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Abstract

Fully automatic annotation of tennis game using broadcast video is a task

with a great potential but enormous challenges. In this paper we describe

our approach to this task, which integrates computer vision, machine listen-

ing, and machine learning. At the low level processing, we improve upon

our previously proposed state-of-the-art tennis ball tracking algorithm and

employ audio signal processing techniques to detect key events and construct

features for classifying the events. At the high level analysis, we model event

classification as a sequence labelling problem, and investigate four machine

learning techniques using simulated event sequences. Finally, we evaluate

our proposed approach on three real world tennis games, and discuss the

interplay between audio, vision and learning. To the best of our knowledge,

our system is the only one that can annotate tennis game at such a detailed

level.
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Sequence labelling, Structured output learning, Hidden Markov model

1. Introduction

The rapid growth of sports video databases demands effective and efficient

tools for automatic annotation. Owing to advances in computer vision, sig-

nal processing, and machine learning, building such tools has become possi-

ble [1, 2, 3]. Such annotation systems have many potential applications, e.g.,

content-based video retrieval, enhanced broadcast, summarisation, object-

based video encoding, automatic analysis of player tactics, to name a few.

Much of the effort in sports video annotation has been devoted to court

games such as tennis and badminton, not only due to their popularity, but

also to the fact that court games have well structured rules. A court game

usually involves two (or two groups of) players hitting a ball alternately. A

point is awarded when the ball fails to travel over a net or lands outside a

court area. The task of court game annotation then consists in following the

evolution of a game in terms of a sequence of key events, such as serve, ball

bouncing on the ground, player hitting the ball, ball hitting the net, etc.

On the other hand, building a fully automatic annotation system for

broadcast tennis video is an extremely challenging task. Unlike existing com-

mercial systems such as the Hawk-Eye [4], which use multiple calibrated high-

speed cameras, broadcast video archives recorded with a monocular camera

pose great difficulties to the annotation. These difficulties include: video

encoding artifacts, frame-dropping due to transmission problems, illumina-

tion changes in outdoor games, acoustic mismatch between tournaments,

frequent switching between different types of shots, and special effects and

2



banners/logos inserted by the broadcaster, to name a few. As a result of the

challenges, most existing tennis applications focus only on a specific aspect

of the annotation problem, e.g., ball tracking [5, 6], action recognition [7]; or

only annotate at a crude level, e.g., highlight detection [3], shot type classi-

fication [1]. Moreover, they are typically evaluated on small datasets with a

few thousands of frames [5, 6, 7].

In this paper, we propose a comprehensive approach to automatic annota-

tion of tennis games, by integrating computer vision, audio signal processing,

and machine learning. We define the problem our system tackles as follows:

• Input: a broadcast tennis video without any manual pre-processing and

pre-filtering, that is, the video typically contains various types of shots,

e.g. play, close-up, crowd, and commercial;

• Output: ball event detection: 3D (row and column of frame + frame

number) coordinates of where the ball changes its motion; and ball

event classification: the nature of detected ball events in terms of five

distinct event labels: serve, hit, bounce, net, and null, which corre-

sponds to erroneous event detection.

To the best of our knowledge, our system is the only one that can annotate

at such a detailed level.

To achieve the goal defined above, at the feature level, we improve upon

our previous work and propose a ball tracking algorithm that works in the

more cluttered and therefore more challenging tennis doubles games. The

identified ball trajectories are used for event detection and as one feature

for event classification. A second feature for classification is extracted by
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audio signal processing. At the learning level, we model event classification

as a sequence labelling problem. We investigate four representative learning

techniques and identify their advantages on simulated event sequences. Fi-

nally, our approach is evaluated on three real world broadcast tennis videos

containing hundreds of thousands of frames. Discussions on the interplay

between audio, vision, and learning are also provided. Note that this paper

extends our preliminary work [8] by including the construction of visual and

audio features, the integration of visual and audio modalities at the learning

level, and a more comprehensive investigation of learning techniques.

The rest of this paper is organised as follows. Section 2 gives an overview

of the proposed approach. The construction of features, including visual and

audio features, is described in Section 3. Four learning techniques are then

reviewed and compared on simulated event sequences in Section 4. Results

on real world tennis games and discussions on the results are provided in

Section 5. Finally Section 6 concludes the paper.

