from surveillance to sign-laaggi little or no adaptability, and very limited capacity to exte
recognition, with sports videos having proved particylarlabilities/cope with new environments. However, it is clear
popular and a range of methodologies having been implat many sports domains are intrinsically similar; teranisl
mented. Within tennis video annotation, research has &mtusadminton, for instance share many common rules and visual
on shot classificationd], within-shot event detection1ly], primitives (court-lines, nets etc). Our aim in the follogiis
stroke-type classificationl], analysis of player tacticslf] thus to develop a high-level mechanism for generic cousetla
and scene retrievallf]. In general, court-games may besports video annotation capable of autonomously adapting
characterized in terms of thelow-level visual eventge.g. rule-bases, transferring knowledge, and acquiring new-com
ball and player movements within the court) and tH@gh- petences as the problem demands, one that is thus capable of
level eventsncorporating all the rule-salient contextual detailsomplementing existing low-level adaptation/transtsrhing
such as the match-score. approaches.

High-level semantic concepts this play a key role in video As a step toward achieving this, we set out an approach that
annotation in general, and sport-video annotation in palai employs ameta-grammaifor Markov Logic Network (MLN)
[6] [1]. However, in order to function effectively, it is crucialconstruction (Markov Logic Networks being the increasyngl
that concepts are properly grounded in order to overcompesdominant approach to applying logical reasoning in the
the ‘semantic gap’. High-level conceptual information musontext of stochastic uncertainty, with widespread appim
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throughout the field of pattern recognitiond [4]). How- predicates that can be collectively associated with a edecr
ever, rather than induce clauses directly from predicdtizélerbrand interpretation (i.e. a 'possible world’ genedaby
representations of computer vision and computer audiodbagedicate term instantiations).
features (which tends to produce poor results), we see&ddst A Markov logic networkL is formally defined (cf {4])
to define a representative set of claugeammars which as a set of pairsH;,w;), where F; is a first-order logical
can be exhaustively enumerated to create large numberfainula andw; is a real number that defines the weight of
clauses for individual weighting. This typically enablesater F;. Given a finite set of constan@ a Markov networkMy,
grammatical flexibility than alternative MLN-based indioct consists of a single binary node for each possible grounding
methods that are limited to inducing conjunctions of litera of each predicate appearing in and one grounded feature
Our proposed method of game-rule learning has sorper formulaF; in L, which has a value of 1 fotrue ground
similarities to other second-order MLN transfer-learningformula, and O otherwisew; affects the degree to which
approaches in the literature (specifically] [and [3], both inconsistency with the th formula is tolerated, and affects
of which substitute predicates applicable in one domain ltlye probability of possible world: accordingly.
second-order variables to be appropriately instantiatighiv. A potential function, ¢x(x(xy), is associated with each
the novel domain). However, our approach is based priori  formula such that), = 1 when true andp,, = 0 when false
knowledge of generic game-clause structures, enabling us(ite. when the formula variable instantiatian,, is realized
pre-emptively exhaust the clausal possibilities of the ehovas part of possible world ).
domains via an appropriate choice of templates. Moreover,If n;(z) is number of true groundings of thih formula in
because we choose predicate structures that are universal tthe possible (Herbrand) world , then the world’s probability
court games (e.g., predicates indicating court-linesjegtile is given by the exponential expansion:
tracks etc), we do not need to consider the re-mapping/re-

instantiation of second-order variables over predicattisef 1

than to expand the template). Rule adaptation is consdguent P(X=2) = 7 H i (x{i})n"'(z)
achieved in our approach via clauseweighting greatly re- i

ducing the magnitude of the search space and thereforesthe ri 1

of over-fitting. The clause template approach thus naturall AR (Z Wi 'ni(x)>

generalizes to any protocol-governed computer-visionalom

affected by stochastic detector noise. = exp(2; Wi - () (1)
The paper is formatted as follows: the following section 2rex XPZ; wi - nia’))

will describe MLN theory prior to setting out our novel “clsel  (constituting the Gibbs measure and partition functiontfar

template” approach to rule induction. In section Ill we déze  \LN)

a simulated game predicate generator that will parallel theWe|ghtS are obtained via a maximum likelihood gra-

computer vision methods employed for real data. Section Yfent descent of equationl with respect to a re-

then sets out a series of evaluation protocols and Section [fional database (equatiori is straightforwardly dif-

