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Abstract—The grounding of high-level semantic concepts is a
key requirement of video annotation systems. Rule induction can
thus constitute an invaluable intermediate step in characterizing
protocol-governed domains, such as broadcast sports footage. We
here set out a novel “clause grammar template” approach to
the problem of rule-induction in video footage of court games
that employs a second-order meta-grammar for Markov Logic
Network construction. The aim is to build an adaptive system for
sports video annotation capable, in principle, both of learningab
initio and also adaptively transferring learning between distinct
rule domains.

The method is tested with respect to both a simulated game
predicate generator and also real data derived from tennis
footage via computer-vision based approaches including HOG3D
based player-action classification, Hough-transform-based court
detection, and graph-theoretic ball-tracking.

Experiments demonstrate that the method exhibits both error
resilience and learning transfer in the court domain context.
Moreover the clause template approach naturally generalizes
to any suitably-constrained, protocol-governed video domain
characterized by feature noise or detector error.
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I. I NTRODUCTION

Automated video annotation is a well-established research
problem within computer vision and includes various chal-
lenges such as event detection and action recognition [12].
Application domains range from surveillance to sign-language
recognition, with sports videos having proved particularly
popular and a range of methodologies having been imple-
mented. Within tennis video annotation, research has focused
on shot classification [6], within-shot event detection [13],
stroke-type classification [10], analysis of player tactics [18]
and scene retrieval [16]. In general, court-games may be
characterized in terms of theirlow-level visual events(e.g.
ball and player movements within the court) and theirhigh-
level eventsincorporating all the rule-salient contextual details
such as the match-score.

High-level semantic concepts this play a key role in video
annotation in general, and sport-video annotation in particular
[6] [1]. However, in order to function effectively, it is crucial
that concepts are properly grounded in order to overcome
the ‘semantic gap’. High-level conceptual information must

thus correspond appropriately to low-level features extracted
via computer-vision and computer-audio techniques. Within
protocol-governed domains such as broadcast sports footage,
semantic concepts will thus typically correlate withrule-
relevant structureswithin the game such as players, court-
locations etc. The utilization of high-level rules in sportvideo
annotation consequently has a long history [5], and while
generally these rules are specifieda priori, rule induction has
been found to be useful in this context [2] [5]. Generally,
game protocols are expressed by first-order logical rules (or
at least logics equipped with variables and universal quan-
tification). However, induction of first-order logical rules has
(to date) been accomplished only via the processes ofrule-
miningandInductive Logic Programming (ILP). Both of these
have disadvantages in an annotation-based context; the former
typically does not establish a full set of rules and the latter
typically has too large a search space to be computationally
tractable for complex domains. It will be the task of this paper
to rectify this by proposing a novel inductive methodology that
employs MLNs (which are generally assumed to be incapable
of rule inference) to provide a complete, and computationally
tractable solution.

Thus, while sports video annotation is a well established
problem area in machine vision, for which manifestly success-
ful techniques are available, most existing machine annotation
systems tend to be crafted for individual domains and have
little or no adaptability, and very limited capacity to extend
abilities/cope with new environments. However, it is clear
that many sports domains are intrinsically similar; tennisand
badminton, for instance share many common rules and visual
primitives (court-lines, nets etc). Our aim in the following is
thus to develop a high-level mechanism for generic court-based
sports video annotation capable of autonomously adapting
rule-bases, transferring knowledge, and acquiring new com-
petences as the problem demands, one that is thus capable of
complementing existing low-level adaptation/transfer-learning
approaches.

As a step toward achieving this, we set out an approach that
employs ameta-grammarfor Markov Logic Network (MLN)
construction (Markov Logic Networks being the increasingly
predominant approach to applying logical reasoning in the
context of stochastic uncertainty, with widespread application
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throughout the field of pattern recognition [15] [4]). How-
ever, rather than induce clauses directly from predicatized
representations of computer vision and computer audio based
features (which tends to produce poor results), we seek instead
to define a representative set of clausegrammars, which
can be exhaustively enumerated to create large number of
clauses for individual weighting. This typically enables greater
grammatical flexibility than alternative MLN-based induction
methods that are limited to inducing conjunctions of literals.

Our proposed method of game-rule learning has some
similarities to other second-order MLN transfer-learning-
approaches in the literature (specifically [8] and [3], both
of which substitute predicates applicable in one domain by
second-order variables to be appropriately instantiated within
the novel domain). However, our approach is based ona priori
knowledge of generic game-clause structures, enabling us to
pre-emptively exhaust the clausal possibilities of the novel
domains via an appropriate choice of templates. Moreover,
because we choose predicate structures that are universal to all
court games (e.g., predicates indicating court-lines, projectile
tracks etc), we do not need to consider the re-mapping/re-
instantiation of second-order variables over predicates (other
than to expand the template). Rule adaptation is consequently
achieved in our approach via clausere-weighting, greatly re-
ducing the magnitude of the search space and therefore the risk
of over-fitting. The clause template approach thus naturally
generalizes to any protocol-governed computer-vision domain
affected by stochastic detector noise.