2. Overview of Our Approach

A diagram of our proposed system is illustrated in Fig. 1. We assume a

tennis video recorded with a monocular and static camera, e.g., a broadcast

tennis video. If the video is interlaced, its frames are first de-interlaced

into fields, in order to alleviate the effects of temporal aliasing. For the

sake of simplicity, in the remainder of this paper, we will use “frames” to

refer to both frames of progressive videos and fields of interlaced videos.

After de-interlacing, the geometric distortion of camera lens is corrected.

De-interlacing and geometric correction are considered “pre-processing” and
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Figure 1: System diagram of our proposed tennis video annotation approach. The light-

shaded blocks are covers in Sections 3.1 and 3.2 respectively; the dark-shaded block is

covered in Section 4.
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H: hit
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Figure 2: Typical composition of broadcast tennis videos and two examples of typical

sequences of events in play shots.

omitted from Fig. 1.

A broadcast tennis video is typically composed of different types of shots,

such as play, close-up, crowd, and commercial. In the “shot analysis” block

of Fig. 1, shot boundaries are detected using colour histogram intersection

between adjacent frames. Shots are then classified into appropriate types

using a combination of colour histogram mode and corner point continuity [9].

An example of the composition of a broadcast tennis video is shown in Fig. 2,

where two examples of typical sequences of events in tennis are also given.

The first example corresponds to a failed serve: the serve is followed by a net,

then by two bounces under the net. The second example contains a short

rally, producing a sequence of alternate bounces and hits.
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Figure 3: Two examples of ball tracking results with ball event detection. Yellow dots:

detected ball positions. Black dots: interpolated ball positions. Red squares: detected ball

events. Note that there are erroneous event detections in both examples. Note also that

in the plots the ball trajectories are superimposed on the “mosaic” image, where moving

objects such as players have been removed.

For a play shot, the ball is tracked using a combination of computer vision

and data association techniques, which we will describe in more detail in

Section 3.1. By examining the tracked ball trajectories, motion discontinuity

points are detected as “key events”. Two examples of ball tracking and event

detection results are shown in Fig. 3, where each key event is denoted by a red

square. The detected events are then classified into five types: serve, bounce,

hit, net, and “null”, which is caused by erroneous event detection. Two

features are exploited for this classification task: information extracted from

ball trajectories, i.e. location, velocity and acceleration around the events

(Section 3.1); and audio event likelihoods from audio processing (Section 3.2).

In addition to the features, the temporal correlations induced by tennis

rules should also be exploited for classifying the events. For instance, a serve

is likely to be followed by a bounce or a net, while a net almost certainly

by a bounce. The focus of the “event classification” block of Fig. 1 is com-

bining observations (features) and temporal correlations to achieve optimal

classification accuracy. We model event classification as a sequence labelling
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problem, and provide an evaluation of several learning techniques on simu-

lated event sequences in Section 4.

3. Extraction of Audio and Visual Features

In this section, we first introduce a ball tracking algorithm which im-

proves upon our previous work. We sacrifice completeness for conciseness,

and give an outline of the complete algorithm and discuss in detail only the

modifications. Interested readers are referred to [10] for details of the com-

plete algorithm. The tracked ball trajectories are used for event detection

and also as a feature for event classification. In the second half of this sec-

tion, we describe the second feature for event classification that is based on

audio processing.

3.1. Ball tracking

Ball trajectories carry rich semantic information and play a central role

in court game understanding. However, tracking a ball in broadcast video

is an extremely challenging task. In fact, most of the existing court game

annotation systems avoid ball tracking and rely only on audio and player

information [11, 12, 13, 3, 14]. In broadcast videos the ball can occupy

as few as only 5 pixels; it can travel at very high speed and blur into the

background; the ball is also subject to occlusion and sudden change of motion

direction. Furthermore, motion blur, occlusion, and abrupt motion change

tend to occur together when the ball is close to one of the players. Example

images demonstrating the challenges in tennis ball tracking are shown in

Fig. 4.
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(a) (b) (c) (d) (e)