looks at the application of the clause template method to th&entiable). Several possibilities exist; in the follow-

real and simulated data. We conclude in Section VII Wlthhg’ the Box-constrained Limited-Memory Broyden-F|etﬁhe

experimental discussions/conclusions. Goldfarb-Shanno (L-BFGS-B) Quasi-Newtonian method is
employed to attain the minimum.
Il. METHODOLOGY The goal of inference in a Markov network is then to find
A. Markov Logic Networks (MLNS) the stationary distribution(i.e the most likely assignment,

i ) ) iven the clause weights, of probabilities to the verticethe
‘Markov Logic Networks, first proposed by Domingos an8ngrounded network graph given a particular knowledge base
Richardson {], are an amalgam ofirst-order logic and ang query formula). To solve this marginalization problem,
probabilistic graphical modelstarkov Networkgalso known several approaches are possible; in our case the solution is
as Markov random fields). They allow first-order logic claaiseychieved through MaxWalksat sampling.
to be treated irprobabilistic terms [L4] by relaxing the strict A straightforward generative mode of weight learning is
boundaries of first-order logic clauses via the associabbn yseq for our purposes (discriminative methods are alsoi-poss
logical formulas with real number weights. ble). Each frame of data (i.e. feature vector) is thus cdader
For a given set of first-order logic clauses with quantifiefgg feature predicates via a set of computer vision praess
V.3 scoped over the variables of predicates connected by c@y added to aelational database for test and training
junction and disjunctions (e.g. of the fovir Vy Vz (A(z, )N purposes. We follow an implicit open-world assumption. (i.e

Bly,2))vC(x,z) = D(z,y) for predicatesd, B, C, D), itis  any ground predicates not included in the training datemets
possible to build a Markov network graph in which vertices ar;gnsidered as potentially eitheue or false).

variables and edges are derived from the the logical connec-

tives used to construct formulae. Each formula thus carnsst ,

a clique within the Markov random field: the Markov blanketB: MLN Meta-Structure for Game Rule Induction

of a variable is the set of cliques in which it appearsGound Structure learning (clause induction) via processes amil
Markov Networkis one in which vertices are grounded atomito Inductive Logic Programming is possible for MLNs, but is



IEEE BTEX SYSTEM 3

generally prohibitively computationally expensive, aimdited the above meta-relations by exhaustively enumerating éteo
in practice to the induction of conjunctive formulae onlyeW possible substitutions (in this case just f(z) for x) avail-
require something substantially more flexible and appeteri able within each functionally-relatable term-list. Thesdl,
to the domain. in general, be™ ® in number for each predicate. Permitting
Our approach to rule induction is therefore to utilizesuch substitutions is potentially useful in a court-gametext
the (relatively efficient) MLN weight learning processes ibecause it allows for the induction of symmetric relations i
conjunction with a very large number of clauses that atbe rule structure via the of use opposition functions of the
combinatorially-exhaustive with respect to a particullause type FARSIDE=opposite(NEARSIDE)which allows for e.g.,
“meta-grammar” (to be defined). In this way, depending ogerves on opposite sides to be described by a single clause.
the generality of the meta-grammar, all significant rukeli  Terms themselves may be grounded or ungrounded using
behaviors can be extracted from a knowledge-base, witte format-symbol:+ (according to the Alchemy usage:
irrelevant rules being weighted to near zero. This approabhp://alchemy.cs.washington.efluMWhere grounding is se-
also has the potential for combining large numbers of weakliected, terms are groundéddependentlygiving rise to very
weighted partially-accurate rules in ways that are adygetas large numbers of individually-weighted clauses. Thus,tfer
(e.g. due to error decorrelation in the mannetafiging or predicate term list of the foriv {7’ ®} = (A+, B+, C+, D+
cooperative support as imoosting. ..), the clause base for weighting is expanded by a factor:
We thus employa priori generic court rules that are|(A4, B,C,D..)| = |(al,a2,a3..)| x |(b1,b2,03..) x ...| where
applicable to all games (such as e.g. “a player hitting a bé#lie al,a2.. , b1,b2... are logical constants (i.e., possible
must be proximate to the ball”) and combine these with thiestantiations of A, B etc). There are additionally"®
unweighted clauses generated by the meta-grammar. Claggsunded/non-grounded decisions to make for each preglicat
weighting may then be used to learn specific game-ruladich expands the number of clause construct possibilities
according to the standard MLN approach. We finally obtaiconsiderably further, potentially to the point of intrauitay.
predicate likelihoods via exhaustive inference over edaomaz  Throughout the following, we therefore opt for fully growedl
predicate at a particular event-interval. terms. Note that negative weights constitute a possible- sol
Our approach to clause meta-generation can be separdted, so that negations of any given clause-template a@ als
into two grammatical classe€ontemporaneous implicationimplicitly incorporated; for our problem domain, generhte
(the inference of rules concerning configuration correta) clauses typically number in thE), 000's (i.e. of a magnitude
and Successive implicatio(the inference of rules concerningthat can be processed efficiently via the weight learning
causal relations). Examples of both of these classes aem giprocess described earlier).
below (with P,, designating an arbitrary predicate with second- Application of this approach in practice requires that vari
order labelx and the symbol\” designating a conjunctive able instantiations and identity relations between végglso
combination over all predicate indicesof the logical formu- as to enable them to fall under the same quantifier's scope)

