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Abstract. Up to 25% of children who undergo brain tumour resection surgery in the posterior fossa develop posterior
fossa syndrome (PFS). This syndrome is characterised by mutism and disturbance in speech. Our hypothesis is that
there is a correlation between PFS and the occurrence of hypertrophic olivary degeneration (HOD) in structures within
the posterior fossa, known as the inferior olivary nuclei (ION). HOD is exhibited as an increase in size and intensity
of the ION on an MR image.

Longitudinal MRI datasets of 28 patients were acquired consisting of pre, intra and post operative scans. A semi-
automated segmentation process was used to segment the ION on each MR image. A full set of imaging features
describing the first and second order statistics and size of the ION were extracted for each image. Feature selection
techniques were used to identify the most relevant features amongst the MR imaging features,demographics and data
based on neuroradiological assessment. A support vector machine (SVM) was used to analyse the discriminative fea-
tures selected by a generative nearest neighbour algorithm (k-NN). The results indicate the presence of hyperintensity
in the left ION as the most diagnostically relevant feature, providing a statistically significant improvement in the
classification of patients (p=0.01) when using this feature alone.
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1 Introduction

The posterior fossa is the commonest site for intracranial tumours in children. Up to 1 in 4 chil-
dren who undergo brain tumour resection surgery in the posterior fossa develop a syndrome known
as Posterior Fossa Syndrome (PFS).1 This syndrome, also known as cerebellar mutism syndrome
(CMS), describes a set of neurological symptoms which may develop from 24 to 107 hours after
surgery.2, 3 Children suffering from PFS, characteristically suffer from disturbance in speech and
mutism, but may also suffer from loss of muscle tone, incontinence, strabismus (cross-eyed), dys-
phagia, and personality changes such as anger, apathy, melancholy, crying and screaming.2 The
development of such a syndrome in children hinders their development and highly impacts their
quality of life. Although PFS is a post surgical complication, the exact underlying pathophysio-
logical mechanism remains unclear, although it is widely considered to involve disruption of the
proximal efferent cerebellar pathways (pECP) that connect the cerebellum to the forebrain. In
order to reduce the incidence of PFS and manage children with this disorder, it is important to
identify imaging biomarkers that are associated with it.

Our hypothesis, based on qualitative interpretation of imaging and clinical experience, is that
there is a correlation between PFS and the occurrence of hypertrophic olivary degeneration (HOD)
in structures known as the inferior olivary nuclei (ION). These structures, shown in Figure 1, are
paired nuclei in the brain stem which send efferent outputs to the cerebellum, and receive inputs
from the pECP. HOD is exhibited as an increase in size and intensity of the ION on an MR image
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Fig 1: Hypertrophic olivary degeneration: (a) unilateral case and (b) bilateral case.

which in routine clinical practice is identified qualitatively by a neuroradiologist.4 Qualitatively
HOD appears a number of months after surgery on routine post-operative surveillance imaging,
that is well after the patient is diagnosed with PFS. We thus hypothesise that HOD represents the
”smoking gun” that a preceding damaging event to the relevant pathways connected to the ION
has occurred.

Intra-operative MRI is increasingly used to ensure the tumour is removed safely, for example
in the resection of posterior fossa tumours. Intra-operative MRI (IoMRI) is used during poste-
rior fossa tumour resection. The use of IoMRI increases the likelihood that the entire tumour is
removed and hence increases the likelihood of success after surgery5, 6 but PFS can occur after
attempting total resection of tumour causing injury to important structures. Furthermore, the fi-
nal MR scan acquired using IoMRI provides quantitative information about the state of the ION
immediately after the surgical procedure.