The paper is formatted as follows: the following section
will describe MLN theory prior to setting out our novel “clause
template” approach to rule induction. In section III we describe
a simulated game predicate generator that will parallel the
computer vision methods employed for real data. Section IV
then sets out a series of evaluation protocols and Section VI
looks at the application of the clause template method to the
real and simulated data. We conclude in Section VII with
experimental discussions/conclusions.

II. M ETHODOLOGY

A. Markov Logic Networks (MLNs)

Markov Logic Networks, first proposed by Domingos and
Richardson [4], are an amalgam offirst-order logic and
probabilistic graphical modelsMarkov Networks(also known
as Markov random fields). They allow first-order logic clauses
to be treated inprobabilistic terms [14] by relaxing the strict
boundaries of first-order logic clauses via the associationof
logical formulas with real number weights.

For a given set of first-order logic clauses with quantifiers
∀, ∃ scoped over the variables of predicates connected by con-
junction and disjunctions (e.g. of the form∀x ∀y ∀z (A(x, y)∧
B(y, z))∨C(x, z) ⇒ D(x, y) for predicatesA, B, C, D), it is
possible to build a Markov network graph in which vertices are
variables and edges are derived from the the logical connec-
tives used to construct formulae. Each formula thus constitutes
a clique within the Markov random field: the Markov blanket
of a variable is the set of cliques in which it appears. AGround
Markov Networkis one in which vertices are grounded atomic

predicates that can be collectively associated with a concrete
Herbrand interpretation (i.e. a ’possible world’ generated by
predicate term instantiations).

A Markov logic network L is formally defined (cf [14])
as a set of pairs (Fi, wi), whereFi is a first-order logical
formula andwi is a real number that defines the weight of
Fi. Given a finite set of constantsC, a Markov networkML,C

consists of a single binary node for each possible grounding
of each predicate appearing inL, and one grounded feature
per formulaFi in L, which has a value of 1 fortrue ground
formula, and 0 otherwise.ωi affects the degree to which
inconsistency with thei th formula is tolerated, and affects
the probability of possible worldx accordingly.

A potential function,φk(x{k}), is associated with each
formula such thatφk = 1 when true andφk = 0 when false
(i.e. when the formula variable instantiationx{k} is realized
as part of possible worldx ).

If ni(x) is number of true groundings of thei’th formula in
the possible (Herbrand) worldx , then the world’s probability
is given by the exponential expansion:

P (X = x) =
1

Z

∏

i

φi(x{i})
ni(x)

=
1

Z
· exp

(

∑

i

wi · ni(x)

)

=
exp(

∑

i wi · ni(x))
∑

x′∈χ exp(
∑

i wi · ni(x′))
(1)

(constituting the Gibbs measure and partition function forthe
MLN)

Weights are obtained via a maximum likelihood gra-
dient descent of equation1 with respect to a re-
lational database (equation1 is straightforwardly dif-
ferentiable). Several possibilities exist; in the follow-
ing, the Box-constrained Limited-Memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) Quasi-Newtonian method is
employed to attain the minimum.

The goal of inference in a Markov network is then to find
the stationary distribution(i.e the most likely assignment,
given the clause weights, of probabilities to the vertices of the
ungrounded network graph given a particular knowledge base
and query formula). To solve this marginalization problem,
several approaches are possible; in our case the solution is
achieved through MaxWalksat sampling.

A straightforward generative mode of weight learning is
used for our purposes (discriminative methods are also possi-
ble). Each frame of data (i.e. feature vector) is thus converted
into feature predicates via a set of computer vision processes
and added to arelational database for test and training
purposes. We follow an implicit open-world assumption (i.e.
any ground predicates not included in the training datasetsare
considered as potentially eithertrue or false)).

B. MLN Meta-Structure for Game Rule Induction

Structure learning (clause induction) via processes similar
to Inductive Logic Programming is possible for MLNs, but is
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generally prohibitively computationally expensive, and limited
in practice to the induction of conjunctive formulae only. We
require something substantially more flexible and appropriate
to the domain.

Our approach to rule induction is therefore to utilize
the (relatively efficient) MLN weight learning processes in
conjunction with a very large number of clauses that are
combinatorially-exhaustive with respect to a particular clause
“meta-grammar” (to be defined). In this way, depending on
the generality of the meta-grammar, all significant rule-like
behaviors can be extracted from a knowledge-base, with
irrelevant rules being weighted to near zero. This approach
also has the potential for combining large numbers of weakly-
weighted partially-accurate rules in ways that are advantageous
(e.g. due to error decorrelation in the manner ofbagging, or
cooperative support as inboosting).