Figure 4: Image patches cropped from frames demonstrating the challenges of tennis ball

tracking. (a) Ball travels at high speed and blurs into background, making it very hard to

detect. (b) Far player serves. The ball region contains only a few pixels, and due to low

bandwidth of colour channel its colour is strongly affected by the background colour. (c)

Chroma noise caused by PAL cross-colour effect. This may introduce false ball candidates

along the court lines. (d) Multiple balls in one frame. A new ball (left) is thrown in by

a ball boy while the ball used for play (middle) is still in the scene. There is another ball

(right) in the ball boy’s hand. (e) A wristband can look very similar to the ball, and can

form a smooth trajectory as the player strikes the ball.

To tackle these difficulties, we improve upon a ball tracking algorithm

we proposed previously [10]. The operations of the algorithm in [10] can be

summarised as follows2:

1. The camera position is assumed fixed, and the global transformation

between frames is assumed to be a homography [15]. The homography

is found by: tracking corners through the sequence; applying RANSAC

to the corners to find a robust estimate of the homography; and finally,

applying a Levenberg-Marquardt optimiser [9, 16].

2. The global motion between frames is compensated for using the esti-

mated homography. Foreground moving blobs are found by temporal

2A video file “ball-tracking.avi” is submitted with this manuscript to demonstrate this

algorithm.
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(a) (b)

Figure 5: Two example images of the output of temporal differencing and morphological

opening. Due to noise in original frames, motion of players, and inaccuracy in homography

computation, these residual maps are also noisy. The blobs are to be classified into ball

candidates and not-ball candidates.

(a) (b) (c)

Figure 6: Model fitting and model optimisation. Yellow circles: ball candidates inside an

interval of 31 frames (V = 15). Green squares: candidate triplet used for model fitting.

Red curve: fitted dynamic model. (a) Fitting a dynamic model to the seed triplet. (b)

and (c): the first and third iterations of model optimisation. Convergence is achieved after

the third iteration.
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differencing of successive frames, followed by a morphological opening

operator which helps remove noise. Two example images of the output

of this step are shown in Fig. 5.

3. Moving blobs are then classified as ball candidates and not-ball candi-

dates using their size, shape and gradient direction at blob boundary.

4. A temporal sliding window is considered which centres at frame i and

spans frame i − V to frame i + V . For each candidate in frame i, we

search in a small ellipsoid around it in the column-row-time space for

one candidate from frame i− 1 and one candidate from frame i+ 1. If

such candidates exist, we call the three candidates inside the ellipsoid

a “seed triplet”, and fit a constant acceleration dynamic model.

5. Candidates within the sliding window that are consistent with the fit-

ted model are identified as “supports” of the model, and the model is

refined recursively using new triplets selected from the supports. This

is done in a greedy fashion until convergence, i.e., when the “cost” λ

of the model does not decrease any more. λ is defined as:

λ =
i+V∑

j=i−V

∑
k

ρ(pk
j ) (1)

with the per-candidate cost:

ρ(pk
j ) =

 d2(p̂j,p
k
j ) if d(p̂j,p

k
j ) < dth

d2th if d(p̂j,p
k
j ) ≥ dth

(2)

where pk
j is the observed position of the kth ball candidate in frame

j, p̂j is the estimated ball position in frame j as given by the current
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model, d(·, ·) is the Euclidean distance, and dth is a predefined thresh-

old. A converged dynamic model together with its supports is called a

“tracklet” and corresponds to an interval when the ball is in free flight.

An example of the model fitting/optimisation process is given in Fig. 6.

6. As the sliding window moves, a sequence of tracklets is generated.

These tracklets may have originated from the ball or from clutter. A

weighted and directed graph is constructed, where each node is a track-

let, and the edge weight between two nodes is defined according to the

“compatibility” of the two tracklets. The ball trajectories are obtained

by computing the shortest paths between all pairs of nodes (tracklets)

and analysing the paths.

The tracking algorithm summarised above works well in real world broad-

cast tennis videos of singles games. On the other hand, doubles games are

considerably more challenging: the doubled number of players means more

clutter, more occlusion, and more abrupt motion change. In order to cope

with the increased challenges, we modified steps 4 and 5 of the previous

algorithm to get more accurate tracklets.

