
Supervised Selective Kernel Fusion for
Membrane Protein Prediction

Alexander Tatarchuk1, Valentina Sulimova2, Vadim Mottl1, and David
Windridge3

1 Computing Center of the Russian Academy of Sciences,Moscow, Russia
2 Tula State University, Tula, Russia

3 Centre for Vision, Speech and Signal Processing,
University of Surrey, Guildford, UK

aitech@yandex.ru, vsulimova@yandex.ru, vmottl@yandex.ru,
D.Windridge@surrey.ac.uk

Abstract. Membrane protein prediction is a significant classification
problem, requiring the integration of data derived from different sources
such as protein sequences, gene expression, protein interactions etc. A
generalized probabilistic approach for combining different data sources
via supervised selective kernel fusion was proposed in our previous pa-
pers. It includes, as particular cases, SVM, Lasso SVM, Elastic Net SVM
and others. In this paper we apply a further instantiation of this ap-
proach, the Supervised Selective Support Kernel SVM and demonstrate
that the proposed approach achieves the top-rank position among the
selective kernel fusion variants on benchmark data for membrane pro-
tein prediction. The method differs from the previous approaches in that
it naturally derives a subset of “support kernels” (analogous to support
objects within SVMs), thereby allowing the memory-efficient exclusion
of significant numbers of irrelevant kernel matrixes from a decision rule
in a manner particularly suited to membrane protein prediction.

Keywords: Multiple Kernel Learning, SVM, supervised selectivity, sup-
port kernels, membrane protein prediction

1 Introduction

Membrane proteins carry out a variety of crucial functions in cells, such as
removing polluting hydrophobic molecules; transporting undesired molecules,
such as drugs, out of the cell; sending signals concerning events occurring outside
the cell across the membrane into the cell in order that proper action can be taken
such as e.g. the starting or stopping of cell division etc. Consequently, membrane
protein prediction, i.e. the classification of proteins as either a membrane or non-
membrane is a medically important problem, and the subject of much research
[1],[2],[3].

This is a typical pattern recognition problem in that the most informative
individual feature (in this case typically amino acid sequence data) does not pro-
vide the full story. Additional feature information can be derived from a number
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of other sources, such as gene expression data, protein-protein interactions and
so on. All these data sources contain different and at least partly independent
information about membrane protein prediction task. Consequently, there is a
natural desire to incorporate them into a combined prediction rule to decrease
prediction-errors.

If the data consisted of vectorized features then this act of combination would
constitute a trivial matter of appending feature spaces. However, this is generally
not the case for gene-based problems, where data may, for instance, consist only
of pairwise comparisons. The most appropriate way for integrating heterogeneous
data with a wide variety of gene representations (in this case, amino acid and
gene sequences, feature vectors, graphs and so on) thus consists in embedding
data objects into representation-specific hypothetical linear spaces via kernel
functions and constructing the decision function at the combined space. (A kernel
function is any real-valued symmetric function of two-arguments, which forms a
semidefinite matrix for any finite collection of objects [4],[5]). In particular, there
are a number of approaches in the literature for introducing kernel functions into
biomolecular data (cf [4]).

Any kernel function embeds a set of objects into some linear space and plays
the role of inner product within it [4],[5]. This fact allows us to employ the kernel-
based interpretation of the Support Vector Machine (SVM) method, which was
originally designed for linear feature space [6] and is one of the most convenient
and effective instruments for the binary classification of objects, forming an
optimal linear separating hyperplane from specific “support” training examples.

Mercer Kernels further have the property that linear combinations are also
Mercer, meaning that kernel combination is straightforward. There have thus
been a number of attempts at combine kernel functions for biomolecular data
analysis, the simplest approach being an unweighted sum of kernels. Different lin-
ear (or even non-linear) combinations with fixed or heuristically-chosen weights
have also been considered; however, overall performance is generally poor.