We thus employa priori generic court rules that are
applicable to all games (such as e.g. “a player hitting a ball
must be proximate to the ball”) and combine these with the
unweighted clauses generated by the meta-grammar. Clause
weighting may then be used to learn specific game-rules
according to the standard MLN approach. We finally obtain
predicate likelihoods via exhaustive inference over each atomic
predicate at a particular event-interval.

Our approach to clause meta-generation can be separated
into two grammatical classes:Contemporaneous implication
(the inference of rules concerning configuration correlations)
andSuccessive implication(the inference of rules concerning
causal relations). Examples of both of these classes are given
below (withPx designating an arbitrary predicate with second-
order labelx and the symbol

∧x designating a conjunctive
combination over all predicate indicesx of the logical formu-
lae to the right-hand side of the symbol:

Contemporaneous implication:
∧x∧y

Px([T
{n(x)}], t1) ⇒ Py([T

{n(y)}, t1)
∧x∧y∧z

Px([T
{n(x)}], t1) ∧ Py([T

{n(y)}], t1) ⇒
Pz([T

{n(z)}], t1)

Successive implication:
∧x∧y

Succ(t1, t2) ∧ Px([T
{n(x)}], t1) ⇒ Py([T

{n(y)}, t2)
∧x∧y∧z

Succ(t1, t2) ∧ Px([T
{n(x)}], t1) ∧

Py([T
{n(y)}], t1) ⇒ Pz([T

{n(z)}], t2)

whereSucc indicates a succession relationship between tem-
poral instantst1 andt2 (various other temporal logic relations
are also possible).

Within this generalized high-level format,[T {n(t)}] is
an arity n(t) list of terms such that: [T {n(t)}] =
[R{n1(t)}, N{n2(t)}] whereR{n1(t)} are functionally-relatable
terms, andN{n2(t)} arenon-functionally-relatable terms. The
reason for separation of the functionally and non-functionally
relatable terms is that additional rule relations can thereby
be incorporated within clause meta-grammar. Thus, if a sole
functiony = f(x) exists, then the term listT {n(t)} = (x, z, y)
separates asR{n1(t)} = {x, y} and N{n2(t)} = {z}. Addi-
tional clause structures may consequently be extracted from

the above meta-relations by exhaustively enumerating all of the
possible substitutions (in this case justy = f(x) for x) avail-
able within each functionally-relatable term-list. Thesewill,
in general, be2n

1(t) in number for each predicate. Permitting
such substitutions is potentially useful in a court-game context
because it allows for the induction of symmetric relations in
the rule structure via the of use opposition functions of the
type FARSIDE=opposite(NEARSIDE), which allows for e.g.,
serves on opposite sides to be described by a single clause.

Terms themselves may be grounded or ungrounded using
the format-symbol:+ (according to the Alchemy usage:
http://alchemy.cs.washington.edu/). Where grounding is se-
lected, terms are groundedindependently, giving rise to very
large numbers of individually-weighted clauses. Thus, forthe
predicate term list of the formN{n2(t)} = (A+, B+, C+, D+
..), the clause base for weighting is expanded by a factor:
|(A,B,C,D..)| = |(a1, a2, a3..)| × |(b1, b2, b3..)× ...| where
the a1, a2.. , b1, b2... are logical constants (i.e., possible
instantiations ofA, B etc). There are additionally2n(t)

grounded/non-grounded decisions to make for each predicate,
which expands the number of clause construct possibilities
considerably further, potentially to the point of intractability.
Throughout the following, we therefore opt for fully grounded
terms. Note that negative weights constitute a possible solu-
tion, so that negations of any given clause-template are also
implicitly incorporated; for our problem domain, generated
clauses typically number in the10, 000’s (i.e. of a magnitude
that can be processed efficiently via the weight learning
process described earlier).

Application of this approach in practice requires that vari-
able instantiations and identity relations between variables (so
as to enable them to fall under the same quantifier’s scope)
are given in advance. These may either specifieda priori or
derived directly from the training data. In latter case, thesets
of variable instantiations can be derived greedily from the
training and input data sets; variable identity relations can
then be made on the basis of the degree of overlap between
instantiation sets (e.g. such that variables with identical, or
very similar, instantiation sets have the option of being scoped
under the the same quantifier within the generated clauses).

The five specific grammar templates utilized in our domain
tests are listed below; however we require more than the
clauses generated above in order to build a MLN; additional
header information embodying mutual exclusion (mutex) prin-
ciples and function/constant declarations also need to be
incorporated into the weight learning process.

