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Abstract

We present a novel approach to 2D-3D registration from

points or lines without correspondences. While there ex-

ist established solutions in the case where correspondences

are known, there are many situations where it is not possible

to reliably extract such correspondences across modalities,

thus requiring the use of a correspondence-free registration

algorithm. Existing correspondence-free methods rely on

local search strategies and consequently have no guaran-

tee of finding the optimal solution. In contrast, we present

the first globally optimal approach to 2D-3D registration

without correspondences, achieved by a Branch-and-Bound

algorithm. Furthermore, a deterministic annealing proce-

dure is proposed to speed up the nested branch-and-bound

algorithm used. The theoretical and practical advantages

this brings are demonstrated on a range of synthetic and

real data where it is observed that the proposed approach

is significantly more robust to high proportions of outliers

compared to existing approaches.

1. Introduction

In this paper we present a globally optimal solution to

the 2D-3D registration problem with points or lines when

no correspondences between features are known, and in the

presence of outliers. It is an integral part of the more gen-

eral 2D-3D registration problem: given an image taken by a

calibrated camera and a 3D model, the objective is to deter-

mine the pose of the camera with respect to the model. This

finds use in a range of applications, e.g. motion segmenta-

tion [26], and object localisation and recognition [17].

The general 2D-3D registration problem is challenging

since, while there exist techniques to extract features be-

tween 2D and 3D (e.g. corners [14], salient features [6] or

lines [13, 29]), it is an open problem to automatically es-

tablish correspondences between them. This may be due to

a variety of reasons. In the case of lines, there are many

scenes where it is difficult to establish correspondences

based on appearance, for example in highly repetitive man-

made scenes or where low-width structures are present [16].

Furthermore, feature appearance can vary dramatically be-

tween 3D and its 2D projection due to the non-linear nature

of the transformation; a 3D feature may be projected from a

large range of viewpoints and perspective distortion may oc-

cur. More generally however, correspondences of any fea-

ture type are particularly difficult to hypothesize when the

3D model is untextured, as is often the case if it is obtained

by a laser range scanner.

The lack of feature correspondences renders traditional

hypothesize-and-test approaches (e.g. RANSAC [12]) prac-

tically obsolete due to the very high computational com-

plexity of the problem. Whilst some progress has been

made to compute solutions more efficiently [10, 25], ex-

isting approaches all suffer from the same limitations: they

only search for local maxima and hence require a good ini-

tialisation with no guarantee of optimality given.

The paper makes the following contributions. Firstly, we

propose the first globally optimal solution to this problem,

achieved via a Branch-and-Bound (BnB) strategy. Its for-

mulation readily allows for either point or line features to

be used, allowing it to be applicable to a broader range of

scenes. Secondly, we propose a novel deterministic anneal-

ing parameter that allows for the speed-up of nested BnB

algorithms while preserving the global optimality of the so-

lution. Finally, the approach is evaluated against state-of-

the-art where significant improvements are demonstrated:

our approach is more accurate and significantly more robust

to high rates of outliers compared to existing approaches.

The structure of this paper is as follows: in Section 2 an

overview of related work is given. In Section 3 the scope

of the problem is formally defined and in Section 4 the

Branch-and-Bound approach is detailed, including deriva-

tions required for this problem and our novel deterministic

annealing strategy. In Section 5 results are presented for

points and lines on synthetic and real data. Finally, conclu-

sions and future work are presented in Section 6.
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2. Related Work

Initially, a review is given of proposed solutions to the

2D-3D registration problem from points or lines without

correspondences. We are not aware of any that explicitly

use points or lines within the same framework. With respect

to points, one of the best, early approaches is the SoftPosit

algorithm [10]. It iterates between determining the pose and

determining multiple, weighted correspondences, allowing

for a larger basin of convergence than approaches that only

allow binary assignment of correspondences (e.g. ICP).

More recently, Moreno-Noguer et al. [25] propose a solu-

tion to the same problem, known as BlindPnP, by modelling

the initial set of poses as a Gaussian Mixture Model and

using each component to initialise a Kalman filter. It per-

forms comparably to SoftPosit in a similar amount of time,

except in large amounts of clutter, where SoftPosit is out-

performed by BlindPnP. Both of these approaches search

for local maxima and hence often do not obtain the global

optimum.