First, we modify the way a dynamic model is computed. In [10] a constant

acceleration model is solved exactly for three candidates in three frames:

in the first iteration for the seed triplet, and in subsequent iterations for

the three supports that are temporally maximally apart from each other.

This scheme has two disadvantages: 1) It assumes the three observed ball

candidate positions are noise-free, which is never the case in reality. 2) It

uses only three candidates for computing the model, ignoring a potentially

large number of supports. To remedy these problems, we assume the observed
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candidate positions are corrupted by a zero mean Gaussian noise, and jointly

estimate the true positions and solve the dynamic model with a least squares

(LS) estimator.

More specifically, let J be a set of frame numbers such that for each

j ∈ J a candidate in frame j is used for computing the dynamic model. For

example, in the first iteration, J contains the numbers of frames from which

the seed triplet is drawn. Let {pj = (rj, cj)
T}j∈J be the set of observed

positions of candidates in terms of row and column, {p̂j = (r̂j, ĉj)
T}j∈J be

the set of corresponding estimated true positions. Also let p̂i be the estimated

position in frame i (middle frame of the sliding window), v̂i be the estimated

velocity of the ball in frame i, and â be the estimated acceleration, which is

assumed constant for the dynamic model. Then we have:

p̂j = p̂i + (j − i)v̂i +
1

2
(j − i)2â� â ∀j ∈ J (3)

where � denotes the element-wise multiplication. p̂i, v̂i, and â can then be

estimated by solving the LS problem:

min
p̂i,v̂i,â

∑
j∈J

||pj − p̂j||2 (4)

Compared to the model fitting scheme in [10], the LS estimator in Eq. (4)

does not assume noise-free observations, and does not impose the constraint

that |J | = 3. As a result, it leads to a more stable estimation of dynamic

models.

We also modify the way candidates for model computation are selected

in each iteration. In [10], |J | is set to 3, and the three candidates that are

in the support set of the current model and are temporally maximally apart
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Algorithm 1 Recursively refine the dynamic model for a seed triplet.

Input: All candidates in frames i− V to i+ V ; a seed triplet in frames i, i− 1, i+ 1; the

number of random samples in each iteration R; the size of each random sample |J |.

Output: A converged dynamic modelM and associated set of supports S, i.e., a tracklet.

1: Fit a dynamic modelM0 to the seed triplet using Eq. (4), identify the set of supports

S0, compute the cost λ0 of M0, and set t = 1;

2: repeat

3: Set λt =∞;

4: for r = 1, · · · , R do

5: Randomly sample |J | ≥ 3 supports from Mt−1;

6: Fit a dynamic modelMt,r to the random sample using Eq. (4), identify the set

of supports St,r, compute the cost λt,r of Mt,r;

7: if λt,r < λt then

8: Set λt = λt,r, M =Mt,r and S = St,r;

9: end if

10: end for

11: Set t = t+ 1;

12: until λt−1 ≥ λt−2
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from each other are selected for refining the dynamic model. The idea is

that interpolation in general is more reliable than extrapolation, and that

this greedy strategy leads to quick convergence. However, in practice, greedy

search can get stuck in local minima, degrading significantly the quality of

the estimated dynamic model.

To remedy this, we introduce a randomised process inside each iteration.

This randomisation greatly increases the chance of escaping from local min-

ima, and as a result leads to more accurate model computation. Details of

the improved algorithm for refining a dynamic model are provided in Algo-

rithm 1. Note that the size of each random sample in Algorithm 1, |J |, is

not limited to 3 any more, thanks to the new LS formulation in Eq. (4).

In our experiments, the number of inner random samples is set to R =

100, which is larger than the number of iterations taken for the greedy search

to converge (typically less than 10). The LS problem in Eq. (4) is also

more expensive than the exact solution in [10]. However, in practice we

observe that the two modifications do not significantly slow down the model

fitting/refining process. With a frame rate at 25 frames per second, model

fitting/refining runs comfortably in real time.