lae to the right-hand side of the symbol: are given in advance. These may either specifigatiori or
derived directly from the training data. In latter case, sle¢s
Contemporaneous implication: of variable instantiations can be derived greedily from the
A* N BTN 1) = B, (T 1)) training and input data sets; variable identity relatiomas c
, then be made on the basis of the degree of overlap between
AN NPT 4) A P ([T 1) = instantiation sets (e.g. such that variables with idehtioa
P, ([Tt 1) very similar, instantiation sets have the option of beingped

under the the same quantifier within the generated clauses).

The five specific grammar templates utilized in our domain
A" N Succ(ty, ta) A P ([T 1)) = P,([T{"W} 1) tests are listed below; however we require more than the
A AY N\ Suce(t1, 12) A P (T 1) A clauses. generat_ed above in order to build a MLN; addltlonal

(n(w)} (n(2)} header information embodying mutual exclusion (mutex)-pri
Py([T Y Ltl):PZ([T ) ]’tQ) i i i
ciples and function/constant declarations also need to be

where Succ indicates a succession relationship between tefimcorporated into the weight learning process.
poral instantg; andt, (various other temporal logic relations

Successive implication:

are also possible). C. Grammars Employed
Within this generalized high-level format[,%;{(’;)(?}] IS" The grammar templates employed for clause generation
an arity n(t) list of terms such that:[T | = are listed below (for brevity, the priori grammar is not

’I’Ll 7L2 nl 1 . . . .
[Rt ()} Nt gt)}] where R/ (t)_} arefunctionally-relatable |isted). HereP, represents an arbitrary atomic predicate drawn
terms and N (" ("} arenon-functionally-relatable termsthe  greedily from a relational databasd” and\/" are conjunc-
reason for separation of the functionally and non-funallyn tjve/disjunctive combinations, over all predicate indicg of
relatable terms is that additional rule relations can tereany |ogical formula to its right-hand side (the symbay”
be incorporated within clause meta-grammar. Thus, if a SGljicates set- differencey; is a predicate term-list.
functiony = f(z) exists, then the term lisf{"()} = (z, 2, y)

1 2 . . . . . .

separates agi® W} = {2y} and NI} = {»1 Addi-  Grammar 1: simultaneous likelihoods, no conjunction
tional clause structures may consequently be extracted fran implication (with individual weightings of non-tempdra
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variable instantiations) a) Low-level Pre-Processingtmage frames are initially
n de-interlaced intdields(the tennis videos employed in our ex-
A" Pal+a,1) e
T4 periments are interlaced when captured). Fields thus ®éitai
Grammar 2: simultaneous likelihoods, implications, notempor""I alias.ing as_required for the ball track?ng .proa:(_adu
conjunction (with individual weightings of non-temporadn+ Following de-mtqlacmg, camera lens geometric d.'?"“"“s
able instantiations) corrected for. It is assumed that the camera position on the
court is fixed, with the global transformation between frame
IN" A" Pu(+a,t) = Py(+b,t1)] \ [N Pn(+a,t) = defined as ahomography The homography is determined
P (4b,t1)] by corner-tracking throughout the sequence (RANSATI§
applied to the detected corners to find a robust estimate of
the homography, with a Levenberg-Marquardt optimizer also
A" N logform(Pp,, Py)] \ [N™ logform(Py,, Py,)] applied to improve the homography).
b) Shot Analysis:A broadcast tennis video is presumed
' ' to be composed ofhots consisting in e.g. gameplay, close-
N™TE NEE og form( Py, Pr) ups, crowd-scenes and commercials. Shot boundaries are
wherelog form(Py., P, is a well-formed (quantified) first- detected via a breakdown in color histogram intersection
order formula (i.e. di:sjunctive or conjunctive combinatiof between adjacent frames. Shots are then classified into the
Py, P,) aforementioned categories using the histogram mode and, in
e the case of overhead gameplay, the presence of corner-point