With respect to pose estimation from lines, an early solu-

tion is proposed in [3] who use a local search procedure to

iteratively arrive at local optima. Alternatively, the SoftPosit

algorithm has been extended to use lines [11] by minimis-

ing the distance between the endpoints of the 3D line and

the infinitely long 2D line. Bhat and Heikkilä [4] system-

atically sample and rank the space of potential poses how-

ever it is computationally inefficient for large numbers of

lines. Other approaches are more restrictive, e.g. based on

graph matching [8] where the graph structure is often not

preserved under a full projective transformation, or assume

a number of 3D lines are orthogonal [9].

Branch-and-bound solutions to geometry estimation in

computer vision haven been proposed for a number of dif-

ferent problems, typically requiring novel derivations of

bounds in each case. The earliest approaches are due to

Breuel [5] who focuses mainly on 2D-2D registration with

up to 4 degrees of freedom. He derives geometrically mean-

ingful bounds that describe the maximum distance a feature

can move by under a bounded set of transformations. Hart-

ley and Kahl [15] derived bounds for the group of 3D rota-

tions, allowing for globally optimal relative pose estimation

[15], and 3D-3D registration [30].

Alternative branch-and-bound approaches rely on linear

programming techniques to compute bounds, e.g. [2]. In a

naive form they may only be applied to linear transforma-

tions, so to be more widely applicable nonlinear constraints

are relaxed into linear convex and concave envelopes (e.g.

[27, 2]). Alternatively, Jurie [18] approximates perspective

pose by orthographic pose to create a linear 2D-3D registra-

tion problem that is solved by similar techniques, however

its use of the Gaussian error model results in an approach

that is not robust to outliers.

Our approach is the first globally optimal approach to

2D-3D registration using either points or lines without cor-

respondences. There are some similarities between our ap-

proach and the globally optimal 3D-3D registration algo-

rithm Go-ICP [30]. In contrast, our problem firstly requires

the derivation of uniformly continuous bounds for the 2D-

3D problem. Secondly, we propose a novel deterministic

annealing parameter that allows for the speed-up of nested

branch-and-bound algorithms. Thirdly we propose a more

general solution, extending the framework to use points or

lines, allowing for broader scene applicability.

3. Problem Formulation

Initially we give the problem definition for 2D and 3D

features in general, before moving onto the specifics for

points or lines.

Let there be N 2D features {Λi}
N
i=1 and M 3D features

{Ψj}
M
j=1, and denote the distance between a 3D and 2D

feature as d(Ψj ,Λi). Where no outliers are present, the ob-

jective is to find the rotation R ∈ SO(3) and camera centre

C ∈ R
3 that minimise the following:

N
∑

i=1

min
j∈{1...M}

d(R(Ψj −C),Λi) (1)

To make (1) robust to outliers, we use trimming: instead

of minimising the sum over all 2D features it is minimised

over the smallest k values, where k represents the expected

number of inliers. Without loss of generality, assume the

terms of the sum in (1) have been re-ordered in ascending

order, yielding the trimmed objective: finding R ∈ SO(3)
and C ∈ R

3 that minimise:

k
∑

i=1

∗

min
j∈{1...M}

d(R(Ψj −C),Λi) (2)

where ∗ denotes the sum rearranged in ascending order

(note this depends upon R and C).

To apply (2) for points (denoted Λ
(P )
i and Ψ

(P )
j ) or lines

(denoted Λ
(L)
i and Ψ

(L)
j ) simply requires the distance mea-

sure to be defined. In the case of points, denote each 2D

point by Xi and each 3D point by Yj . For convenience, as-

sume the 2D point has been reprojected onto the unit sphere

i.e. Xi ∈ R
3, ||Xi|| = 1. Then the distance between them is

the geometrically meaningful angular distance, defined as:

d(Ψ
(P )
j ,Λ

(P )
i ) = ∠(Yj , Xi) = arccos

(

Yj ·Xi

||Yj ||

)

(3)

In the case of lines, a suitable distance measure is less ob-

vious. Approaches to pose estimation from line correspon-

dences (e.g. [1]) often decouple the problem into the deter-

mination of the rotation by using the direction of the 3D

line, then determine the camera centre by using an arbi-

trary point on a line. Inspired by this approach, our line
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Figure 1: An illustration of the terminology used in defining

a distance measure for lines. Λ
(L)
i denotes a 2D line, Pi its

midpoint and ni the normal to its backprojected plane. Ψ
(L)
j

denotes a 3D line and dj its normalised direction vector.