The most general method of kernel fusion is the approach of Lanckriet et al.
[8] which seeks to directly solve for the optimal linear combination of kernels
and gives rise to a quadratically-constrained algorithm for determining the non-
negative adaptive weights of kernel matrices. The respective kernel combination
is incorporated into a decision rule with each kernel’s influences on the decision
proportional to its weight.

A number of authors have carried this work further in various ways, gener-
alizing the approach to problems other than classification [9],[10], working on
algorithmic improvements [11],[12], or deriving theoretical variations, applying
different restrictions for weights [13] and making certain theoretical extensions,
e.g. weighting not only kernels but also features [14],[15]. These variants typ-
ically perform well in constrained scenarios, and where the data are initially
represented by feature vectors. However, they tend not to out-perform [8] on
real protein data.

Furthermore, most of existing multiple kernel learning methods share a com-
mon disadvantage - the absence of a mechanism for supervising so-called ”sparse-
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ness” of the obtained vector of kernel weights. In the genetic arena, the obtained
vector of weights is frequently too sparse, with many informative kernels ex-
cluded from the decision rule, with the resulting loss the decision quality.

Only a few methods are explicitly oriented towards elimination of this dis-
advantage and obtaining non-sparse decisions [17],[18] (more advanced versions
utilize a supervised sparseness parameter [19],[20],[21],[22]). We refer to this prop-
erty as ”selectivity”, because it defines an algorithm’s ability to select kernels
most useful to the classification task at hand. A generalized probabilistic ap-
proach for supervised selective kernel fusion was proposed by the authors in
[21],[22] and includes, as particular cases, such familiar approaches as the clas-
sical SVM [6], Lasso SVM [23], Elastic Net SVM [24] and others.

In this paper we apply a further particular case of this approach, called
Supervised Selective Support Kernel SVM (SKSVM), initially proposed in [22]
to the membrane protein prediction problem.

We will demonstrate that the proposed approach achieves the top-ranked
position among the selective kernel fusion variants on benchmark data set for
membrane protein prediction. Uniquely, the proposed approach has the very
significant qualitative advantage over the other methods of explicitly indicating
a discrete subset of support kernels within the combination, in contrast to the
other methods that assign some positive (even if small) weight to each kernel,
requiring significantly greater memory overhead.

2 Generalized Probabilistic Formulation of the Multiple
Kernel Two-Class Recognition Problem

Let {(ωj , yj), j = 1, ..., N} be the training set of real-world objects ωj ∈Ω (for
example, proteins) and yj = y(ωj) ∈ {−1, 1} defines its class-membership. Let
also n similarity functions Ki(ω

′, ω′′), ω′, ω′′ ∈ Ω, i = 1, ..., n be defined, each
of which forms a positive semidefinite matrix {Ki(ωj , ωk)} for any finite set of
objects {ωj , ωk ∈ Ω, j, k = 1, ..., S} and is hence a kernel function [5].

Each kernel function Ki(ω
′, ω′′), i = 1, ..., n embeds the set of objects Ω

into some hypothetical linear space Xi by a hypothetical mapping xi = xi(ω) ∈
Xi, ω ∈ Ω, and plays the role of inner product within itKi(ω

′, ω′′) =< xi(ω
′), xi(ω

′′) >:
Xi×Xi→R.

For combination using several kernels we here utilize the generalized proba-
bilistic formulation of the SVM, which was proposed in [18, 20, 21] as an instru-
ment for making Bayesian decisions on the discriminant hyperplane

∑n

i=1
Ki(ai, ω)+

b ≷ 0 within the Cartesian product of the kernel-induced hypothetical linear
spaces a = (a1, ..., an) ∈ X, b ∈ R.