Grammar 3: successive likelihoods, implications, ngeontinuity (it is the latter category of shot that providé t

henceforth, for terminological compression, we will write

as

conjunction (individual weightings) basis for the predica}te generation)_. _
o c) Court Detection, Ball Tracking, and Player Tracking:
A" N" Suce(ta, t2) A Pr(+a,t1) = Pr(+b,t1)] For shots classified as gameplay, we thus determine the

] o o court lines, player location (relative to the court lines)da
Grammar 4: simultaneous likelihoods, implications, con-ctions, as well as the ball trajectory. Tennis court lines a

junction (individual weightings) determined via Hough transformation, while player detecti
[N\TEEO A0 NGO D (g 4 VAP (1h, 1) = 1S cgrried out by backgrounq subtraction,. inco_rpora_ting—ge
P,(+c,t1)] metric spatio-temporal consistency-checking with phased

masking. Player tracking (as distinct from detection) isied

Grammar 5: successive likelihoods, implications, conjuncout via a particle filter, with player actions classified via a
tion (individual weightings) nearest neighbor approach using a bag of HOG3D features.
mimn x ningm p o For ball tracking, background subtraction is employed to
(A A N Suce(ti,ta) A P(+aty) A generate initial ball candidates. A feature vector is cotagu
Pr(+b,t1) = Po(+e, t1)] for each candidate, incorporating size, color and edgé¢econ
information. SVM classification is then used to eliminate al

Grammar 6: conjunction over all grammars i.e.: but the strongest ball candidates.

A" P (+a,t) A Ball tracks themselves are established in two stages., First
A" N Po(+a,t) = Puo(+b,t1)]\ [N\ Pn(+a,t) = “tracklets” are built from sets of extracted strong object
P (+b,t1)] A candidates in the form of second-order (roughly parabtiac)
IA™ A" Succ(ty, t2) A Po(+a,t1) = Po(+b,t1)] A jectories: A graph-theore_tic data-association techniguben
[/\m:m;én,o /\n:n;ém,o /\o:o;ém,n Po(ta,t)A  Pu(+b,t1) used to link the Frac_klets into qomplete ball tracks][ Game-
= Py(+e,t1)] A play events are indicated by significantly above-threshaltt

trajectory changes, which are then correlated with othenev
label indicators such as player action-class in order tainkan
event characterization. These characterizations catestiine
of the key predicatized outputs of the computer vision stage
with the possible event-label instantiatioh&, bounce net,
and serve Alongside these event-labels, predicatized output
is also generated for player and ball positions (in terms
of fine-grained/coarse-grained court-box geometry), a we
In the following paragraphs we briefly detail the computeas for player actions. The encoding scheme is depicted in
vision processing required to generate tennis configuratiGig. 1; thus the predicate bablaliloclattice(ONE,ONE,t)
predicates (detailing player actions and locations, afidiaa indicates that the the ball is in court b@x 1, +1) at timet.
jectories and locations) in a manner appropriate for inpttt i  Predicatizing the Ball and Player location requires thaba 3
the MLN rule induction process (i.e. as a set of predicatizgmsition is determined relative to the detected court liSésce
detections). Computer audio based predication can besslynil the preceding computer vision processes only generaterscre
appended, although beyond the scope of this paper; grounelative locations, we utilize the homography, along with a
truthing is achieved via hand-annotation. appropriate set of priori assumptions in order to project the

[/\WT’W&" /\nn#m /\O S’U/CC(tla t?) A Pm(+CL, tl) A
P (+b,t1) = P,(+c,t1)]