C. Grammars Employed

The grammar templates employed for clause generation
are listed below (for brevity, thea priori grammar is not
listed). HerePn represents an arbitrary atomic predicate drawn
greedily from a relational database;

∧n and
∨n are conjunc-

tive/disjunctive combinations, over all predicate indices n, of
any logical formula to its right-hand side (the symbol “\”
indicates set- difference);a is a predicate term-list.

Grammar 1: simultaneous likelihoods, no conjunction
or implication (with individual weightings of non-temporal
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variable instantiations)
∧n

Pn(+a, t)

Grammar 2: simultaneous likelihoods, implications, no
conjunction (with individual weightings of non-temporal vari-
able instantiations)

[
∧m∧n

Pn(+a, t) ⇒ Pm(+b, t1)] \ [
∧m

Pm(+a, t) ⇒
Pm(+b, t1)]

henceforth, for terminological compression, we will write:

[
∧m∧n

logform(Pm, Pn)] \ [
∧m

logform(Pm, Pm)]

as
∧m:m 6=n∧n:n6=m

logform(Pm, Pn)

wherelogform(Pm, Pn) is a well-formed (quantified) first-
order formula (i.e. disjunctive or conjunctive combination of
Pm, Pn).

Grammar 3: successive likelihoods, implications, no
conjunction (individual weightings)

[
∧m∧n

Succ(t1, t2) ∧ Pn(+a, t1) ⇒ Pm(+b, t1)]

Grammar 4: simultaneous likelihoods, implications, con-
junction (individual weightings)

[
∧m:m 6=n,o∧n:n6=m,o∧o:o 6=m,n

Pm(+a, t1)∧Pn(+b, t1) ⇒
Po(+c, t1)]

Grammar 5: successive likelihoods, implications, conjunc-
tion (individual weightings)

[
∧m:m 6=n∧n:n6=m∧o

Succ(t1, t2) ∧ Pm(+a, t1) ∧
Pn(+b, t1) ⇒ Po(+c, t1)]

Grammar 6: conjunction over all grammars i.e.:
∧n

Pn(+a, t) ∧
∧m∧n

Pn(+a, t) ⇒ Pm(+b, t1)]\ [
∧m

Pm(+a, t) ⇒
Pm(+b, t1)] ∧

[
∧m∧n

Succ(t1, t2) ∧ Pn(+a, t1) ⇒ Pm(+b, t1)] ∧

[
∧m:m 6=n,o∧n:n6=m,o∧o:o 6=m,n

Pm(+a, t1)∧ Pn(+b, t1)
⇒ Po(+c, t1)] ∧

[
∧m:m 6=n∧n:n6=m∧o

Succ(t1, t2) ∧ Pm(+a, t1) ∧
Pn(+b, t1) ⇒ Po(+c, t1)]

III. PREDICATE GENERATION

A. Computer Vision Predicate Generation

In the following paragraphs we briefly detail the computer
vision processing required to generate tennis configuration
predicates (detailing player actions and locations, and ball tra-
jectories and locations) in a manner appropriate for input into
the MLN rule induction process (i.e. as a set of predicatized
detections). Computer audio based predication can be similarly
appended, although beyond the scope of this paper; ground-
truthing is achieved via hand-annotation.

a) Low-level Pre-Processing:Image frames are initially
de-interlaced intofields(the tennis videos employed in our ex-
periments are interlaced when captured). Fields thus eliminate
temporal aliasing as required for the ball tracking procedure.
Following de-interlacing, camera lens geometric distortion is
corrected for. It is assumed that the camera position on the
court is fixed, with the global transformation between frames
defined as ahomography. The homography is determined
by corner-tracking throughout the sequence (RANSAC [7] is
applied to the detected corners to find a robust estimate of
the homography, with a Levenberg-Marquardt optimizer also
applied to improve the homography).

b) Shot Analysis:A broadcast tennis video is presumed
to be composed ofshots, consisting in e.g. gameplay, close-
ups, crowd-scenes and commercials. Shot boundaries are
detected via a breakdown in color histogram intersection
between adjacent frames. Shots are then classified into the
aforementioned categories using the histogram mode and, in
the case of overhead gameplay, the presence of corner-point
continuity (it is the latter category of shot that provides the
basis for the predicate generation).

c) Court Detection, Ball Tracking, and Player Tracking:
For shots classified as gameplay, we thus determine the
court lines, player location (relative to the court lines) and
actions, as well as the ball trajectory. Tennis court lines are
determined via Hough transformation, while player detection
is carried out by background subtraction, incorporating geo-
metric spatio-temporal consistency-checking with prior-based
masking. Player tracking (as distinct from detection) is carried
out via a particle filter, with player actions classified via a
nearest neighbor approach using a bag of HOG3D features.
For ball tracking, background subtraction is employed to
generate initial ball candidates. A feature vector is computed
for each candidate, incorporating size, color and edge-contour
information. SVM classification is then used to eliminate all
but the strongest ball candidates.