In the present study, we propose the quantification of HOD using longitudinal imaging features
in the aim of identifying imaging features that correlate with the incidence of PFS in children. The
aim was to analyse and compare imaging features in the ION on a longitudinal MRI dataset with
the intention of establishing a link between PFS and HOD. Association of HOD and PFS will add
to the existing evidence on the development of PFS and potentially lead to a deeper understanding
of the pathogenesis of the syndrome. Segmentation was applied to the IONs on each image in
the longitudinal datasets and quantitative features were chosen to describe longitudinal changes
in the area and intensity of the left and right ION. Feature selection techniques were applied to
these features in order to identify the optimal feature set. A classification model was applied to
the original feature set as well as the optimised feature subsets to demonstrate the improvement in
classification accuracy when using the optimised feature subsets.
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Table 1: Patient longitudinal dataset

Pt Image acquisition: days after surgery Gender Age HOD Bi-l Uni-l PFS
1 1 110 194 / / / M 4 0 0 0 0
2 121 205 289 401 / / F 7 1 1 0 0
3 120 204 288 400 / / M 6 0 0 0 0
4 1 77 118 / / / F 0 0 0 0 0
5 1 98 231 413 / / F 4 0 0 0 0
6 -30 0 175 287 403 / F 4 0 0 0 0
7 143 318 437 / / / M 3 1 1 0 0
8 118 278 481 / / / M 7 1 0 1 0
9 176 260 372 / / / F 7 1 1 0 1

10 189 273 357 / / / F 7 1 0 1 0
11 -1 2 96 193 216 334 M 3 0 0 0 0
12 91 228 351 / / / F 8 1 1 0 1
13 18 21 165 228 / / F 14 1 0 1 0
14 IO1 76 87 28 60 / F 2 0 0 0 0
15 136 257 440 / / / F 5 1 1 0 0
16 89 285 / / / / M 1 0 0 0 0
17 313 481 / / / / F 6 1 1 0 1
18 IO1 110 446 / / / F 10 0 0 0 0
19 124 288 481 / / / M 17 1 1 0 1
20 97 181 321 / / / F 12 1 1 0 1
21 IO1 IO2 108 255 445 / M 11 0 0 0 0
22 IO1 IO2 125 / / / M 3 0 0 0 0
23 131 299 / / / / F 15 1 1 0 1
24 IO1 19 201 322 / / F 14 0 0 0 0
25 -2 IO1 IO2 173 509 / M 13 0 0 0 0
26 184 228 / / / / F 3 1 0 1 1
27 IO1 IO2 178 273 424 / M 8 0 0 0 1
28 IO1 1 110 292 / / F 7 0 0 0 1

Key
HOD Presence of HOD 1 = yes, 0 = no
Bi-l Presence of Bilateral HOD 1 = yes, 0 = no

Uni-l Presence of Unilateral HOD 1 = yes, 0 = no
PFS PFS diagnosis 1 = yes, 0 = no

2 Study Dataset

The dataset was compiled from 28 of patients treated for various histological types of posterior
fossa tumours at Alder Hey Children’s Hospital between 2007 and 2013. The patients were aged
between 8 months and 18 years old (at surgery), nine of whom were diagnosed with PFS as re-
ported qualitatively by a consultant neuroradiologist who was blinded to the child’s neurological
condition. There exist two schema for diagnosis: sensitive PFS and specific PFS. This study is
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based on correlating HOD to the specific diagnosis, however it is worth noting that two additional
patients within the dataset were also diagnosed with sensitive PFS. The methodology of the study
did not fulfil the criteria for research ethics approval and was given institutional approval by the
Director of Research at Alder Hey Children’s Hospital.

Thirteen of these patients exhibited HOD, nine bilaterally (in both ION) and four unilaterally
(in either the left or right ION). Follow up MR images during one year post-surgery were reviewed
and up to five MR images were acquired longitudinally for each patient across their treatment.
A small subset of these datasets included intra-operative MR images. Table 1 describes the MR
dataset acquired for each patient, showing the number of days after surgery when an MR image
was acquired. Negative numbers indicate a pre-operative MR image, whilst intra-operative scans
are indicated as IO1 or IO2. Intra-operative scans were acquired to determine whether the surgical
aim had been achieved. If the surgical aim was not achieved some patients had further resections
and intra-operative scans. The first intra-operative scan is indicated as IO1 and the second intra-
operative scan is indicated as IO2. Pre-operative scans acquired on the day of the surgery are
indicated as 0. Most patients were followed-up every three months, whilst others with potentially
malignant tumours were followed-up more frequently. A mean of 4± 1 MR images were acquired
for each patient with a mean time interval of 109 ± 62 days between each image acquisition. The
age column refers to the patient’s age at surgery. Patients who were diagnosed with HOD (as de-
termined by expert radiological assessment) are indicated as a 1, whilst those who did not develop
HOD are indicated as a 0. Similarly for whether HOD occurred bilaterally (Bi-l) or unilaterally
(Uni-l), and whether the patient was clinically diagnosed with PFS by a neurologist.