After ball tracking, key events are identified by detecting motion dis-

continuity in the ball trajectory [10]. Recall that each red square in Fig. 3

corresponds to one detected key event. The task of tennis annotation then

consists in classifying the key events into five types: serve, bounce, hit, net,

and “null” which corresponds to false positives in event detection. The ball

dynamics around a detected event are used as one feature for event classifi-

cation. More specifically, for a detected event in frame i, let p̂i−1, p̂i, p̂i+1 be
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the estimated ball positions in frames i− 1, i, i+ 1, v̂i−1, v̂i be the estimated

velocities, and âi be the estimated acceleration. We also compute the mag-

nitude and orientation â†i of âi. The 14 dimensional feature that is based on

ball trajectory is finally defined as:

xtraj = (p̂T
i−1, p̂

T
i , p̂

T
i+1, v̂

T
i−1, v̂

T
i , â

T
i , â

†T
i )T (5)

3.2. Audio processing

In order to extract audio features for event classification, seven types of

audio events are defined [17], as summarised in Table 1. Note that the set of

audio events do not completely overlap with the four events for annotation

(serve, bounce, hit, net), as some of the events for annotation e.g. bounce

do not produce a characteristic and clearly audible sound, especially in the

presence of crowd noise.

Table 1: Definition of seven audio events

index j audio event description

1 umpire chair umpire’s speech, e.g. reporting score

2 line judge line judge’s shout, e.g., reporting serve out, fault

3 hit this corresponds to the “serve” and “hit” events for annotation

4 crowd crowd noise, e.g. applause

5 beep beep sound signalling e.g. let

6 commentator commentators’ speech

7 silence silence

A men’s singles game from Wimbledon Open 2008 is used for building

models of the audio events. We first segment the sound track into audio
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frames of 30ms in length with 20ms overlap between consecutive frames. As

a result, the audio frame rate is at 100 frames per second, which is higher

than the video frame rate (50 for interlaced videos and 25 for progressive

ones). Extra care is taken to ensure synchronisation between audio and video

frames. The audio frames are labelled in terms of the seven audio events.

We compute 39 dimensional Mel-frequency cepstral coefficients (MFCCs) for

each frame and build a Gaussian mixture model for each audio event type.

Once the generative models are built, a test audio frame could be classified

using straightforward maximum likelihood (ML). However, characteristics of

audio events may vary across games and tournaments, significantly degrading

the performance of the ML estimator. In order to reduce the impact of

acoustic mismatches between training and test data, we employ a confidence

measure. Let Lj
i be the log likelihood of audio frame i being the audio event

j, where j = 1, · · · , 7 correspond to the seven audio events, and Lj
i is given

by the jth Gaussian mixture model. The confidence measure of audio frame

i being audio event j is then defined as:

Dj
i = Lj

i −max
k 6=j

Lk
i (6)

Using the difference between log likelihoods provides some immunity to mis-

match between training and test distributions: the mismatch will, to a certain

extent, be cancelled by the differencing operation.

For a detected event in audio frame i, we wish to compute some statistics

of the confidence measures in a neighbourhood of i and use it as a feature

for event classification. In practice, we find that the max operator performs

the best. Because our interest is in the “hit” audio event, we use only the

confidence measure associated with this event. As a result, the audio-based
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feature for event classification is one dimensional:

xaudio = max
i−W≤l≤i+W

D3
l (7)

where the superscript j = 3 corresponds to audio event “hit”, and W is set

to 10 in our experiments. Note that event detection and the computation of

the trajectory based features Eq. (5) are both done in terms of video frames.

To ensure synchronisation, one could “map” audio frames to video frames

by dividing i, l,W in Eq. (7) by 2 (for interlaced video) or 4 (for progressive

video).

4. Learning Techniques for Event Classification

In the previous section, we have detected key events, and extracted fea-

tures for each detected event. The two types of features extracted can be

combined e.g. using vector concatenation x = (xtraj T ,xaudio T )T . For a given

play shot, suppose a sequence of o events are detected, i.e., there are o “to-

kens” in the sequence. Let ys, s = 1, · · · , o be the (micro-)label of the sth

event. ys can take any value in the set of {serve, bounce, hit, net, null}, where

null is the label for false positives in event detection. The overall (structured)

label of the play shot is then composed of a sequence of micro-labels:

y = y1 → y2 → · · · → yo (8)

Similarly let xs, s = 1, · · · , o be the concatenated feature for the sth event.