Ball tracks themselves are established in two stages. First,
“tracklets” are built from sets of extracted strong object
candidates in the form of second-order (roughly parabolic)tra-
jectories. A graph-theoretic data-association techniqueis then
used to link the tracklets into complete ball tracks [17]. Game-
play events are indicated by significantly above-thresholdball-
trajectory changes, which are then correlated with other event-
label indicators such as player action-class in order to obtain an
event characterization. These characterizations constitute one
of the key predicatized outputs of the computer vision stage,
with the possible event-label instantiationshit, bounce, net,
and serve. Alongside these event-labels, predicatized output
is also generated for player and ball positions (in terms
of fine-grained/coarse-grained court-box geometry), as well
as for player actions. The encoding scheme is depicted in
Fig. 1; thus the predicate ballballloclattice(ONE,ONE, t)
indicates that the the ball is in court box(+1,+1) at time t.

Predicatizing the Ball and Player location requires that a 3D
position is determined relative to the detected court lines. Since
the preceding computer vision processes only generate screen-
relative locations, we utilize the homography, along with an
appropriate set ofa priori assumptions in order to project the
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screen-coordinates of events into the court ground-plane.In
particular, we assume a constant height for the player, and
that the lower edge of the player bounding box is in contact
with the ground plane (z = 0). The three key ball events:
serves, hits and bouncesare thus presumed to occur at a
typical player’s height, a typical player’s shoulder-height and
the ground plane (z = 0), respectively. Nets are assumed to
occur at half the regulation net height.
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Fig. 1: Court-box labelling scheme for Ball and Player detec-
tions (fine-grained in black, coarse-grained in blue

A typical predicate output for eventn would thus be as
follows:

eventlabel(SERV E, n) - the label of the event
serveside(NEARSIDE, n) - the side from which the ball was served
eventside(NEAR,n) - the side on which the current event takes place
ballloc(NEAR,LEFT, n) - the ball’s location
p1loc(NEAR,LEFT, n) - player 1’s location
p2loc(NEAR,RIGHT, n) - player 2’s location
p3loc(FAR,RIGHT, n) - player 3’s location (if present)
p4loc(FAR,LEFT, n) - player 4’s location (if present)
ballloclattice(ONE,ONE, n) - fine-grained ball-location
p1loclattice(ONE,ONE, n) - fine-grained player 1 location
p2loclattice(ONE,ONE, n) - fine-grained player 2 location
p3loclattice(ONE,ONE, n) - fine-grained player 3 location (if present)
p4loclattice(ONE,ONE, n) - fine-grained player 4 location (if present)
p1action(SERV ING, n) - player 1 action
p2action(IDLE, n) - player 2 action
p3action(IDLE, n) - player 3 action (if present)
p4action(IDLE, n) - player 4 action (if present)
Succ(n + 1, n) - asserts topological continuity of temporal indices.

B. Simulated Game Predicate Generation

As well as the predicatization of computer-vision data, we
wish to create a ready source of simulated game predicates for
evaluation purposes. At an abstract level, an observed game
of tennis can be implicitly modelled by a non-deterministic
push-down automata (note, not a context free grammar, since
modelling the game’s progression requires a memory of, for
instance, the current score and the serve side from which the
current play-event originated). If score progression is omitted,
game-play sequences fromserve through to point can be
modelled as a non-deterministic finite-state machine (which
requires only memory of the original serve side, rather thana
memory stack for scoring events).

A non-deterministic finite state machine is defined as a 5-
tuple: (Q,X, T, q0, F ) with Q a finite set of states,X a finite

set of input symbolsX, T a transition function mappingQ×X

to 2Q, q0 an initial (or start) stateq0 ∈ Q, andF a set of states
distinguished asaccepting(or final) statesF ⊆ Q. Utilizing
the power set2Q permits stochastic transitional ambiguity to
be modelled.