T2 weighted sequences from the pre-, intra- and post-operative scan were used to evaluate
for HOD and the following parameters were used: TR = 4485 ms, TE = 11ms, slice thickness =
6mm, number of slices = 20, time-step = 4.49 s. The pre-operative and post-operative MR images
were acquired using 1.5T or 3T magnets. Intra-operative MR images were acquired using 3T
magnets. This modality was used due to its ability to identify cerebrospinal fluid, blood and edema
as increased grey-level intensity. The T1 MR images obtained for these patients were not analysed
as they do not provide sufficient information relating to hypertrophy in the ION.

T2 volumetric imaging is not routinely used as it is time consuming and prone to movement
associated artefacts. Instead, axial T2 spin-echo sequences were used to evaluate for HOD as they
result in the best signal and contrast resolution to assess the ION. These T2 MR images were
acquired in Spiral MRI which captures the k-space through a spiral trajectory. This method of
acquisition is fast and results in high in-plane spatial resolution, giving improved resolution of
small structures within the brain, specifically the ION.7, 8

3 Methodology

The aim of this study is to identify bio-markers that correlate with the development of PFS fol-
lowing tumour resection surgery in the posterior fossa. In order that these bio-markers may aid
understanding of the pathogenesis of PFS, techniques have been chosen to ensure that comprehen-
sibility of imaging and clinical features is retained throughout the pipeline. This study consists of
four stages: Image Pre-Processing, Feature Extraction, Feature Selection and Classification. The
features were chosen to quantify HOD, namely an increase in intensity and size, in the left or right
ION.
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3.1 Image Pre-Processing

In order to extract information (features) about each ION it was necessary to segment these struc-
tures on the MR images. Images were acquired with spiral MRI, therefore a full volumetric rep-
resentation was not obtained. For this reason segmentation was performed on two-dimensional
image slices.

The non-HOD ION cannot be clearly delineated by the naked eye on MRI. This is due to
very low contrast with the surrounding tissue as well as its relatively small cross-sectional area.
For this reason, segmentation was carried out using a semi-automated seed-growing technique in
two-dimensional space. The right and left ION were segmented separately. Images were regis-
tered to Talaraich space, using a rigid body affine transformation, with intensity scaling, prior to
segmentation.

The process by which segmentation is carried out consists of three main steps: (1) an arbitrary
seed-point within the ION was manually identified using prior anatomical knowledge - the IONs
are on the anterior part of the brain stem, located on either side of its mid-line (when the IONs
are hypertrophic their grey-level intensity is relatively higher than surrounding brain stem tissue
and are therefore easier to identify) (2) region growing from a seed-point, with intensity Is, was
performed by analysing pixels in a search space of a 4mm radius: a pixel within the search space is
included in the region of interest (ROI) if its grey-level intensity, Ip, lies within the range |Ip±T | ≤
|Is|, and its difference from adjacent pixels, Ia, lies within the range |Ia| ≤ |Ip ± T |, where T is
a threshold that was varied between 12 and 16 heuristically until the ROI did not vary in shape or
size;9 (3) the application of a morphological closing operation using a full width at half maximum
of 4mm and a threshold of 0.5.9

These steps are applied iteratively until no further change occurs in the region of interest. The
segmentation process was carried out three times for each MR image in order to assess intra-
observer variability. The first segmentation dataset was validated and amended by an expert neu-
roradiologist. This introduced a measure of inter-observer variability as the first segmentation test
set was expertly validated, whilst the other two segmentation test sets were not.

3.2 Feature Extraction

Once the desired region was segmented it was possible to extract a set of features from each
ION. HOD is characterised by an increase in volume of the ION which can be seen as both an
enlargement and an increase in signal intensity on a T2-weighted MR image. Imaging features
related to an increase in size and image intensity are extracted from the MR images. The area of
the left and right IONs are obtained as well as the contrast between the left and right ION and
surrounding brain stem tissue within the same MR image slice.