The overall (structured) feature of the play shot is then:

x = x1 → x2 → · · · → xo (9)
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In Eq. (8) and Eq. (9) we have used “→” to indicate the sequential nature

of the label y and the feature x. It is now clear that we have a structured

learning problem: given a training set of feature/label pairs {xi, yi}mi=1, where

xi = x1
i → x2

i → · · · → xoi
i , yi = y1i → y2i → · · · → yoii , and oi is the number

of events (or tokens) of play shot i in the training set, we want to learn a

structured classifier that can assign a label y to a test pattern x.

For such a sequence labelling task, we could ignore the internal structure

of the labels and learn non-structured classifiers such as naive Bayes or SVM

to assign micro-labels to individual events. On the other hand, as structured

methods hidden Markov model (HMM) and structured SVM (S-SVM) can

exploit the dependency of micro-labels. Among the four learning methods

mentioned, naive Bayes, SVM and HMM are very well known. In the fol-

lowing we briefly review structured SVM. We will then evaluate the four

methods on simulated event sequences. Through the simulation, the relative

advantages of the different learning techniques are identified. A taxonomy of

four learning techniques is given in Table 2.

Table 2: Taxonomy of learning techniques applicable to sequence labelling.

Non-Structured Structured

Generative naive Bayes Hidden Markov Model (HMM)

Discriminative Support Vector Machine (SVM) Structured SVM (S-SVM)

Structured SVM. In a nutshell, structured output learning (SOL) jointly em-

beds input-output pairs (xi, yi) into a feature space, and applies linear classi-

fiers in the feature space. In the case of hinge loss, a max-margin hyperplane
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is sought, and the resulting learning machine can be thought of as structured

SVM (S-SVM) [18]. More specifically, we assume for any training example

(xi, yi),

wTφ(xi, yi)−wTφ(xi, y) ≥ ∆(yi, y), ∀y ∈ Y\yi

where φ(·, ·) is the joint embedding, ∆(·, ·) is a label loss function measuring

the distance between two labels, and Y is the set of all possible structured

labels. Introducing regularisation and slack variables ξi, the max-margin

hyperplane w∗ is found by solving:

minw
1
2
||w||2 + C

∑m
i=1 ξi (10)

s.t.wTφ(xi, yi)−wTφ(xi, y) ≥ ∆(yi, y)− ξi,∀y ∈ Y\yi, ξi ≥ 0

The prediction of a test example x is then given by y∗ = argmaxy∈Y w∗Tφ(x, y).

As the labels are structured, |Y| is often prohibitively large, making

Eq. (10) intractable with standard SVM solvers. Iterative cutting-plane

algorithms have been developed [18, 19], where the “most violated” con-

straints are identified by repeatedly solving the so-called separation ora-

cle ỹi = argmaxy∈Y ∆(yi, y) + w̃Tφ(xi, y), and are added to the constraint

set. These greedy algorithms admit polynomial training time, and are gen-

eral in the sense that a large class of SOL problems (including sequence

labelling) can be solved provided: 1) a joint feature mapping is defined,

either explicitly as φ(xi, yi), or implicitly through a joint kernel function

J((xi, yi), (xj, yj)) =< φ(xi, yi), φ(xj, yj) >; 2) a label loss function ∆(yi, y)

is specified; 3) an efficient algorithm for the separation oracle is available.

Now consider the event sequence labelling problem in court game annota-

tion. Let (xi, yi) and (xj, yj) be two training examples with length (number
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of events, or number of tokens) oi and oj respectively. We implement first

order Markovian assumption through a joint kernel function:

J((xi, yi), (xj, yj)) =

oi∑
s=2

oj∑
t=2

Jys−1i = yt−1j KJysi = ytjK

+ η

oi∑
s=1

oj∑
t=1

Jysi = ytjKK(xs
i ,xj

t)

where J·K is an indicator function, η is a kernel parameter controlling the

trade-off between temporal correlation and observation, and K(xs
i ,xj

t) is a

kernel defined for the observations [20, 21].