distance measure is as follows: for each 3D line, denote its

normalised direction vector as dj . For each 2D line, denote

its midpoint as Pi, and backproject the line, denoting the

normal to this plane as ni (see Figure 1 for an illustration

of these terms). In the ideal, noiseless case, dj will lie on

the backprojected plane and Pi will lie on the projection of

line Ψ
(L)
j . Hence, a suitable distance between the lines is

defined as:

d(Ψ
(L)
j ,Λ

(L)
i ) = λ

∣

∣

∣

∣

∣

∣

π

2
− ∠(dj ,ni)

∣

∣

∣

∣

∣

∣
+ ∠(Ψ

(L)
j , Pi) (4)

where λ defines the relative weighting between the two

terms and ∠(Ψ
(L)
j , Pi) denotes the angle between Pi and

the nearest point of the projected line segment Ψ
(L)
j . By us-

ing this we are implicitly considering 2D lines as infinitely

long but 3D lines as finitely long (similar to [19]).

4. Branch-and-Bound

Branch-and-Bound (BnB) is a very general framework

for global optimisation. Assume the objective is to min-

imise some function f over an N -dimensional bounded

space Ω ⊂ R
N . Assume further that for any subset ω ⊆ Ω

(hereafter, known as a branch) a lower bound and an upper

bound may be determined for the minimal value of f in this

branch, and that these bounds converge as the size of the

branch tends to zero. For example, the upper bound could

simply be the value of the function at the midpoint of the

branch, and the lower bound could be the upper bound mi-

nus some expression for how much the function can deviate

in an interval of that size.

These assumptions allow for the determination of a so-

lution to f whose value is within ǫ of the globally optimal

solution, for any user-specified ǫ > 0. It relies upon recur-

sively subdividing the space, calculating upper and lower

bounds for each branch. Initially the input to the algorithm

is simply the branch Ω, and, at any stage in the algorithm,

there is a set of branches that are subsets of Ω, each with

a lower and upper bound to the minimum value f can take

in that branch. At each stage of the algorithm the following

two steps are performed:

1) Determine the distance between the lowest lower

bound and lowest upper bound of the bounds in the set of

branches. If this distance is less than ǫ the algorithm termi-

nates, outputting the lowest upper bound and its branch.

2) Otherwise, consider the branch that has the lowest

lower bound and subdivide it further, computing upper and

lower bounds for each sub-branch.

The algorithm will converge because, eventually, the size

of the branches considered will be sufficiently small that

the distance between the upper bound and lower bound of

a newly divided branch will be less than ǫ. When this oc-

curs, the outputted value is within ǫ of the globally optimal

solution because the entirety of Ω has been (recursively)

searched and so it is known that any better solution is no

more than ǫ better than the one returned.

For the 2D-3D registration problem, optimisation takes

place over the space SE(3) = SO(3) x R
3. This space is

unbounded, so it is assumed the camera centre is known

to lie within a bounded set ΩC - typically a reasonable as-

sumption when ΩC encapsulates a suitably large space.

This section is structured as follows: in 4.1, we give ge-

ometrically meaningful bounds that describe how much the

features can be transformed by within a given neighbour-

hood and in 4.2 how these are used to bound the objective

function. Then we describe the nested BnB structure in 4.3

and our novel deterministic annealing strategy in 4.4. Fi-

nally, local refinement techniques are detailed in 4.5.

4.1. Geometric Bounds

Bounds are considered separately for the rotation com-

ponent and camera centre component. Firstly, the rotation

bound is computed. Rotations are considered in the axis-

angle representation: a rotation is represented by a vector

r ∈ R
3 whose direction specifies the axis of rotation and

whose magnitude specifies the angle. Hence, only rotations

within the sphere of radius π need to be considered. The

rotation matrix that r represents may be computed via the

equation R = I+sin(||r||)[̂r]×+(1−cos(||r||)[̂r]2×, where

r̂ = r/||r|| and [̂r]× denotes the skew-symmetric matrix

representation of r̂. The following result is due to [15]:

Lemma 1: Let R0, R be rotation matrices and r0, r

their corresponding axis-angle representations. Then, for

any point X ∈ R
3:

||r0 − r|| < δR ⇒ ∠(R0X,RX) < δR := ǫR (5)

In the context of BnB, if one considers a branch as a cube of

rotations in their axis-angle representation where the centre

of the branch is r0 and the cube has side-length δR, then by

the above result, for any rotation (R) within the cube and

for any point X, ∠(R0X,RX) <
√
3ǫR
2 .
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Figure 2: Left: If δC ≥ ||X − C0||, the maximum angle

is π by placing X−C behind the origin. Right: If not, the

maximum angle is when X−C is at a right angle to C−C0.