The main idea of the proposed probabilistic formulation consists in assuming
a specific system of probabilistic assumptions regarding the two distribution
densities of hypothetical feature vectors for the two classes: ϕ (x|y=+1) and
ϕ (x|y=−1), defined by the (as yet) undetermined hyperplane in the combined
linear space x=(x1, ..., xn) ∈ X =X1×...×Xn under certain a priori probabilistic
assumptions.
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Let aTx+ b ≷ 0 be some hyperplane with the direction element a ∈ X and
the bias b ∈ R. Associated with it are two parametric families of conditional
distributions of object densities:

ϕ(x|a, b, y; c) = const

{

1, y(aTx+ b) > 1,

exp
[

−c
(

1− y(aTx+ b)
)]

, y
(

aTx+ b
)

< 1.
(1)

We assume that the random vectors of two classes are distributed substan-
tially within their respective subspaces aTx + b > 0 and aTx + b < 0; the
parameter c regulates the extent to which this assumption holds. (Note that
fact that the uniform distribution in the upper row of (1) implies an infinite
area does not lead to mathematical contradiction, since it participates only in
the Bayes’ formula[25]).

Suppose the training set {(xj , yj), j=1, ..., N},xj ∈ X = X1× ...×Xn, yj =
±1 has been obtained. Then the conditional distribution of the whole training
set is

Φ(X|Y,a, b; c) =
∏N

j=1
ϕ(xj |a, b, yj ; c). (2)

The second key assumption in the proposed probabilistic model is the as-
sumption of a joint a priori distribution Ψ(a, b) of parameters (a, b) defining the
separating hyperplane. Assume that we have no any a priori preferences about
b. We then have that:

Ψ(a, b) ∝ Ψ(a). (3)

The a posteriori distribution density P (a, b|X,Y ; c) of parameters (a, b) with
respect to the training set (X,Y ) is then defined by Bayes’ formula:

P (a, b|X,Y ; c) =
Ψ(a, b)Φ(X|Y,a, b; c)

const
∝ Ψ(a, b)Φ(X|Y,a, b). (4)

Understanding the training problem as that of maximizing this a posteriori
distribution density in the space of model parameters (a, b) leads to the criterion:

(â, b̂|X,Y ; c) = argmax
a∈X,b∈R

[lnΨ(a, b) + lnΦ(X|Y,a, b; c)] (5)

Theorem 1. The training criterion (5) for distributional family (1) and a-
priori distribution of hyperplane parameters (3) is equivalent to the problem of
minimization of the criterion J(a, b, δ|c) in a convex set defined by linear in-
equality constraints for training objects:















− lnΨ(a1, ..., an)+c
N
∑

j=1

δj → min
(

ai∈Xi, b∈R, δj ∈R
)

,

yj

(

n
∑

i=1

< ai, xi(ωj) >+b

)

> 1−δj , δj > 0, j = 1, ..., N.

(6)

Kernelizing criterion (6) yields the form:
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− lnΨ(a1, ..., an)+c
N
∑

j=1

δj → min
(

ai∈Xi, b∈R, δj ∈R
)

,

yj

(

n
∑

i=1

Ki(ai, ωj)+b

)

> 1−δj , δj > 0, j = 1, ..., N.

(7)

Each specific choice of a priori distribution density Ψ(a1, ..., an) expresses a
specific a priori preference about the hyperplane orientation, and endows train-
ing criterion (7) with the ability to select informative kernel-representations (and
suppress redundant ones).

In particular, a number of well-known SVM-based training criteria can be
obtained form the proposed probabilistic approach, for example, the traditional
SVM, Lasso SVM and Elastic Net SVM, differing from one another in the regu-
larization function, which has the form, respectively:

∑n

i=1
Ki(ai, ai),

∑n

i=1

√

Ki(ai, ai)

and
∑n

i=1
Ki(ai, ai) +µ

∑n

i=1

√

Ki(ai, ai).

3 Supervised Selective Support Kernel SVM (SKSVM)

We apply here a very specific case of the general problem formulation (7), one
which was initially proposed in [22]. The a priori density of orientation distri-
butions is represented here as composite of the Laplace distribution, while the
norms of the components are not less than some given threshold

∑n

i=1

√

Ki(ai, ai) ≤
µ, and the Gaussian distribution when the norms are greater than the given
threshold
∑n

i=1

√

Ki(ai, ai) > µ:

ψ(ai|µ) ∝ exp(−q(ai|µ)),

q(ai|µ) =

{

2µ
∑n

i=1

√

Ki(ai, ai),
∑n

i=1

√

Ki(ai, ai) ≤ µ,

µ2 +
∑n

i=1
Ki(ai, ai),

∑n

i=1

√

Ki(ai, ai) > µ.