For a generic court game, we have thus have the following
set relations:

X = {nearside, farside}
F = {Point}
Q = {Pre event, Point, Serve, Hit, Bounce Out,Bounce,Net}
q0 = {Serve(X)}

T : Q × X → 2Q

We also have the following transition probabilities (fully
constrainingT )):

A) Chance of player on sideX not returning ball
= p([Serve(¬X)|Hit(¬X)] → Bounce(X)] →
Point(¬X)) = 0.2
B) Chance of ball bouncing on sideX before player hits it=
p([Serve(¬X)|Hit(¬X)] → Bounce(X) → Hit(X)) = 0.7
C) Chance of player on sideX losing point after hit=
p(Hit(X) → [Bounce Out|Net(X)|Bounce(¬X)]) = 1 −
p(Pre event) = 0.3
D) Chance of bounce out following losing hit=
p(Bounce Out|C) = 0.2
E) Chance of ‘Net’ following losing hit= p(Net|C) = 0.5

(Note that p([X|Y ]) denotes the probability of eitherX
or Y occurring, while p(X|Y ) denotes the probability of
X occurring given thatY has occurred in accordance with
standard statistical notation.)

These transition probabilities are sufficient to parameterize
all macro-configurations of sub-events within an individual
point (all other transition probabilities are derivable from the
above).

We also have the following opposition relations:
¬(nearside serve) = farside serve

¬(farside serve) = nearside serve

We thus represent the non-deterministic finite state machine
appropriate to Tennis as a state diagram in figure2 (note that
states differ from those in a Markov Model in having an input
variable within parentheses). The game ofBadmintoncan then
be modelled within this framework by omission of theBounce
possibility from thePreEventto PlayerActtransition; we shall
utilize this in our evaluation of high-level transfer/adaptation.

The non-deterministic finite state machine of figure2 thus
encompasses all basic game transitions for the game of tennis
in a way that permits enrichment via an additional set of
non-deterministic microstates so as to give a full predicate
description of the game of tennis in terms of the major rule-
relevant entities (i.e the entities in terms of which the rules
of the game are specified in official language-based material).
We thus, for example, delineate positions only at the ‘grain’
of court-boxes.

The stochastically-selected microstates adding additional
fine-grained locations for the Ball and Players are thus in-
stantiated from the following sets:

lateral side indicator = {Left hand,Right hand}
courtbox vertical offset = {0, 1, 2, 3}
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Point(~X)

Point(~X)
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B_out(X) N(X) B(X)

= hidden state
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B(X)
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B(~X) N(X)B_out(X) B(X)

Fig. 2: Tennis state diagram

courtbox horizontal offset = {0, 1, 2, 3}

Adopting this format for position-specification makes it
straightforward to encode symmetries within predicates (thus
we don’t consider the absolute offsets{−3,−2,−1, 0, 1, 2, 3},
but rather the conjunction of thelateral side indicator

predicate with the relativecourt − box horizontal offset

predicate). To a large extent, this avoids the necessity of
adopting relational functions with the clause meta-grammar.

The non-deterministic finite state machine of figure2,
along with the additional micro-structuring, is implemented
via recursive (stochastic) function calling. (This has thebenefit
of being extensible; we can straightforwardly add additional
microstates if necessary, such as ball velocities, correlated
multi-modal representations such as line-calls etc).

IV. EVALUATION DOMAINS

We select four distinct areas of evaluation for the
proposed meta-MLN approach for rule-induction;Domain
Adaption/High-level Transfer Learning, Noise Resilience,
Structured Output Learning, and Accuracy of Prediction.
These are evaluated using the simulated predicate generator
(except for prediction accuracy, which is less meaningful for
a finite state machine) and on real predicates obtained from
footage of theAustralian Open mens’ singles 2003tennis
championship for the latter two evaluation scenarios. The
domains are characterized as follows:

1) Scenario 1: Accuracy of Prediction:Accuracy of Pre-
diction is evaluated in terms of total predicate accuracy with
respect to an immediately prior sequence of predication as-
sertions. Thus, if we have a set of predicate groundings of
the formpX(AX , t), such thatAX is a sequence of grounded
terms associated with event-number instantiations oft, then
we test the prediction accuracy of the MLN with respect
to the ground-truthed predicatespX(BX , t + 1) associated
with the subsequent event. (The MLN generates conditional
likelihoods for the entire Herbrand base, so that the assertion

of the existence of the temporal variable grounding:t+1 ∈ T

is sufficient to ensure that all possible predictive groundings
are generated for the subsequent event). Predications are then
hardened on the assumption of a clausally-constrainedpost
facto ‘mutex’ (mutual exclusion) principle with respect to
individual variables.

As well as the set ofa priori rules generic to all court
games, five candidate clause grammar templates are generated
in the manner set out in Section III and evaluated both in
terms of the overall average hardened predicate accuracy, and
also the hardened event-label predicate accuracy (as this is
generally the configuration predicate we are most interested
in in an annotation scenario). A combination of all of the
template-generated clauses constitutes a sixth grammar. This
latter grammar requires substantial computation time for the
inference process (though not the weighting process), and so
only a single experiment is carried out1.