Next, bounds on the camera centre are derived.

Lemma 2: Let C0, C ∈ R
3. For any point X ∈ R

3, let

θ = ∠(X−C0,X−C). Then:

||C0−C|| < δC ⇒

θ ≤

{

π δC ≥ ||X−C0||

asin
(

δC
||X−C0||

)

otherwise

:= ǫX−C0

C

(6)

Lemma 2 can be intuitively understood by referring to

Figure 2. More formally:

Proof:

If δC ≥ ||X −C0||, then one may construct the maximum

angle of π by placing X − C behind (or on) the origin.

Otherwise, assume δC < ||X−C0||, and by the cosine rule

one obtains

||X−C||2 < 2||X−C0||||X−C|| cos(θ) (7)

hence cos(θ) ≥ 0, i.e. θ ∈ [0, π
2 ]. Since sin(θ) is a

strictly increasing function in this interval, obtaining an up-

per bound on sin(θ) will yield an upper bound on θ. By the

sine rule:

sin(θ) =
||C0 −C||

||X−C0||
sin(∠(C0 −C,X−C)) (8)

Without loss of generality X and C0 may be assumed to be

constant, hence the expression is maximised when ∠(C −
C0,X−C) = π

2 . The result follows. �

4.1.1 A Uniformly Continuous Bound

The function governing the bounds on the camera centre (6)

is not uniformly continuous: the relationship between ǫC
and δC is dependent on X. This causes real difficulties for

the algorithm: if precision ǫC is desired and X is arbitrarily

close to C0, an arbitrarily small branch (δC) is required.

Hence the algorithm will not converge in finite time.

To alleviate this we modify the objective function

slightly so as to be uniformly continuous: when computing

(2) we only take into account 3D features whose distance

from the camera centre is larger than a specified threshold

(γ). For a suitably small threshold this is sensible in prac-

tice: in general very few features will be located immedi-

ately in front of the camera.

In doing so, Equation (6) may be rewritten with γ substi-

tuted in place of ||X −C0||. This now creates a uniformly

continuous function since the relationship between δC and

ǫC is independent of X. More explicitly, if a precision

of ǫC ∈ (0, π) is desired, one may set δC = γ sin ǫC to

guarantee a minimum branch size, hence guaranteeing the

convergence of the algorithm. Note however that when the

bound is explicitly calculated there is no need to substitute

γ in place of ||X − C0|| as this simply guarantees how

large a computed bound may be; smaller bounds will be

obtained without this substitution.

By combining Lemmas 1 and 2, the following result is

obtained:

Theorem 1: Let R0, R be rotation matrices and r0, r

their corresponding axis-angle representations. Further, let

C0, C ∈ R
3. Then, for any point X ∈ R

3:

||r0 − r|| < δR ∧ ||C0 −C|| < δC ⇒

∠(R0(X−C0),R(X−C)) < ǫR + ǫC
(9)

The proof follows by combining Lemmas 1 and 2 with the

triangle inequality.

4.2. Function Bounds

In this subsection, the bounds in 4.1 are related to the

objective functions described in Section 3. Assume we are

minimising the trimmed objective (2) with the angular dis-

tance measure for point features (3). It is required to deter-

mine upper and lower bounds for (2) when the pose space

SE(3) is bounded. At each stage in the BnB algorithm, the

pose space will be divided up into cubes, where we consider

jointly a rotation cube centred at r0 of side-length δR and a

camera centre cube centred at C0 of side-length δC .