(8)

The a priori assumption of (8) along with the generalized training criterion
(7) together define a training optimization problem of the form:











































JSKSVM (a1, ..., an, b, δ1, ..., δN |c, µ) =
n
∑

i=1

q(ai |µ)+ c
N
∑

j=1

δj→ min
(

ai∈Xi, b∈R, δj ∈R
)

,

q(ai |µ) =

{

2µ
√

Ki(ai, ai) if
√

Ki(ai, ai) 6 µ,

µ2 +Ki(ai, ai) if
√

Ki(ai, ai) > µ,

yj

(

n
∑

i=1

Ki(ai, xij) +b

)

>1−δj , δj>0, j=1, ..., N.

(9)

The proposed training criterion (9) is thus a generalized version of the clas-
sical SVM that implements the principle ofkernel selection. We hence refer to
the threshold 0 6 µ < ∞ in(1) as a ”selectivity” parameter because it reg-
ulates the ability of the criterion to enact kernel selection. When µ = 0 ⇒
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q(ai|µ) = Ki(ai, ai) the criterion (7) is equivalent to the kernel-based SVM cri-
terion with the minimum ability to kernel selection. At the same time, values
µ ≫ 0 ⇒ q(ai|µ) = 2µ

√

Ki(ai, ai) are equivalent to the Lasso SVM with in-
creasing selectivity as µ is increased with respect to the parameter c (until full
suppression of all kernels occurs).

Moreover, this criterion, in contrast to other criteria for kernel fusion, explic-
itly partitions the entire set into two subsets (as is shown in the next section);
“support” kernels (which occur in the resulting discriminant hyperplane) and ex-
cluded kernels. The proposed approach is hence termed the Supervised Selective
Support Kernel SVM (SKSVM).

The approach to solving problem (9) is set out the following two theorems;
more detailed description can be found at [22].

Theorem 2. The decision implicit in problem (9) is equivalent to the decision

(ξ̂i > 0, i ∈ I = {1, ..., n}, λ̂j > 0, j = 1, ..., N) of the dual problem



































L (λ1, ..., λN |c, µ) =
N
∑

j=1

λj −
∑

i∈I

(1/2)ξi → max(λ1, ..., λN ),

ξi≥ 0, ξi≥
N
∑

j=1

N
∑

l=1

yjylKi(ωj , ωl)λjλl−µ
2, i∈I={1, ..., n},

N
∑

j=1

yjλj = 0, 0 ≤ λj ≤ (c/2), j = 1, ..., N.

(10)

and is expressed at the form











































âi=
∑

j :̂λj>0

yj λ̂jxi(ωj), i∈I
+=

{

i∈I :
N
∑

j=1

N
∑

l=1

yjylKi(ωj , ωl)λ̂j λ̂l−µ
2>0

}

.

âi= η̂i
∑

j:λ̂j>0

yj λ̂jxi(ωj), i∈I
0=

{

i∈I :
N
∑

j=1

N
∑

l=1

yjylKi(ωj , ωl)λ̂j λ̂l−µ=0

}

,

âi=0, i∈I−=

{

i∈I :
N
∑

j=1

N
∑

l=1

yjylKi(ωj , ωl)λ̂j λ̂l−µ
2 <0

}

,

(11)

4 The resulting discriminant hyperplane and support
kernels

Assume the dual optimization problem (10) has been solved. Only the Lagrange
multipliers λ1>0, ..., λN>0 are of interest. In accordance with (11), the solution
arrived at partitions the set of all kernels I = {1, ..., n} into three subsets:
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I+=

{

i∈I :
N
∑

j=1

N
∑

l=1

yjylKi(xij , xil)λjλ l > µ2

}

,

I0 =

{

i∈I :
N
∑

j=1

N
∑

l=1

yjylKi(xij , xil)λjλ l = µ2

}

,

I−=

{

i∈I :
N
∑

j=1

N
∑

l=1

yjylKi(xij , xil)λjλ l < µ2

}

.