In addition to evaluating the grammars individually and in
composition, we also apply the Inductive Logic Method (ILP)
approach of Muggleton et al. [9] as a baseline method (this
being the only comparable rule-induction baseline evaluation
method in the literature). To apply this approach comparably,
‘Head’ and ‘Body’ mode predicates are exactly as the specifi-
cation given above, and all variable instantiations (types) are
declared at the outset. ILP works by generalizing most specific
Horn clauses obtained from the training observations and then
uses resolution theorem-proving to establish clause generality,
retracting any redundant clauses. Following exploratory ex-
perimentation, ILP meta-parameters were set as follows: the
maximum number of combinations in the clause lattice (nodes)
searched is1000, the maximum number of resolutions is set to
3000, the maximum clause length is set to100, the maximum
variable depth was set to3, predicates are set to be positive
only; all other parameters were the defaults. (Note inductive
convergence only occurs with respect to certain predicates-it
is thus possible that exhaustive searching would give a more
optimized set of ILP parameters; however, this is prohibitively
time-consuming).

Accuracy is again determined as percentage of correctly
predicted event labels after hardening.

2) Scenario 2: Domain Adaption/High-level Transfer
Learning: This evaluation regime is intended to complement
low-level transfer-learning approaches, in which afeature-
transform is typically sought between learning domains [11]).
We here look explicitly at the potential for inter-domainre-
weighting of clauses to act as a mechanism for learning-
transfer for the higher-level aspects of the domain (i.e. the
domain’s protocols). The idea is thus that weight-learning
in one domain will, for many clauses, still have validity in
another domain, such that a pre-weighted MLN will achieve a
more generally accurate (i.e more truly global) minimum than
an unweighted MLN applied in the new domain. (Outcomes
are again evaluated in terms of total predication accuracy).

1One possible efficiency measure involves filtering of weak (i.e. low-
weighted) rules according to a weight-threshold. However this latter approach
results in substantial degradation of performance (perhapsdue to a boosting-
like effect from the very large numbers of weakly-weighted clauses being
lost)
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Note that other mechanisms have been proposed for MLN
transfer-learning, in particular [8] and [3]; however, both of
these approaches are tuned to learning new predicates from
lifted rules, and so are distinct from our approach. (In factthe
two classes of approaches are complementary, and could, in
principle, be used together. We do not need to consider this
option here, however, given that predicates are designed to
have universal-validity between court domains).

The average fraction of total predicates accurately-predicted
is thus determined for the respective configurations: Ten-
nis train/tennis test; Badminton train/badminton test; Tennis
train/badminton test; Badminton train/tennis test using 100
simulated events (the predicates are those listed in Section
IV - we thus employ a total of18 × 100 = 1800 training
predicates with a total of2700 variable instantiations over2
experimental runs). A performance baseline for comparison
with these figures is determined by randomly instantiating
predicates to give an accurately-predicted fraction of0.32.

3) Scenario 3: Noise Resilience:Within the microstate-
supplemented non-deterministic finite state machine we can
introduce an additional “noise factor”, such that a proportion
of variables are randomly instantiated with a probability pro-
portional to a set threshold. This allows for the simulationof
detector failure/error.

Overall MLN noise robustness is thus established with
respective noise levels sampled at[0.25, 0.50, 0.75, 1.0], such
that 0.0 represents no noise and1.0 represents completely
random instantiation of predicate variables. (Again, outcomes
are evaluated in terms of total predication accuracy).

4) Scenario 4: Structured Output Learning:Finally, we
conduct a test of the proposed methodology’s capability of
determining a full eventsequencewhen given predicatized
detector input (i.e. a test of the ability of the method to classify
structured outputrather than discrete configuration predicate
instantiations as in the above case). The input is thus the
entire sequence of non-event predicates, such that the first-
order query addressed to the trained MLN now concerns the
full temporal sequence of event predicate instantiations.(For
efficiency in the case of the simulated data we use the single
best performing grammar from the first test).

In all of the following, 100 events are used for
MLN training, selected from a temporally-distant por-
tions of play (i.e., non-contiguous data-sets). The Alchemy
system for MLN construction is employed throughout:
“http://alchemy.cs.washington.edu/”.

V. RESULTS AND DISCUSSION

Results for the evaluation scenarios listed above are set-out
(where relevant) for theAustralian Open mens’ singles 2003
data in Table 1 and for the generated data in Table 2.