To compute the upper bound for (2) using points (3) the

objective function is simply evaluated at (R0,C0). To com-

pute the lower bound the expression is derived by evalu-

ating the function at (R0,C0) and subtracting the maxi-

mum amount by which the function may deviate within that

branch. Denote z(ǫ) =
√
3
2 (ǫR + ǫC) and hence, the lower

bound is obtained as:

k
∑

i=1

∗

min
j∈{1...M}

max {0,∠(R0(Yj −C0), Xi)− z(ǫ)}

(10)

The lower bound for lines (4) is derived in a similar way;

the angles for each of the two terms in (4) are bounded in



the same manner (by
√
3
2 (ǫR+ǫC)), hence, subtracting them

for each term gives a lower bound for the distance from the

2D line to the nearest 3D line.

4.3. Nested Branch­and­Bound

In a similar manner to [30], we use a nested BnB struc-

ture for efficiency: an outer BnB searches over the rota-

tion space SO(3) and, for each rotation branch, the upper

and lower bounds are solved by an inner BnB algorithm for

the camera centre. We briefly describe the computation of

bounds in the inner BnB algorithm before moving onto our

novel formulation: an annealing procedure that takes ad-

vantage of the nested structure to quickly filter unpromising

branches of rotation space, whilst still determining the so-

lution to the same level of accuracy.

Firstly, the case for determining the upper bound of a

rotation cube is considered. To do so, the rotation is con-

sidered at the centre of the cube (r0) and the aim is to de-

termine the minimum value of Equation (2) where r is fixed

to r0 and C is allowed to vary. The upper bound used in

the inner algorithm is simply the value of the function at

that point, i.e. computed using (10) with z(ǫ) = 0, with the

lower bound computed using z(ǫ) =
√
3
2 ǫC .

Secondly the lower bound of a rotation cube is consid-

ered. The same computation is performed as for the up-

per bound, but takes into account the maximum amount the

objective function can deviate within the rotation branch.

Hence, the upper bound used in the inner algorithm in this

case is computed using (10) with z(ǫ) =
√
3
2 ǫR; the lower

bound with z(ǫ) =
√
3
2 (ǫR+ ǫC). For more details on using

a nested BnB structure the reader is referred to [30].

4.4. Annealing Branch­and­Bound

The nested BnB structure presented in the previous sec-

tion allows for a novel variant to speed up the outer BnB

algorithm. In particular, the inner BnB need not be calcu-

lated to the same level of accuracy as the outer BnB early

on - it only needs to when the outer BnB nears the desired

accuracy. Our approach exploits this observation, resulting

in a speed up factor of approximately 2.

Initially our algorithm computes the inner BnBs with an

accuracy of ǫinit. When the outer BnB converges (i.e. the

difference between the upper and lower bounds is less than

ǫinit) a slightly higher level of accuracy (lower value of

ǫ) is used: the inner BnBs for existing rotation branches

are re-computed using this value and the algorithm contin-

ues with the new value of ǫ. The algorithm iterates in this

fashion and terminates when the difference between the up-

per and lower bounds is less than a specified ǫend. The

way ǫ is updated is performed in a deterministic anneal-

ing manner parameterised by β: set βinit = − ln(ǫinit) and

βend = − ln(ǫend), then ǫ decreases as β linearly increases

from βinit to βend. It is parameterised by two constants: s,

defining the step size used as β linearly increases, and n,

denoting the number of steps taken from βinit to βend.

It can be summarised in the high level pseudocode in Al-

gorithm 1. The algorithm terminates with precision ǫend,

Algorithm 1 Annealing Branch-and-Bound

1: Inputs: Data, initial rotation and camera centre

branches, ǫend, s, n.

2: Output: Optimal (within ǫend) pose (R,C).

3: UB ⇐ ∞ ⊲ Lowest upper bound

4: LB ⇐ 0 ⊲ Lowest lower bound

5: β ⇐ − ln(ǫend)− ns. ⊲ Initialise β.

6: Put initial rotation branch in queue of branches.

7: while (UB − LB > ǫend) do

8: Recompute all branches with precision exp(−β).
9: Run BnB algorithm with precision exp(−β), using

branches in current queue.

10: Update UB, LB, and branches in current queue

with results of BnB.

11: β ⇐ β + s
12: end while

despite computing a large proportion of inner BnBs to a

lower precision. Hence, it retains the same degree of global

optimality but is typically faster than using the naive nested

BnB structure. A comparison between the two is given

throughout Section 5.