I1l. PREDICATE GENERATION

A. Computer Vision Predicate Generation



IEEE BTEX SYSTEM 5

screen-coordinates of events into the court ground-plame. set of input symbols{, T" a transition function mapping@ x X
particular, we assume a constant height for the player, a2, ¢0 an initial (or start) statg0d € @, andF a set of states
that the lower edge of the player bounding box is in contadistinguished asccepting(or final) statesf” C . Utilizing
with the ground planez = 0). The three key ball events:the power seR® permits stochastic transitional ambiguity to
serves hits and bouncesare thus presumed to occur at de modelled.

typical player's height, a typical player's shoulder-Hgigind For a generic court game, we have thus have the following
the ground planez(= 0), respectively. Nets are assumed tget relations:

occur at half the regulation net height. X = {nearside, farside}
F = {Point}
rrrrrrrrrrrrrrrrrrr TemnisCout  BadmintonCout qQO = {{1;:‘_;12?;}: Point, Serve, Hit, Bounce_Out, Bounce, Net}
| o FarOS\de . 5 1 H o Far ?de L, ; T Q N P 2Q
A 1° £y =5 _T1 7 We also have the following transition probabilities (fully
g o2 R B - s| | constrainingl)):
| " (-1,+2) (+1,42) o :
R N N "l | A) Chance of player on sideX not returning ball
BN & e vy |8 = =« | = p([Serve(-X)|Hit(-X)] —  Bounce(X)] —
B gl on e f5l 2 Point(—X)) = 0.2
4 - - ?5” E ol w4 £ B) Chance of ball bouncing on sid€ before player hits it=
N N ] 3 = = | p([Serve(—X)|Hit(—X)] = Bounce(X) — Hit(X)) = 0.7
- N 12) f C) Chance of player on sid& losing point after hit=
E - . g - - - p(Hit(X) — [Bounce_Out|Net(X)|Bounce(=X)]) = 1 —
N L - . — e 5 i p(Pre_event) = 0.3

| Near sice Near Sice D) Chance of bounce out following losing hit=
b e " p(Bounce_Out|C) = 0.2
Fig. 1: Court-box labelling scheme for Ball and Player deteg) Chance of ‘Net’ following losing hit= p(Net|C) = 0.5

tions (fine-grained in black, coarse-grained in blue
! (fine-gra ! gral in blu (Note thatp([X|Y]) denotes the probability of eithek
or Y occurring, while p(X|Y') denotes the probability of

A typical predicate output for event would thus be as X occurring given thaty” has occurred in accordance with

follows: e .
standard statistical notation.)

eventlabel(SERV E, n) - the label of the event e e s g .
serveside(NEARSIDE, n) - the side from which the ball was served These tranS|_t|on p_rObabllltleS are SUffICI(?Z‘nt_ to paran@er
eventside(NEAR, n) - the side on which the current event takes place all macro-configurations of sub-events within an individua
ballloc(NEAR, LEFT,n) - the ball's location P i i :
plloc(NEAR, LEFT,n) - player 's location point (all other transition probabilities are derivablerfr the
p2loc(NEAR, RIGHT, n) - player 2's location above).
p3loc(FAR, RIGHT, n) - player 3's location (if present) ) . .
pdloc(FAR, LEFT, n) - player 4's location (if present) We also have the following opposition relations:
ballloclattice(ON E, ON E, n) - fine-grained ball-location ) )
plloclattice(ONE, ONE, n) - fine-grained player 1 location —(nearside_serve) = farside_serve
p2loclattice(ONE, ON E, n) - fine-grained player 2 location —(farside_serve) = nearside_serve
p3loclattice(ONE, ONE, n) - fine-grained player 3 location (if present) - -
pdloclattice(ONE, ONE, n) - fine-grained player 4 location (if present) We thus represent the non-deterministic finite state machin
plaction(SERVING, n) - player 1 action . . . .
p2action(IDLE, n) - player 2 action appropriate to Tennis as a state diagram in figufaote that
p3action(IDLIE, n) - player 3 action (if present) states differ from those in a Markov Model in having an input
pdaction(IDLE,n) - player 4 action (if present) . L .
Succ(n + 1,n) - asserts topological continuity of temporal indices. variable within paremheses)- The gam@aﬁmmtoman then

be modelled within this framework by omission of tBeunce
possibility from thePreEventto PlayerActtransition; we shall
utilize this in our evaluation of high-level transfer/attzpon.