For the label loss function, we use the hamming loss between two com-

peting labels: ∆(yi, y) =
∑oi

s=1Jy
s
i 6= ysK. Finally, it is easy to show that the

separation oracle for sequence labelling is the Viterbi decoding problem, for

which efficient algorithms exist.

A simulation. Consider event sequences where the set of micro-labels is

{serve, hit, bounce, net}. We employ two ways of simulating successive events.

The first makes a first order Markovian assumption, while the second as-

sumes no dependence between neighbouring tokens. For each token in each

sequence a 10 dimensional observation is also simulated using one of four

distributions corresponding to the four types of events. The separation of

the distributions is controlled by varying their means through a parameter

γ: the larger its value, the more separated. We consider two scenarios for

observation distributions, namely, Gaussian and uniform.

The combination of Markovian/non-Markovian and Gaussian/uniform re-

sults in a total of four scenarios. For each of them, 2000 sequences of micro-

labels and associated observations are simulated. We use 1000 sequences for
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Figure 7: Mean and standard deviation of test error rates as functions of the separation

parameter γ.

training, and the rest for testing. For the two generative methods, Gaussian

distributions are assumed for the observations. The mean and standard de-

viation of the test errors of the four learning methods in the four simulated

scenarios are shown in Fig. 7.

The results in Fig. 7 demonstrate that when there is indeed structure in

the micro-labels, structured classification methods outperform non-structured

ones; while when no structure is present, both methods perform similarly. On

the other hand, when P (x, y) is estimated poorly, the performance of a gener-
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ative approach is severely degraded. In contrast, discriminative approaches

do not make assumptions of P (x, y), and as a result tend to be more ro-

bust [22]. Overall, the structured and discriminative S-SVM seems to be a

safe choice: in all the scenarios considered, it produces either optimal or near

optimal performance. We will test if this is still the case on real world data

in the next section.

5. Experiments

In this section, we evaluate our proposed approach to tennis annotation

on three real world tennis games, namely, the Australian Open 2003 women’s

singles final game, the Australian Open 2003 men’s singles final game, and the

Australian Open 2008 women’s doubles final game. Statistics of the games

are provided in Table 3. Note that to get ground truth detailed annotation

of events is required, which is a laborious task. For each game, the leave-one

(shot)-out error is computed. We compare the four learning techniques, and

investigate the performance of different features. We consider three cases:

using the ball trajectory based feature Eq. (5) alone; using the audio based

feature Eq (7) alone, and combination of both features by early fusion, i.e.,

concatenation.

The results are summarised in Tables 4 to 6 . For all nine combinations

of dataset and feature type, structured methods perform the best. Among

them, HMM is the winner for two combinations, and S-SVM is the winner

for the remaining seven. This clearly indicates that the micro-labels in real

world games are structured, even with errors inevitably introduced during

ball tracking and event detection. Overall, discriminative methods outper-
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Table 3: Statistics of datasets.

Aus03 Women Sing. Aus03 Men Sing. Aus08 Women Doub.

number of frames 100772 193384 355048

number of events 628 895 2325

number of play shots 71 90 163

Table 4: Leave-one-out per-token error rate: Australian 2003 Women Singles.

naive Bayes SVM HMM S-SVM

trajectory 22.27 10.27 10.74 8.53

audio - 44.08 50.71 33.49

trajectory + audio - 10.43 11.37 7.74

form generative ones: SVM is significantly better than naive Bayes in almost

all cases, while S-SVM is better than HMM in seven, and is only marginally

behind in the other two. This observation suggests that the features we use

are not strictly Gaussian. On all the three datasets, the best performance

is achieved with S-SVM, which matches our observation in the simulation.

Note that for the 2003 Women Singles game the performance of naive Bayes

is not reported for the audio based feature and for the trajectory + audio

feature. This is because the one-dimensional audio feature has zero variance

for one event class; as a result, naive Bayes cannot be performed for this

dataset.