4.5. Local Refinement

Similarly to other BnB approaches (e.g. [30]) we lo-

cally optimise the solution whenever a promising part of the

search space is found. In our case, we use two refinement

algorithms: one with a large basin of convergence that does

not assume correspondences between features are known,

and a more precise refinement requiring known correspon-

dences. The first refinement is called whenever a solution is

within 50% of the current best solution and a local refine-

ment has not been called in a neighbourhood of this point.

The second refinement is called whenever a new best so-

lution is found (similarly to [30]) and uses the correspon-

dences given by the trimmed nearest neighbours.

For the first local refinement algorithm with a large basin

of convergence we use SoftPosit in the case of both points

and lines [10] [11]. For the second algorithm we use EPnP

[24] for points and the approach by Kumar and Hanson [23]

for lines. It should be noted that neither of these algorithms

directly minimise the objective functions used here (Equa-

tions (3) and (4)) and if local refinement does not result in

a better function value the algorithm will not update its best

solution. Despite this, these refinement techniques allow

the BnB algorithm to more efficiently find and discard local

optima and concentrate on finding the global optimum.



5. Experiments

We compare the proposed approach against existing

methods to 2D-3D feature matching without correspon-

dences. In the case of points, we compare against SoftPosit

[10] (referred to as SoftPositP) and BlindPnP [25]. For lines

a comparison is made against the extension of SoftPosit to

lines [11], referred to as SoftPositL. Our approach is tested

with and without the deterministic annealing variant (see

Section 4.4), referred to as BnBDA and BnB respectively.

However, it is observed that BlindPnP relies upon the

ability to use pose priors on where the possible camera pose

may be - represented by a Gaussian Mixture Model of typ-

ically 20 components. In their experiments the pose is con-

strained such that the camera lies on a torus around the 3D

scene. It is often unrealistic to assume such prior knowl-

edge, and it was difficult to alter their approach to work with

a significantly larger number of priors over a greater space

of SE(3). Therefore, for a fair comparison, our approach

was altered to use these pose priors for synthetic data only.

With regards to the parameters used, we use the same for

all the experiments with the exception of k (the expected

number of inliers). It varies between 20% and 60% of the

number of 2D features for synthetic data; for real data it

is fixed to 30% and 40% of the number of 2D points and

lines respectively. We use ǫ = 0.0025k for points and ǫ =
0.013k for lines. In Equation 4 we use λ = 0.3 and for the

deterministic annealing we take s = 0.1 and n = 30.

5.1. Synthetic Data

In this section we use pose priors to give a fair compar-

ison with BlindPnP. Our algorithm is modified to use pose

priors in the following way: the input to our algorithm is a

set of branches corresponding to each pose prior. The ini-

tial size of the branches is reduced to account for the fact

that the pose is constrained to lie within the torus. Hence,

each pose prior generates an initial rotation branch (centred

at the prior) with each branch initiating its own camera cen-

tre branch (centred at the prior). Furthermore, we terminate

our approach after 500 seconds if an optimal solution has

not been found, outputting the best solution found so far.

We perform Monte-Carlo simulations in a similar manner

to [25]: firstly, we randomly generate a set of 3D features

(points or lines) and randomly choose a camera position in

SE(3) from the torus. A proportion of these 3D features

are deemed inliers and are projected onto the image. Noise

is added to their position (the endpoints in the case of lines)

of variance 2 pixels. A number of outlying 2D features are

then randomly generated on the image such that the number

of 2D and 3D points is equal.

We test across a range of feature sizes (40 - 90) for 20%,

40% and 60% inliers. In each case, 20 experiments were

performed. The results are shown in Figure 3 for points and

Figure 5 for lines, each showing the average time taken and
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Figure 3: Time taken, proportion of solutions that con-

verged within the time limit, and proportion of inlying so-

lutions for each method using points (synthetic data).
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Figure 4: Results of BnB for increasing number of points

and 60% inliers, across different values of k.

the proportion of inlying solutions. The timings for BnB

algorithms have high variance, hence we report the three

quartiles (on the left of Figures 3 and 5), and give the pro-

portion of experiments that converged within the time limit

(in the middle). Note that BlindPnP is not included in the

timings - it is tested in Matlab whereas the other approaches

are in C++, hence execution time comparison is not mean-

ingful. However, Moreno-Noguer et al. [25] show Soft-

PositP and BlindPnP to have similar running times. A solu-

tion is deemed an inlier if the angle between its rotation (R)

and the ground truth rotation (Rtrue) is less than a threshold

(of 0.1 radians) and the relative error between their cam-

era centres (expressed as ||Ctrue −C||/||C||) is less than a

threshold (of 0.1), the same as in [25].