As well as the predicatization of computer-vision data, we The non-deterministic finite state machine of fig@réhus
wish to create a ready source of simulated game predicatesdfcompasses all basic game transitions for the game oftenni
evaluation purposes. At an abstract level, an observed gajjea way that permits enrichment via an additional set of
of tennis can be implicitly modelled by a non-deterministigon-deterministic microstates so as to give a full preeicat
push-down automata (note, not a context free grammar, sinf&cription of the game of tennis in terms of the major rule-
modelling the game’s progression requires a memory of, faflevant entities (i.e the entities in terms of which theesul
instance, the current score and the serve side from which gfahe game are specified in official language-based majerial
current play-event originated). If score progression isttem, e thus, for example, delineate positions only at the ‘grain
game-play sequences froserve through to point can be of court-boxes.
modelled as a non-deterministic finite-state machine (Whic The stochastically-selected microstates adding addition
requires only memory of the original serve side, rather #anfine-grained locations for the Ball and Players are thus in-

memory stack fqr_sqor|ng events). o _ stantiated from the following sets:
A non-deterministic finite state machine is defined asa 5-, , . .. . . . _ (Left_hand, Right_hand}

tuple: (Q7 X, T, q0, F) with Q a finite set of statesX a finite courtboz_vertical_of fset = {0,1,2,3}

B. Simulated Game Predicate Generation
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of the existence of the temporal variable groundihg:1 € T
(O s is sufficient to ensure that all possible predictive grongdi
/ \ [ ] - obsenabiesie are generated for the subsequent event). Predicationbeme t
Towm] [wo | [0 | @ hardened on the assumptior) of a _claysally-ponstrapmi
facto ‘mutex’ (mutual exclusion) principle with respect to
individual variables.

As well as the set ofa priori rules generic to all court
games, five candidate clause grammar templates are gaherate
in the manner set out in Section Il and evaluated both in
terms of the overall average hardened predicate accumady, a
also the hardened event-label predicate accuracy (asghis i
generally the configuration predicate we are most intedeste
in in an annotation scenario). A combination of all of the
wowo | | o | [ | [ e | template-generated clauses constitutes a sixth gramrhas. T

\ / // o \ ‘ latter grammar requires substantial computation time Her t
Bouce inference process (though not the weighting process), and s
SR only a single experiment is carried éut
In addition to evaluating the grammars individually and in
Fig. 2: Tennis state diagram composition, we also apply the Inductive Logic Method (ILP)
approach of Muggleton et al9] as a baseline method (this

being the only comparable rule-induction baseline evalnat
courtboz_horizontal_of fset = {0,1,2,3} method in the literature). To apply this approach compagrabl

Adopting this format for position-specification makes itHeald and ‘Body’ mode predicates are exactly as the specifi-

) . o . cation given above, and all variable instantiations (types
straightforward to encode symmetries within predicatbaqt declare% at the outset. ILP works by generalizing m(()zt‘?peci
we don't consider the absolute offséts3, —2, —1,0,1, 2, 3}, )

but rather the conjunction of théateral side. indicator Horn clauses obtained from the training observations aed th
. . . - uses resolution theorem-proving to establish clause gétyer
predicate with the relativeourt — box_horizontal_of fset P g gene

. . . . retracting any redundant clauses. Following exploratoty e
predicate). To a large extent, this avoids the necessity og g any g exp y

: . : . perimentation, ILP meta-parameters were set as followes: th
adopting relational functions with the clause meta-gramma ; N . .
S . ) maximum number of combinations in the clause lattice (npdes
The non-deterministic finite state machine of figuge

. o . . S searched i§000, the maximum number of resolutions is set to
along with the additional micro-structuring, is implemeaht

via recursive (stochastic) function calling. (This has leaefit 3000, the maximum clause length is setita, the maximum
of being extensible; we can straightforwardly add addiallonvalrlable depth was set @ predicates are set to be positive