The games of tennis and badminton differ with respect
to just a few critical rules; examining theTransfer Learning
results (Table 1), it is clear that the MLN results demonstrate
significantly greater than chance performance (0.32) on all
transfer scenarios (recall that while rules differ, transition
likelihoods are retained within the simulator). Overall con-
figuration accuracy figures for the finite-state simulated data

a) Average predicate prediction accuracy
(averaged over all temporal training instances)

A priori grammar
all predicate accuracy event label accuracy
0.4572± 0.0022 0.4718± 0.0026

Grammar 1
all predicate accuracy event label accuracy
0.2527± 0.0049 0.2631± 0.0298

Grammar 2
all predicate accuracy event label accuracy
0.5112± 0.0006 0.7879± 0.181

Grammar 3
all predicate accuracy event label accuracy
0.4474± 0.0057 0.6579± 0.0819

Grammar 4
all predicate accuracy event label accuracy
0.4665± 0.0213 0.4831± 0.0610

Grammar 5
all predicate accuracy event label accuracy
0.4618± 0.0153 0.4474± 0.0074

Composite grammar
all predicate accuracy event label accuracy

0.4710 0.4470

ILP Baseline
all predicate accuracy event label accuracy

0.14 0.43

b) Structured Output Learning Results (Gr. 2)

Absolute Performance Multiple of Chance
0.6800 2.7200

TABLE I: Evaluation of a) Performance for Individ-
ual/Composite Grammars and ILP baseline and b) Structured
Output Learning Results using best performing grammar using
predicates from observed match data

a) Transfer Learning/Domain Adaptation Results:
Time-averaged Predicate Prediction Accuracy

Test Environment
Tennis Badminton

Training Tennis 0.47 0.48

Environment Badminton 0.46 0.48

b) Noise Resilience Results
Noise level 0.25 0.50 0.75 1.0

Prediction accuracy 0.62 0.53 0.45 0.32

c) Structured Output Learning Results

Instantiation Abs. accuracy Multiple of Chance
Noise
0% 0.6818 2.7273

20% 0.5741 2.2963

TABLE II: Evaluation of a) Transfer Learning/Domain Adap-
tation, b) Noise Resilience, and c) Structured Output Learning
using generated predicates

are dominated by ball and player position predicates (as we
would expect given the finite-state machine domain model).

As regards theNoise Resilienceevaluation, a very nearly
linear tail-off is observed with respect to the sampled noise
levels on the best performing grammar. (Convergence failure
occurs with any non-zero noise value using ILP).

In terms of theAccuracy of Predictionevaluation,grammar
2 proves the most effective clause template for prediction of
real-world events, and outperforms the weighted combination
of all grammars.
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TheStructured Output Learningevaluation using the single
best-performing grammar on the simulated tennis obtains
an event prediction accuracy of0.6818, corresponding to a
near-equivalent accuracy of0.6800 on the Australian Singles
data. This drops to0.5741 (2.2963 chance accuracy) with
20% instantiation noise, suggested random instantiation is
unrepresentative of the computer vision predicate generation.

Collectively, these evaluations demonstrate a key advantage
of first-order logical techniques; namely, flexibility withre-
spect to arbitrary querying, with structured output learning
potentially representing the most typical usage scenario.

VI. CONCLUSIONS

The utility of the proposed clause meta-template approach to
rule-induction is demonstrated in the context of sport-video an-
notation, where the domain as a whole can be characterized via
a set of very generic spatio-temporal grammatical constraints.
The grammar templates are thus capable of exhausting the
main classes of relation that exist between detectable entities in
a sport-based environment, such that high-level domain learn-
ing and adaptation can take place purely in terms of MLN-
based clause-weighting, which can efficiently accommodate
the large numbers of rules so generated (entity predication
is sufficiently universal as to apply between different sport
domains).

The MLN-based method, furthermore, has the advantage
of noise-resilience, exhibiting a linear degradation of perfor-
mance (contrasting sharply with deductive/ILP-based meth-
ods). Experiments on real data also indicate relatively little
performance degradation in relation to simulated game data.

Ensemble grammars can be constructed via template aggre-
gation; however, only marginal performance improvement was
obtained in the tested annotation context relative to the best
single-performing grammar.

The presented clause grammar template method is thus a
flexible and adaptive approach to MLN building, suitable in
particular for high-level semantic classification. Other possible
modes of application, besides annotation and learning-transfer,
include providinghigh-level priors for detector modules (so
that e.g. the Ball Tracking Module might call on the MLN
Module to establish whether “ball on far-side of net” is a
viable hypothesis during graph-theoretic tracklets pruning).
A further possibility enabled by top-down feedback is the
re-specification of visual primitivesin novel domains, such
that high-level rule inductions are used to re-tune detectors
in order to remove non-rule-salient detections, effectively
bootstrapping visual capabilities from scratch.

The proposed MLN clause-induction strategy can thus po-
tentially form the basis for a fully-adaptive annotation system
that combines both high- and low-level transfer-learning;this
is the objective of ongoing research.
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