From these graphs it is seen that our approaches are con-

sistently more accurate than the state-of-the-art. Interest-

ingly, our approach sometimes does not get the right so-

lution with 20% inliers, despite being globally optimal. It

is in fact observed that, in some cases, it obtains a solu-

tion whose function value (by Equation (2)) is lower than

the function value of the ground truth solution, despite be-

ing an outlying solution! This is indicative of the intrinsic

difficulty of the problem, and the capacity of noise to re-

define the global minimum. The difficulty of the problem
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Figure 5: Time taken, proportion of solutions that con-

verged within the time limit, and proportion of inlying so-

lutions for each method using lines (synthetic data).

is furthermore demonstrated by the long running times, yet,

the proposed globally optimal approach has a running time

of only an order of magnitude higher than the heuristic ap-

proaches. It should be pointed out the code provided by [25]

is used here for BlindPnP: it includes a termination param-

eter if the algorithm is taking too long. When the parameter

is not used, BlindPnP performs more favourably for 20%

inliers at the expense of significant longer execution time,

however not as well as our globally optimal approach.

As a comparison between the different approaches pro-

posed here, our annealing approach (BnBDA) evidently per-

forms faster than without annealing (BnB), particularly so

when the proportion of inliers is higher. This may be due

to the function having fewer local minima when there are

more inliers since it becomes easier to discard unpromis-

ing areas of space in this case. Also of interest is the fact

that our algorithm is significantly faster for lines rather than

points. This is a result of the objective function for lines

(Equation 4): note that it is composed of two parts - the first

term depends solely on the rotation while the second term

depends upon both the rotation and the camera centre. It

therefore allows our approach to discard unpromising areas

of rotation space more quickly than in the case of points.

An important aspect to consider is the inlier ratio, which

in practice cannot be known beforehand. We run experi-

ments where we assume more conservative inlier rates than

the ground truth and give results in Figure 4. When de-

creasing the assumed inlier rate the results do not change

significantly, with only a slight decrease in accuracy when

assuming 24% inliers compared to a ground truth of 60%.

We also wish to consider how long our approach takes

for more input points. The following table gives this infor-

mation, where it can be seen both our approach and Soft-

Figure 6: 3D data and example images used in our experi-

ments. Left: Reception, Right: Room, Top: 3D data, Bot-

tom: example images.

PositP have approximately a quadratic complexity:

Table 1: Quartiles time taken (s) for 60% inliers.
Num. Pts 100 200 300 400

SoftPositP 24/24/24 102/103/103 241/242/246 403/405/408

BnBDA 39/59/85 203/210/261 749/863/1018 762/1051/1823

5.2. Real Data

5.2.1 Experimental Setup

We use real data from two datasets: Reception [21, 20] and

Room [22]. Each dataset consists of both a 3D model ob-

tained by a LiDAR scanner and a set of four and five im-

ages, see Figure 6 for an example of the data. For each im-

age, the ground truth is estimated by manually picking point

correspondences between the image and the model and us-

ing [24] to obtain the parameters. Features are obtained for

2D-3D registration in a similar way to [25]: features are de-

tected in a 2D image and are backprojected to the 3D model,

yielding a set of 3D features. Another image that has a sim-

ilar overlap of the scene is selected from which a set of 2D

features is extracted. Subsequently, 2D-3D registration is

performed using the two sets of features.

Point features are detected using the Good Features to

Track [28] algorithm - it obtains a representative small set of

features for the image in a self-contained framework. Line

features are detected using the LSD algorithm [13] and are

reprojected to 3D using the approach by Buch et al. [7].

Both of these feature detection algorithms often obtain a

large number of features, however the top N features may be

taken using the response value provided by the algorithms.

For points, 80 2D and 3D features are used, while for lines,

100 2D lines are extracted with 200 3D lines are extracted.

Data is normalised by centering the 3D data and re-

scaling such that all the 3D features fit inside the unit

sphere. It is not necessary to do this for our approach, how-

ever it is for SoftPosit that uses many linear approximations.