(12)

Theorem 3. The optimal discriminant hyperplane defined by the solution of the
Supervised Selective Support SVM training problem (9) has the form

∑

j:λj>0

yjλj

(

∑

i∈I+

Ki(ωj , ω) +
∑

i∈I0

ηiKi(ωj , ω)

)

+ b ≷ 0, (13)

where the numerical parameters {06ηi61, i∈I0; b} are solutions of the linear
programming problem:























2µ2
∑

i∈I0

ηi + c
n
∑

j=1

δj → min(ηi, i ∈ I0; b; δ1, . . . , δN ),

∑

i∈I0

(

N
∑

l=1

yjylKi(ωj , ωl)λ l

)

ηi+yjb+δj > 1−
∑

i∈I+

N
∑

l=1

yjylKi(ωj , ωl)λ l,

δj > 0, j = 1, . . . , N, 0 6 ηi 6 1, i ∈ I0.

(14)

5 The subset of support kernels

The solution (η̂i, i ∈ I0; b̂; δ̂1, . . . , δ̂N ) of the linear programming problem (14)
is completely defined by the training set (X,Y ). As is seen from criterion (14),
some of coefficients (η̂i, i∈I

0) may equal zero if the respective constraints 0 6 ηi
are active at the solution point.

However, it can be shown that, if all the linear spaces Xi are finite-dimensional
and if the training set is considered as randomly-selected points defined by a con-
tinuous probability distribution, then the inequalities η̂i>0 are almost certainly
met for all i∈I0.

This means that, without any loss of generality, the constraints {0 6 ηi 6

1, i ∈ I0} may be omitted in (14), and, yet, all kernels i ∈ I0 will occur in
the discriminant hyperplane (13) with nonzero weights. It is hence natural (by
analogy with the notion of support objects) to call the subset Isupp=I

+∪I0 ⊆ I
the set of support kernels.

The structure of the subsets of kernels (12) explicitly reveals how the subset of
support kernels Isupp is affected by the parameter µ in the training criterion (9).
Thus, if µ = 0, the set of evident support kernels I+⊆I coincides with the entire
set I={1, . . . , n}. In this particular case, the function q(ai | µ) in (9) is quadratic
q(ai |µ) = const+Ki(ai, ai) for all ai ∈ Xi, and the training criterion does not
differ from the usual SVM without selectivity properties; all of the initial kernels
are support kernels because they all occur in the resulting decision rule.



8 Alexander Tatarchuk, Valentina Sulimova, Vadim Mottl, David Windridge

As µ grows, increasing numbers of kernels appear in the set I− of nonsupport
kernels (12), and, correspondingly, the set of support kernels Isupp=I

+∪ I0 gets
smaller. At the asymptote, the selectivity parameter µ→∞ forces all kernels
into I−, such that no support kernels remain at all: Isupp = ∅.

6 Adjusting the Selectivity Parameter

The selectivity parameter 0 6 µ < ∞ is thus a structural parameter of the
Supervised Selective Support Kernel SVM training criterion that determines a
sequence of nested classes of training-set models whose dimensionality dimin-
ishes as µ grows, starting from the usual SVM model when µ = 0. As it is
not determined a priori, at present, the most effective method for choosing the
value of the structural parameter is via cross-Validation, directly estimating the
generalization performance of the training method.

7 Experimental Design

7.1 Membrane Proteins Data Set

To evaluate the proposed approach as a method for membrane protein prediction
we use the same data set as Lanckriet et all. (described in [8]). We thus use as a
gold standard the annotations provided by the Munich Information Center for
Protein Sequences Comprehensive Yeast Genome Database (CYGD) [26]. The
CYGD assigns subcellular locations to 2318 yeast proteins, of which 497 belong
to various membrane protein classes. The remaining approximately 4000 yeast
proteins have uncertain location and are therefore not used in these experiments.