The contrast was calculated using the definition of Weber contrast (Equation 1) where IION refers
to the mean grey level intensity of the ION and Ib refers to the mean grey level intensity of the sur-
rounding tissue.

W =
IION − Ib

Ib
(1)

For each MRI, the contrast of both the left and right ION was calculated separately. The
segmentation of the left and right ION is exhibited in Figure 2.

5



(a) (b)

Fig 2: Segmentation of Inferior Olivary Nuclei (delineated in black): (a) unilateral case and (b)
bilateral case.

The imaging features are chosen to relate to physiological characteristics of HOD, namely a
change in intensity with respect to surrounding brain stem tissue and an increase in area of the left
and right ION respectively. It was desired to quantify these characteristics longitudinally.

The contrast, defined in Eq 1, for both the left and right ION, CL and CR, was obtained for
up to 6 MR images per patient acquired at different time points throughout each patient’s treat-
ment. The mean gradient of contrast against time was calculated, symbolised by mean(∆CL

∆t
)

and mean(∆CR

∆t
), respectively. The variance of gradient of contrast against time, var(∆CL

∆t
) and

var(∆CR

∆t
), was also calculated across each patient’s longitudinal set of MR Images.

Similarly the area of the ION was calculated from each MRI and the mean slope and variance
across each longitudinal dataset for the left and right ION separately. These values are symbolised
by mean(∆AL

∆t
), mean(∆AR

∆t
), var(∆AL

∆t
) and var(∆AR

∆t
).

Features determined by expert radiological assessment of each MR image were also included,
namely whether HOD is present (1) or not (0), whether HOD is present unilaterally (1) or not (0)
and whether HOD is present bilaterally (1) or not (0). The neuroradiologist was blinded to the PFS
status of the patient. It is important to note that these features are not mutually exclusive and the
lack of presence of HOD bilaterally may imply either unilateral HOD or no HOD.

The features included are shown in table 2. Features (1) to (8) are obtained from MR data,
features (9) to (14) represent clinical data. Features (15) and (16) represent random noise added in
order to assess the discriminative ability of the feature selection algorithms used later.

3.3 Feature Selection

Dimensionality reduction techniques, such as Principal Component Analysis (PCA), result in loss
of comprehensibility from the point of view of a clinical practitioner,10 rendering it inappropriate
for this application due to the need for medics and clinicians to interpret results. PCA identifies
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Table 2: Features included

Feature Definition
1 mean(∆CL/∆t)
2 var(∆CL/∆t)
3 mean(∆AL/∆t)
4 var(∆AL/∆t)
5 mean(∆CR/∆t)
6 var(∆CR/∆t)
7 mean(∆AR/∆t)
8 var(∆AR/∆t)

Feature Definition
9 Presence of HOD

10 Bilateral HOD
11 Unilateral HOD
12 Enlargement
13 Gender
14 Age at Surgery
15 Random Noise 1
16 Random Noise 2

linear combinations of features as opposed to discrete ones and is therefore less applicable to
diagnosis.

From a machine learning respective, to avoid the classifier over fitting the data, in the case
of too many features, it is desirable to use only the most relevant features in classifying data
into two groups: patients who have developed PFS and those who have not. We however, have
an additional motivation; the determination of diagnostically-relevant medical indicators. This is
known as Feature Selection and can be carried out using Filter or Wrapper Methods.11, 12

In general, the problem of feature selection is NP-hard, and therefore intractable for large
datasets. Various techniques have therefore been applied, however, these are all prone to local
minima. The most common techniques used to identify the salient features out of the full feature
set are: random subset feature selection (RSFS), sequential forward selection (SFS) and sequential
floating forward selection (SFFS).13, 14

For each feature selection algorithm a subset of features is chosen and classification is carried
out as a criterion for selecting the optimal features. A k-NN classifier was used in each algorithm
as it is a generative technique which follows the underlying distribution of data. A support vector
machine (used for classification in Section 3.4) was not ideal for this task as it is a discriminative
technique and hence more ideal for binary diagnostic classification. The relevance of each feature
was scored using a UAR as in the case of the RSFS algorithm.13, 14