. . .. nly; all other parameters were th faults. (Note indacti
microstates if necessary, such as ball velocities, camdzlao y; all other parameters were the defaults. (Note ineact

multi-madal representations such as line-calls etc) convergence only occurs with respect to certain predicéttes
P ' is thus possible that exhaustive searching would give a more

optimized set of ILP parameters; however, this is prohiblsi
time-consuming).
We select four distinct areas of evaluation for the Accuracy is again determined as percentage of correctly
proposed meta-MLN approach for rule-inductioDpmain predicted event labels after hardening.
Adaption/High-level Transfer LearnipgNoise Resilience  2) Scenario 2: Domain Adaption/High-level Transfer
Structured Output Learningand Accuracy of Prediction | earning: This evaluation regime is intended to complement
These are evaluated using the simulated predicate genergg@-level transfer-learning approaches, in whichfeature
(except for prediction accuracy, which is less meaningful f transform is typically sought between learning domaing)]
a finite state machine) and on real predicates obtained frafe here look explicitly at the potential for inter-domaie-
footage of theAustralian Open mens’ singles 20@8nnis weighting of clauses to act as a mechanism for learning-
championship for the latter two evaluation scenarios. Theansfer for the higher-level aspects of the domain (i.e. th
domains are characterized as follows: domain’s protocols). The idea is thus that weight-learning
1) Scenario 1: Accuracy of PredictionAccuracy of Pre- in one domain will, for many clauses, still have validity in
diction is evaluated in terms of total predicate accuracthwianother domain, such that a pre-weighted MLN will achieve a
respect to an immediately prior sequence of predication afiore generally accurate (i.e more truly global) minimurmtha
sertions. Thus, if we have a set of predicate groundings &k unweighted MLN applied in the new domain. (Outcomes

the formpx (Ax,t), such thatdx is a sequence of groundedare again evaluated in terms of total predication accuracy)
terms associated with event-number instantiations, adhen

we test the prediction accuracy of the MLN with respect 'One possible efficiency measure involves filtering of weak. (low-
to the ground-truthed predicatqu(BX t+ 1) associated Weighted) rules according to a weight-threshold. Howelies tatter approach

. ’ ... results in substantial degradation of performance (perdapsto a boosting-
with the subsequent event. (The MLN generates Cond't'oqi@i effect from the very large numbers of weakly-weightedusles being
likelihoods for the entire Herbrand base, so that the assertlost)

IV. EVALUATION DOMAINS
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Note that other mechanisms have been proposed for MLN
transfer-learning, in particulari] and [3]; however, both of
these approaches are tuned to learning new predicates from
lifted rules, and so are distinct from our approach. (In thet
two classes of approaches are complementary, and could, in
principle, be used together. We do not need to consider this
option here, however, given that predicates are designed to
have universal-validity between court domains).

The average fraction of total predicates accurately-ptedi
is thus determined for the respective configurations: Ten-
nis train/tennis test; Badminton train/badminton testriie
train/badminton test; Badminton train/tennis test usirg 1
simulated events (the predicates are those listed in $ectio
IV - we thus employ a total ofi8 x 100 = 1800 training
predicates with a total 02700 variable instantiations ovex
experimental runs). A performance baseline for comparison
with these figures is determined by randomly instantiating
predicates to give an accurately-predicted fractiord.8p.

3) Scenario 3: Noise Resiliencédithin the microstate-
supplemented non-deterministic finite state machine we can
introduce an additional “noise factor”, such that a projoort
of variables are randomly instantiated with a probabilitg-p
portional to a set threshold. This allows for the simulatain
detector failure/error.

Overall MLN noise robustness is thus established withaABLE

a) Average predicate prediction accuracy
(averaged over all temporal training instances)

A priori grammar

all predicate accuracy

event label accuracy

0.4572 £ 0.0022

0.4718 £ 0.0026

Grammar 1

all predicate accuracy
0.2527 £ 0.0049

event label accuracy|
0.2631 4 0.0298

Grammar 2

all predicate accuracy
0.5112 £ 0.0006

event label accuracy|
0.7879 + 0.181

Gram

mar 3

all predicate accuracy
0.4474 £+ 0.0057

event label accuracy|
0.6579 4+ 0.0819

Gram

mar 4

all predicate accuracy
0.4665 £+ 0.0213

event label accuracy|
0.4831 4+ 0.0610

Gram

mar 5

all predicate accuracy
0.4618 £+ 0.0153

event label accuracy|
0.4474 4+ 0.0074

Composite grammar

all predicate accuracy
0.4710

event label accuracy|
0.4470

ILP Baseline

all predicate accuracy
0.14

event label accuracy|
0.43

b) Structured Output

Learning Results (Gr. R)

Absolute Performance

Multiple of Chance

0.6800

2.7200

Evaluation of a) Performance for

Individ-

respective noise levels sampled[@®5,0.50, 0.75,1.0], such yal/Composite Grammars and ILP baseline and b) Structured

that 0.0 represents no noise and0 represents completely Qutput Learning Results using best performing grammargusin
random instantiation of predicate variables. (Again, omotes predicates from observed match data

are evaluated in terms of total predication accuracy).