7.2 Kernel Functions for Membrane Proteins

For the membrane protein prediction we evaluate seven kernel matrices derived
from three different types of data: four from the primary protein sequence, two
from proteinprotein interaction data, and one from mRNA expression data col-
lected by Lanckriet et all. [8]. (All of these kernel matrices, along with the data
from which they were generated are available at noble.gs.washington.edu/proj/sdp-
svm).

The first two kernel matrices (KSW and KB) are based on the pairwise se-
quence alignment algorithms SmithWaterman local alignment (SW) and BLAST
(B).

The third kernel (KPfam) was also derived from protein sequences, but was
obtained using hidden Markov models (HMMs) on the Pfam database.

The fourth kernel (KFFT ) uses hydropathy profiles, generated from the Kyte-
Doolittle index and characterized by alternations of hydrophobic and hydrophilic
aminoacids regions which are sufficiently conserved for membrane proteins. The
frequency content of the hydropathy profiles, estimated by a FFT procedure, was
utilized as a feature vector and used for forming the Gaussian (radial) kernel.
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The next two kernels - the linear kernel (KLi) and the diffusion kernel (KD)
are constructed from information about medium- and high-confidence protein-
protein interactions from a database of known interactions, which is presented
as a matrix [2318x2318] of ones (for pairs of interacted proteins) and zeros (for
pairs of non-interacted proteins).

The linear kernel (KLi) matrix is derived from protein feature vectors (i.e.
via the inner-product of protein feature pairs).

The diffusion kernel (KD) considers the interaction-matrix as a graph, in
which the nodes corresponded to proteins and the edges to the interactions
between them. The diffusion kernel function then measures the similarity of two
nodes of the graph based on a randomwalk distance, i.e. such that nodes that
are connected by shorter paths (or by many paths) are considered more similar.

Finally, the seventh kernel (KE) is a radial kernel constructed on the basis of
441-element feature vectors obtained entirely from microarray gene expression
measurements. Though gene expression information is not expected to be par-
ticularly correlated with any one membrane protein, it is not possible to exclude
this kernel a priori.

Additionally, five random kernels (KRnd1, ...,KRnd5) were computed on the
basis of 100-length feature vectors, randomly generated without taking into ac-
count labeling information about the classes of the proteins. These non-informative
kernels were introduced in order to check the ability of the proposed procedure
to eliminate non-useful information.

7.3 Experimental setup

The full set of 2318 proteins (497 membrane proteins and 1821 non-membrane
proteins) was randomly split 30 times into training and test sets in the propor-
tion 80:20. As a result, each training set contained 397 membrane proteins and
1456 non-membrane proteins. Each of the test sets contain, respectively, 100
membrane proteins and 365 non-membrane proteins.

For each of 30 training sets obtained we derive 20 different decision rules for
membrane protein prediction:

1. For each of 7 informative and 5 random kernels the traditional SVM training
procedure was performed separately;

2. SVM classification on the unweighted sum of all 12 kernels was also applied;

3. For all 12 kernels, the proposed Selective Supervised Selective Kernel SVM
was performed 6 times with 6 different values of the selectivity-parameter;

4. The optimal decision rule was selected for the proposed method via 5-fold
cross-validation.

As a pre-processing step each kernel matrix was centered and normalized to
be a unit diagonal matrix.

The quality of each decision was estimated via the ROC-score using the
hyperplane bias b to vary sensitivity.
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7.4 Results and Discussion

The average of 30 ROC-scores, obtained for each of 20 training conditions listed
in the previous section, are presented in table 1.