RSFS chooses a random subset of features from the entire feature set, the size of which is equal
to the square root of the total number of features. A k-NN classification using three neighbours
is carried out repeatedly on this chosen subset. Each feature is given a relevance score which is
continuously updated according to its inclusion in the random subsets which perform well.13, 15

The relevance values of each feature are compared to random walk statistics and good features
are chosen accordingly. The algorithm is carried out until the stopping criterion is reached, that
is, if the size of the final feature set (consisting of the features with the highest relevance scores)
has not changed by more than 0.5% in the previous 1000 iterations, or if the maximum number
of iterations (300, 000) is reached. The RSFS algorithm was carried out 100 times, each time
randomly dividing the dataset in two.

Unlike RSFS, SFS starts off with an empty data set. One feature is added at a time and a
feature is kept or discarded depending on whether it exhibits the best classification performance
when used together with the previously chosen features. SFS also makes use of k-NN classifier on
the feature subset in order to obtain a classification score. Low-scoring features were discarded.
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In SFFS an attempt is made at finding the least useful feature in order to discard it from the final
feature set. This process is repeated until the evaluation score becomes (and remains) better than
the previous best score using a feature set of the same size.13, 14 Both the SFS and SFFS algorithms
were carried out using 3 neighbours, 4 neighbours, 5 neighbours and 6 neighbours. This process
was carried out 100 times and the average relevance scores were calculated.

All three feature selection methods were carried out on three separate segmentation test sets
in order to assess differences in scores that may arise due to intra-observer and inter-observer
variability.

3.4 Classification

The binary classification was carried out in order to assess the discriminative ability of the most
relevant features chosen in the previous stage of the study. The aim is to classify patients into two
groups: patients who developed PFS and patients who had not developed PFS.

Two different feature subsets were used; the first subset included the entire feature set whilst
the second subset included the most relevant features chosen by the RSFS, the SFS and SFFS
algorithms. A simple linear non-kernelised support vector machine (SVM) was used to perform
the classification task. Support Vector Machines (SVMs) is a state of the art classification model
used for binary classification when the dataset falls into two main categories (SVMs).16, 17

Due to the small size of the dataset it was not feasible to split the data into training data and
test data. Since there is no natural division between training and test sets within the data, the most
efficient and ideal way to maximise the use of this small dataset, was to implement a leave-M-
out cross-validation (LMOCV). In this validation technique M observations are omitted from the
entire set for training purposes; the M observations are then used as the test set; this process is
repeated a number of times in order to obtain a mean value for the area under the curve (AUC)
and the accuracy of the SVM classifier. A leave-8-out cross-validation for each feature subset was
carried out 100,000 times. For each permutation the SVM bias was varied between -4 and 4, in
increments of 0.2. The false positives and the false negatives were obtained for each bias point, and
a mean of these values across all the permutations was obtained. Receiver operating characteristic
(ROC) graphs, exhibiting the false positives against the true positives, were plotted in order to
assess the difference in classification accuracy when using different feature subsets; the area under
the ROC curves was obtained. A leave-one-out cross-validation was carried out for all the patients
(28 times) in order to obtain a mean accuracy score for each feature subset.

4 Results

4.1 Features

Table 3 exhibits the mean, µ and standard deviation, σ, for features 1 to 8, for segmentation test
sets 1,2 and 3.

4.2 Feature Selection

Table 4 shows the relevance scores calculated by the random subset feature selection (RSFS) algo-
rithm. Table 5 displays the relevance scores calculated by the sequential forward selection (SFS)
algorithm and Table 6 displays the relevance scores calculated by the sequential floating forward
(SFFS) algorithm using a k-NN classifier with 3, 4, 5 and 6 neighbours; these algorithms yielded
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Table 3: The mean and standard deviation of the imaging features, for segmentation test sets 1,2
and 3

µ± σ(x10−4)
Feature 1 2 3 4

Test mean(∆CL/∆t) var(∆CL/∆t) mean(∆AL/∆t) var(∆AL/∆t)
1 −2.26± 4.17 75.48± 82.89 0.51± 1.41 10.17± 19.58
2 −1.64± 3.19 80.13± 91.00 −0.23± 0.78 3.59± 3.36
3 −1.21± 4.45 66.30± 56.75 0.85± 1.18 7.43± 11.64