The initial branch given to our approach is the full rotation

space with the camera centre branch centred at the ground

truth of cube half-width 1 metre (before normalisation). Our

approach is terminated after 1000 seconds if it has not al-

ready converged. SoftPositP is run from 4000 starting po-



Figure 7: Example of two solutions found using SoftPosit,

BnB, and BnBDA. The top is from Reception with the bot-

tom from Room. 3D features are blue; 2D features are red.

sitions from the initial rotation and camera centre branch

while SoftPositL is run from 1500, meaning all algorithms

take a similar amount of time to run on our machine. Note

that a comparison is not made against BlindPnP; their ap-

proach relies upon knowing the pose is from a small prior

distribution of SE(3) - this is not an assumption that can

often be made in practice.

5.2.2 Results

Results are obtained for nine images. Qualitative results for

four images are shown in Figure 7. Of particular note is

the top-left set of results in Figure 7: evidently there are

a number of outlying 2D features detected on the left of

the image that were not detected in 3D. This has created

a significant amount of clutter to the extent that SoftPositP

has failed to find the optimal solution. Our globally optimal

approach has recovered the correct pose in the case of both

points and lines. For the other sets of results in Figure 7,

our approach always obtains the globally optimal solution

whereas SoftPositL fails for each case.

Now we give quantitative results. Table 2 shows, for

each of the nine images, results for each method using

points or lines (Note that SP stands for SoftPosit). Re-

sults are split into two parts; the top number is the angle

between the estimated rotation (R) and the ground truth ro-

tation (Rtrue), while the bottom number is the relative error

between the camera centres (C and Ctrue).

Numbers in bold represent the best result for that image.

In some cases, no numbers are in bold - in this case all meth-

ods failed to return an inlying solution. In the case of both

points and lines, BnB and BnBDA produced more inlying

solutions than SoftPosit and returned more accurate results,

particularly so in the case of lines.

Table 2: Quantitative Results (real data).

Image
Points Lines

SP BnB BnBDA SP BnB BnBDA

1
0.052 0.039 0.039 0.029 0.05 0.03

0.053 0.037 0.037 0.53 0.053 0.03

2
2.6 0.034 0.034 0.2 0.076 0.074

1.2 0.034 0.034 0.23 0.081 0.078

3
0.1 0.083 0.083 3.1 0.22 0.22

0.11 0.085 0.085 0.45 0.22 0.22

4
0.083 0.066 0.066 0.51 0.044 0.04

0.087 0.07 0.07 0.39 0.047 0.045

5
1.2 3 2.5 1.9 0.35 0.24

1.4 0.93 0.46 4.7 0.43 0.35

6
0.89 2.4 2.4 2.1 0.095 0.069

0.84 0.51 0.51 1.5 0.081 0.1

7
0.012 0.012 0.012 2.7 0.13 0.0091

0.015 0.015 0.015 4.7 0.17 0.01

8
2.4 3 0.33 1.6 0.1 0.065

1.6 0.36 0.47 3.5 0.15 0.066

9
0.012 0.012 0.012 3.1 0.063 0.044

0.016 0.016 0.016 2.1 0.084 0.054

Num.
4 6 6 0 5 7

Inliers

The relative run-time of the methods is as follows. In the

case of points, BnB and BnBDA took the maximum 1000

seconds in six out of nine images, however for the other

three images BnBDA was approximately three times quicker

than BnB to find the global optimum. Similar observations

can be made for lines in which four out of nine images

converged in less than the maximum 1000 seconds, with

BnBDA converging on average twice as quickly as BnB.

6. Conclusions and Future Work

We have presented the first globally optimal approach to

2D-3D registration where feature correspondences are un-

known. It has been presented in a general framework ren-

dering it applicable to either points or lines. Furthermore, a

novel deterministic annealing formulation of nested BnB al-

gorithms has been proposed, allowing for greater efficiency

with no loss of optimality. It has resulted in an algorithm

that is significantly better than state-of-the-art, both in terms

of accuracy and robustness to high outlier rates.

Future work will include using this within a full 2D-

3D registration pipeline where 3D features are extracted di-

rectly from 3D data. This is much more challenging, requir-

ing more repeatable features to be extracted. We further-

more plan on using both point and line features within the

same framework. Points and lines are complementary fea-

ture types and it is anticipated this will result in a more ro-

bust approach that is applicable to a wider range of scenes.
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