Table 1. Results of membrane protein prediction

Kernels algorithm µ ROC-score Kernels algorithm µ ROC-score

KB SVM - 0,825± 0,032 KRnd4 SVM - 0,521± 0,029

KSW SVM - 0,809± 0,027 KRnd5 SVM - 0,509± 0,029

KPham SVM - 0,859± 0,022 All 12 SVM - 0,881± 0,014

KFTT SVM - 0,776± 0,014 All 12 SKSVM 0 0,881± 0,014

KLi SVM - 0,634± 0,042 All 12 SKSVM 1 0,881± 0,015

KD SVM - 0,638± 0,037 All 12 SKSVM 5 0,909± 0,014

KE SVM - 0,752± 0,022 All 12 SKSVM 7.5 0,917± 0,015

KRnd1 SVM - 0,510± 0,029 All 12 SKSVM 10 0,916± 0,015

KRnd2 SVM - 0,517± 0,028 All 12 SKSVM 15 0,904± 0,015

KRnd3 SVM - 0,515± 0,030 All 12 SKSVM optimal 0,918± 0,016

As we can see from table 1, the results of the proposed supervised selective
support kernel SVM outperform those obtained for each of 12 kernels individu-
ally, and also those of the unweighted kernel sum with SVM training. The result
obtained at the zero-selectivity level is exactly equal to the result obtained for
the unweighted kernel sum (and which supports the theoretical results above).

Moreover, it may be seen that practically all reasonable values of the selectivity-
parameter provide good results. The performance obtained using the optimal se-
lectivity value selected via 5-fold cross-validation for each of 30 training sets indi-
vidually only slightly outperforms the best result obtained using fixed selectivity-
levels. This implies that the same selectivity-level is near optimal across the range
of training sets (though of course a fixed selectivity level may be not appropriate
for different tasks, for example, for recognition different classes of proteins).

The reported results of membrane protein prediction obtained by another
multiple kernel learning techniques [8], [14], [16] for the same data set lie in the
range [0.87-0.917]. The proposed approach therefore achieves the top-ranked po-
sition of the methods reported in the literature. It should be noted, furthermore,
that the proposed approach has the unique qualitative advantage of clearly-
delineating the subset of support kernels that participate in the decision rule,
being thereby directly scientifically interpretable, and potentially assisting with
further experimental hypothesis generation.

To demonstrate this delineation of support kernels for one of 30 training sets,
table 2 contains the results of the partitionings of the full set of 12 kernels into
three subsets: 1) the subset of kernels I−, which were classified by the algorithm
as non-supported, and which are not weighted or included in the decision rule;
2) the subset of kernels I+ having unit weight and 3) the subset of kernels I0

having a weight between 0 and 1.
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Only the kernels of subsets I+ and I0 are support kernels and participate in
the decision rule.

Table 2. Kernel fusion results for different selectivity values µ: subsets of non-support
(I−) kernels and support (I+ and I0) kernels with their weights

µ KB KSW KPham KFTT KLi KD KE KRnd1 KRnd2 KRnd3 KRnd4 KRnd5 ROC

0 I+ I+ I+ I+ I+ I+ I+ I+ I+ I+ I+ I+

1 1 1 1 1 1 1 1 1 1 1 1 0.877

5 I+ I+ I+ I+ I0 I+ I+ I0 I0 I0 I0 I0

1 1 1 1 0.87 1 1 0.26 0.26 0.14 0.36 0.30 0.907

7.5 I0 I+ I0 I0 I− I+ I0 I− I− I− I− I−

0.70 1.00 0.88 0.81 - 1.00 0.99 - - - - - 0.919

10 I0 I+ I0 I0 I− I+ I0 I− I− I− I− I−

0.34 1 0.63 0.56 - 1 0.72 - - - - - 0.913

15 I− I0 I0 I0 I− I0 I0 I− I− I− I− I−

- 0.95 0.14 0.10 - 0.94 0.11 - - - - - 0.889

As we can see from table 2, the highest selectivity value excludes the random
kernels from the set of support kernels entirely. Also, the interaction-based linear
kernel KLi was excluded in the most cases. Thus, only half (6 of 12) of the full
kernel set are support kernels in this example, saving on memory requirements.

It is thus, in sum, this particular feature of the proposed method makes it
preferable to other multi-kernel methods within the literature, which generally
assign positive weight to all kernels.
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