µ± σ(x10−4)
Feature 5 6 7 8

Test mean(∆CR/∆t) var(∆CR/∆t) mean(∆AR/∆t) var(∆AR/∆t)
1 −1.20± 5.64 105.49± 96.98 0.63± 1.49 12.40± 25.55
2 1.16± 6.35 89.29± 107.60 0.04± 0.93 3.79± 2.85
3 −0.20± 5.08 86.10± 66.81 0.34± 1.14 6.85± 12.13

Table 4: The relevance scores calculated by the random subset feature selection algorithm

Average Relevance Score over 100 iterations
Feature Key

Test 1 2 3 4 5 6 7 8
1 6.22 1.61 1.08 1.81 1.64 0.23 0.65 0.11
2 8.99 0.09 0.31 1.41 1.03 0.20 0.28 1.22
3 10.03 1.24 0.00 0.42 0.00 0.12 1.62 0.15

Average Relevance Score over 100 iterations
Feature Key

Test 9 10 11 12 13 14 15 16
1 1.06 0.94 0.16 0.03 0.42 0.09 0.00 0.00
2 0.92 1.77 0.27 0.10 1.28 0.30 0.00 0.00
3 1.19 1.46 0.00 0.00 0.18 0.59 0.00 0.00

identical results. Feature 1 consistently obtained the highest score for all feature selection tech-
niques.

4.3 Classification

Figure 3 exhibits the receiver operating characteristic curve for the SVM classifier used on the
full feature dataset and feature 1, the most relevant feature found using the RSFS, SFS and SFFS
algorithms.
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Table 5: The average relevance scores calculated by the sequential forward selection algorithm
over 100 iterations

Average Relevance Score over 100 iterations
Test Feature Key k=3 k=4 k=5 k=6

1 1 68.38 72.68 74.10 71.37
2 1 77.93 76.04 73.37 69.77
3 1 85.10 85.31 85.87 86.34

Table 6: The average relevance scores calculated by the sequential floating forward selection algo-
rithm over 100 iterations

Average Relevance Score over 100 iterations
Test Feature Key k=3 k=4 k=5 k=6

1 1 68.88 75.32 73.88 73.22
2 1 76.75 77.56 74.34 71.48
3 1 84.98 85.18 85.87 86.39

Fig 3: The receiver operating characteristic (ROC) curve for the SVM classifier used on: the full
feature dataset and feature 1 on Test sets 1,2, and 3

Table 7 reports the area under the curve (AUC) for the SVM classifier for all three segmentation
test sets carried out on the full feature set and feature 1, as well as the average AUC and accuracy
for the full feature set and feature 1. A paired t-test was carried out to calculate the significance
of the difference between the AUCs of the three ROC curves when considering feature 1, and the
three ROC curves when considering the whole feature set for test sets 1,2, and 3. The confidence
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Table 7: Area under the curve and accuracy for the SVM classifier used on: the full feature dataset
and feature 1 on Test sets 1,2, and 3

Area Under the Curve Accuracy (%)
Test Full Feature Set Feature 1 Full Feature Set Feature 1

1 0.74 0.89 78.57 89.29
2 0.62 0.85 75.00 78.57
3 0.64 0.89 71.43 85.71

Average 0.67 0.88 75.00 84.52

interval was taken to be 95%. The two-tailed p-value was found to be 0.01.

5 Discussion

The results yielded by the RSFS algorithm in Table 4 indicate feature 1 as the most relevant feature,
scoring higher than all other features considered in this study. This feature corresponds to the mean
slope of contrast in the left nucleus. The score for this feature in each test set was 6.22, 8.99, and
10.03 for test sets 1,2, and 3, respectively. These scores are at least 5 times higher than the scores
for all the other features in the full feature set.