Comparing the visual and audio feature performances, we notice that on

the Australian 2008 doubles game, where the audio feature has the lowest
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Table 5: Leave-one-out per-token error rate: Australian 2003 Men Singles.

naive Bayes SVM HMM S-SVM

trajectory 30.28 15.75 16.42 13.52

audio 65.36 63.69 63.35 64.47

trajectory + audio 30.61 16.09 17.54 13.74

Table 6: Leave-one-out per-token error rate: Australian 2008 Women Doubles.

naive Bayes SVM HMM S-SVM

trajectory 20.13 12.51 13.58 11.98

audio 34.98 35.04 27.64 28.12

trajectory + audio 18.58 10.38 11.50 9.80

error among the three datasets, fusing the audio feature with the trajectory

feature improves upon trajectory feature alone, for all the four learning meth-

ods. On the other two datasets however, including the audio feature does not

always have a positive effect: on the Australian 2003 women’s game, only

S-SVM benefits from the fusion; while on the Australian 2003 men’s game,

the fusion has a small negative impact on all the learning methods.

In order to understand why the audio feature does not always help, we

look more closely at its quality. We threshold the audio feature and use the

binary result as a detector for the hit event, and show its performance in

terms of precision and recall in Table 7. We also show in the same table the

leave-one-out error rate of using the audio feature alone, and the improvement

over the trajectory feature alone by fusion. The correlation is clear: when
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Table 7: Quality of feature and its impact on performance. Learning method:

S-SVM.

Aus03 Women Aus03 Men Aus08 Women

Singles Singles Doubles

hit detection precision 72.62 10.66 79.77

from audio recall 63.02 16.71 72.25

leave-one-out audio 33.49 64.47 28.12

per-token error improvement 0.79 -0.22 2.18

the audio quality is poor, as indicated by low precision and recall in hit event

detection, the event classification error of the audio feature is high, and the

improvement of fusion is also low (or even negative). By manual inspection,

the very low quality of the audio feature on the Australian 2003 men’s game

is due to a serious acoustic mismatch between the training data and this set.

In Table 8 we show the change in the confusion matrix when the au-

dio features are introduced: positive numbers on the diagonal and negative

numbers off the diagonal indicate an improvement. On the dataset where

the audio feature is not helpful (Australian 2003 men’s single game, Table 8

left), there is little change in the confusion matrix. On the dataset where the

audio feature helps (Australian 2008 women’s double game, Table 8 right),

we can see how it does: with the audio feature, ambiguities around hit events

are reduced. This is expected, as the audio feature is defined as the confi-

dence measure of the hit audio event. We tried using confidence measures

associated with other audio events, but this did not yield any noticeable
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Table 8: Change of confusion matrix due to fusion. Learning method: S-SVM.

Left: Aus03 men single. Right: Aus08 women double.

S B H N nu.

S 0 0 0 0 0

B 0 -1 -1 +1 +1

H 0 0 -3 0 +3

N 0 0 0 0 0

nu. -1 -1 0 0 +2

S B H N nu.

S 0 0 -1 0 +1

B -1 -2 -2 +1 +4

H -3 -7 +14 0 -4

N 0 -3 -1 +5 -1

nu. -1 +1 -26 +2 +24

improvement.

In the future, we plan to incorporate player action recognition and natural

language processing (NLP) on the commentary transcripts to help event

classification, and the annotation in general. We would also like to investigate

methods that can exploit audio information more effectively. Finally, the

event sequences produced in this work are still to be integrated with a tennis

court detection module we have developed (cf. Fig. 1), to produce higher

level annotation, e.g. the scores.

6. Conclusions

In this paper we have presented a solution to the challenging problem

of automatic annotation of tennis game using broadcast tennis videos. The

output of our system is key events with locations in the row-column-time

space and labels, which can potentially lead to scores. To the best of our

knowledge, our work is the only one that can annotate at such a detailed
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level. This is achieved by integrating computer vision, audio processing, and

machine learning. For each of the disciplines involved we have designed our

approach carefully so as to optimise the overall performance. The proposed

method was evaluated on three real world tennis videos with positive results.

Discussions on the interplay between vision, audio, and learning, and on

future work plan were also provided.
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