4) Scenario 4: Structured Output Learningzinally, we
conduct a test of the proposed methodology’s capability of
determining a full evensequencewvhen given predicatized
detector input (i.e. a test of the ability of the method teslgy
structured outputather than discrete configuration predicate
instantiations as in the above case). The input is thus the
entire sequence of non-event predicates, such that the first
order query addressed to the trained MLN now concerns the
full temporal sequence of event predicate instantiati¢fsr
efficiency in the case of the simulated data we use the single
best performing grammar from the first test).

In all of the following, 100 events are used for
MLN training, selected from a temporally-distant por-
tions of play (i.e., non-contiguous data-sets). The Alchem
system for MLN construction is employed throughou
“http://alchemy.cs.washington.edu/".

a) Transfer Learning/Domain Adaptation Results:

Time-averaged Predicate Prediction Accuracy

Test Environment

Tennis | Badminton
Training Tennis 0.47 0.48
Environment || Badminton | 0.46 0.48

b) Noise Resilience Results

Noise level 0.2

5 | 0.50 | 0.75 1.0

Prediction accuracy|| 0.6

2 | 0.563 | 0.45 | 0.32

c) Structured Output Learning Results

|

Instantiation || Abs. accuracy| Multiple of Chance
Noise
0% 0.6818 2.7273
20% 0.5741 2.2963

using generated predicates

V. RESULTS AND DISCUSSION

{TABLE II: Evaluation of a) Transfer Learning/Domain Adap-
tation, b) Noise Resilience, and c) Structured Output Liegrn

Results for the evaluation scenarios listed above arewget-are dominated by ball and player position predicates (as we
(where relevant) for théustralian Open mens’ singles 2003would expect given the finite-state machine domain model).

data in Table 1 and for the generated data in Table 2.

As regards theNoise Resilienceevaluation, a very nearly

The games of tennis and badminton differ with respetinear tail-off is observed with respect to the sampled @ois
to just a few critical rules; examining thEransfer Learning levels on the best performing grammar. (Convergence ilur

results (Table 1), it is clear that the MLN results demonstraoccurs with any non-zero noise value using ILP).
In terms of theAccuracy of Predictiorevaluation grammar
2 proves the most effective clause template for prediction of

significantly greater than chance performan6e3%) on all
transfer scenarios (recall that while rules differ, tréosi

likelihoods are retained within the simulator). Overallneo real-world events, and outperforms the weighted comtnati
figuration accuracy figures for the finite-state simulatethdaof all grammars.



IEEE BTEX SYSTEM

The Structured Output Learningvaluation using the single
best-performing grammar on the simulated tennis obtaing,
an event prediction accuracy 6f6818, corresponding to a
near-equivalent accuracy 6f6800 on the Australian Singles [2]
data. This drops td.5741 (2.2963 chance accuracy) with
20% instantiation noise, suggested random instantiation 8l
unrepresentative of the computer vision predicate geioerat (4

Collectively, these evaluations demonstrate a key adganta
of first-order logical techniques; namely, flexibility witfe-
spect to arbitrary querying, with structured output leagni
potentially representing the most typical usage scenario.

(5]

6]
VI. CONCLUSIONS

The utility of the proposed clause meta-template approach {n
rule-induction is demonstrated in the context of sporeeidn-
notation, where the domain as a whole can be characteriaed !
a set of very generic spatio-temporal grammatical cormgsai
The grammar templates are thus capable of exhausting the
main classes of relation that exist between detectabltenith
a sport-based environment, such that high-level domaim{ea
ing and adaptation can take place purely in terms of MLNZOI
based clause-weighting, which can efficiently accommodate
the large numbers of rules so generated (entity predication
is sufficiently universal as to apply between different spohl]
domains).

The MLN-based method, furthermore, has the advantagél
of noise-resilience, exhibiting a linear degradation offge ;3
mance (contrasting sharply with deductive/ILP-based meth
ods). Experiments on real data also indicate relativelielit [14]
performance degradation in relation to simulated game. data
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