These results indicate changes in contrast in the left ION as the most relevant feature correlating
with the development of PFS. This implies that change in intensity of the left ION as seen on MRI
is highly correlated to the presence of PFS. This quantified contrast in the left ION from patient
MR is at least six times as predictive as the diagnosis of HOD made by radiological assessment as
a predictor of PFS. Feature 1 is linked to HOD, as a high value formean(∆CL

∆t
) indicates increasing

hyperintensity over time in the left ION and therefore the presence of HOD in the left ION. This
finding suggests that an overall increase in contrast over time between the left ION tissue and
surrounding brain stem tissue indicates the development of PFS, irrespective of whether the HOD
is unilateral or bilateral, and whether the left or the right ION is brighter at any point throughout the
patient’s treatment. These findings are in keeping with the results of a recent study where damage
to the right efferent cerebellar pathway, which communicates with the left ION, had a significant
association with the development of PFS.4, 18, 19

The results yielded by SFS and SFFS, exhibited in table 5 and table 6, also indicate feature 1 as
the most relevant feature, with all other features scoring negligible relevance scores in comparison
to feature 1. Feature 1 consistently scored 68.38 or higher throughout all four tests (k =3,4,5 and
6) for all the segmentation test sets. The relevance scores for the other features in the feature set
scored at least 70 times lower. This further proves the relevance of an increase in intensity of the
left ION in the onset of PFS.

It should be noted that the search strategies used in this study are not optimal and are prone
to local minima, with the exception of SFFS which makes an attempt at eliminating irrelevant
features by carrying out a backward search in addition to the forward search. Notwithstanding
this, the feature selection methods carried out in this study are ideal in a clinical scenario, more so
than other methods, such as PCA, as the features retain interpretability after the feature selection
techniques are applied.
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The results yielded by the SVM classifier, shown in Figure 3, show an increase in classifier
accuracy as the least diagnostically relevant features were eliminated. The SVM classifier reached
an accuracy of 89.29%, 78.57% and 85.71%, respectively for each segmentation test set, when the
only feature included was the one selected by the RSFS, SFS SFFS algorithms, that is, quantified
contrast in the left ION. The area under the curve was also optimised when classification was
carried out using feature 1, with values of 0.89, 0.85, and 0.89 for segmentation test sets 1,2, and
3, respectively.

From table 7, it is evident that for each segmentation test set the AUC and the accuracy is
increased when only feature 1 is used. The p-value measuring the difference between the AUCs
for the full feature set and the AUCs for feature 1 is statistically significant by conventional criteria.
This implies that the performance of the SVM classifier is improved if only feature 1 is considered.

The average slope of contrast in the left ION is obtained by image analysis and is therefore
objective, whilst the diagnosis of HOD (by radiological assessment) is made by human assessment
and is subjective and prone to human error. This shows that quantified contrast in the left ION
can be used a bio-marker for PFS following posterior fossa tumour resection. This is one of the
pioneering studies correlating HOD and PFS using semi-automated image analysis. A previous
study exists, however it did not make use of semi-automated image analysis and instead relied on
human observation to identify HOD in each MRI. Such analysis is subjective and prone to human
error.4

6 Conclusion

The aim of the experiment was to investigate the link between PFS and HOD in order to build
upon the existing evidence on the development of PFS and to lead to a deeper understanding of
the pathogenesis of the syndrome. A dataset of 28 patients was included in this study. The main
contribution of this work consists of the quantification of HOD using automated imaging feature
extraction to describe changes in intensity and size of the ION longitudinally.

This study has identified intensity, or mean(∆CL

∆t
), in the left inferior olivary nucleus (ION)

as the most diagnostically relevant feature that correlates with the development of posterior fossa
syndrome (PFS) following tumour resection in the posterior fossa.

Other features, including clinical features, consistently scored lower than the average slope of
contrast in the left ION, throughout this study. Our findings indicate that the presence of HOD,
specifically in the left ION, is highly associated with the onset of PFS following tumour resection
surgery in the posterior fossa. These findings lend quantitative support to our hypothesis that
there is a correlation between PFS and the occurrence of HOD following tumour resection in
the posterior fossa, based on qualitative assessment of imaging. These results suggest common
anatomical substrates are involved in the development of PFS and HOD and indicate an element of
laterality in the development of this syndrome. This is the first study to quantify HOD using semi-
automated image analysis adding reproducible and quantitative evidence to the proven hypothesis
that HOD correlates with PFS.
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