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Multiobjective design optimization problems require multiobjective optimization techniques
to solve, and it is often very challenging to obtain high-quality Pareto fronts accurately. In
this paper, the recently developed flower pollination algorithm (FPA) is extended to solve
multiobjective optimization problems. The proposed method is used to solve a set of mul-
tobjective test functions and two bi-objective design benchmarks, and a comparison of the
proposed algorithm with other algorithms has been made, which shows that FPA is efficient
with a good convergence rate. Finally, the importance for further parametric studies and
theoretical analysis are highlighted and discussed.
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1. Introduction

Real-world design problems in engineering and industry are usually multiobjective or
multicriteria, and these multiple objectives are often conflicting one another, which makes
it impossible to use any single design option without compromise. Common approaches
are to provide good approximations to the true Pareto fronts of the problem of interest
so that decision-makers can rank different options, depending on their preferences or
their utilities (Abbass and Sarker 2002; Babu and Gujarathi 2007; Cagnina et al. 2008;
Deb, 1999, 2000, 2001; Reyes-Sierra and Coello 2006). Compared with single objective
optimization, multiobjective optimization has its additional challenging issues such as
time complexity, inhomogeneity and dimensionality. It is usually more time consuming
to obtain the true Pareto fronts because it usually requires to produce many points on
the Pareto front for good approximations.

In addition, even accurate solutions on a Pareto front can be obtained, there is still no
guarantee that these solution points will distribute uniformly on the front. In fact, it is
often difficult to obtain the whole front without any part missing. For single objective
optimization, the optimal solution can often be a single point in the solution space, while
for bi-objective optimization, the Pareto front forms a curve, and for tri-objective cases,
it becomes a surface. In fact, higher dimensional problems can have extremely complex
hypersurface as its Pareto front (Madavan 2002; Marler and Arora 2004; Yang 2010a;
Yang and Gandomi 2012). Consequently, it is typically more challenging to solve such
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high-dimensional problems.
In the current literature of engineering optimization, a class of nature-inspired al-

gorithms have shown their promising performance and have thus become popular and
widely used, and these algorithms are mostly swarm intelligence based (Coello 1999; Deb
et al. 2002; Geem et al. 2001; Geem 2009; Ray and Liew 2002; Yang 2010,2010b,2011a;
Gandomi and Yang 2011; Gandomi et al. 2012). Metaheuristic algorithms such as parti-
cle swarm optimization, harmony search and cuckoo search are among the most popular
(Geem 2009; Yang 2010). For example, harmony search, developed by Zong Woo Geem
in 2001 (Geem et al. 2001; Geem 2006, 2009), has been applied in many areas such as
highly challenging water distribution networks (Geem 2006) and discrete structural opti-
mization (Lee et al. 2005). Other algorithms such as shuffled frog-leaping algorithm and
particle swarm optimizers have been applied to various optimization problems (Eusuff
et al. 2006; He et al. 2004; Huang 1996). There are many reasons for the popularity
of metaheuristic algorithms, and flexibility and simplicity of these algorithms certainly
contribute to their success.

The main aim of this paper is to extend the flower pollination algorithm (FPA), de-
veloped by Xin-She Yang in 2012 (Yang 2012), for single objective optimization to solve
multiobjective optimization, and thus developed a multi-objective flower pollination al-
gorithm (MOFPA). The rest of this paper is organized as follows: Section 2 outlines the
basic characteristics of flower pollination in nature and then introduce in detail the ideas
of flower pollination algorithm. Section 3 then presents the validation of the FPA by nu-
merical experiments and a few selected multiobjective benchmarks. Then, in Section 4,
two real-world design benchmarks are solved to design a welded beam and a disc brake,
each with two objectives. Finally, some relevant issues are discussed and conclusions are
drawn in Section 5.

2. Flower Pollination Algorithm

2.1 Characteristics of Flower Pollination

It is estimated that there are over a quarter of a million types of flowering plants in
Nature and that about 80% of all plant species are flowering species. It still remains a
mystery how flowering plants came to dominate the landscape from the Cretaceous period
(Walker 2009). Flowering plants have been evolving for at least more than 125 million
years and flowers have become so influential in evolution, it is unimaginable what the
plant world would look like without flowers. The main purpose of a flower is ultimately
reproduction via pollination. Flower pollination is typically associated with the transfer
of pollen, and such transfer is often linked with pollinators such as insects, birds, bats and
other animals. In fact, some flowers and insects have co-evolved into a very specialized
flower-pollinator partnership. For example, some flowers can only attract and can only
depend on a specific species of insects or birds for successful pollination.

Pollination can take two major forms: abiotic and biotic. About 90% of flowering plants
belong to biotic pollination. That is, pollen is transferred by pollinators such as insects
and animals. About 10% of pollination takes abiotic form which does not require any
pollinators. Wind and diffusion help pollination of such flowering plants, and grass is
a good example of abiotic pollination (ScienceDaily 2001; Glover 2007). Pollinators, or
sometimes called pollen vectors, can be very diverse. It is estimated there are at least
about 200,000 varieties of pollinators such as insects, bats and birds. Honeybees are a
good example of pollinators, and they have also developed the so-called flower constancy.
That is, these pollinators tend to visit exclusive certain flower species while bypassing
other flower species. Such flower constancy may have evolutionary advantages because
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this will maximize the transfer of flower pollen to the same or conspecific plants, and
thus maximizing the reproduction of the same flower species. Such flower constancy may
be advantageous for pollinators as well, because they can be sure that nectar supply is
available with their limited memory and minimum cost of learning, switching or explor-
ing. Rather than focusing on some unpredictable but potentially more rewarding new
flower species, flower constancy may require minimum investment cost and more likely
guaranteed intake of nectar (Waser 1986).

Pollination can be achieved by self-pollination or cross-pollination. Cross-pollination,
or allogamy, means pollination can occur from pollen of a flower of a different plant,
while self-pollination is the fertilization of one flower, such as peach flowers, from pollen
of the same flower or different flowers of the same plant, which often occurs when there is
no reliable pollinator available. Biotic, cross-pollination may occur at long distance, and
the pollinators such as bees, bats, birds and flies can fly a long distance, thus they can
considered as the global pollination. In addition, bees and birds may behave as Lévy flight
behaviour with jump or fly distance steps obeying a Lévy distribution (Pavlyukevich
2007). Furthermore, flower constancy can be considered as an increment step using the
similarity or difference of two flowers.

From the biological evolution point of view, the objective of the flower pollination is
the survival of the fittest and the optimal reproduction of plants in terms of numbers
as well as the most fittest. This can be considered as an optimization process of plant
species. All the above factors and processes of flower pollination interact so as to achieve
optimal reproduction of the flowering plants. Therefore, this may motivate us to design
new optimization algorithms.

2.2 Flower Pollination Algorithm

Flower pollination algorithm (FPA) was developed by Xin-She Yang in 2012 (Yang 2012),
inspired by the flow pollination process of flowering plants. FPA has been extended to
multi-objective optimization (Yang et al. 2013). For simplicity, the following four rules
are used:

(1) Biotic and cross-pollination can be considered as a process of global pollination, and
pollen-carrying pollinators move in a way which obeys Lévy flights (Rule 1).

(2) For local pollination, abiotic pollination and self-pollination are used (Rule 2).
(3) Pollinators such as insects can develop flower constancy, which is equivalent to a

reproduction probability that is proportional to the similarity of two flowers involved
(Rule 3).

(4) The interaction or switching of local pollination and global pollination can be con-
trolled by a switch probability p ∈ [0, 1], slightly biased towards local pollination
(Rule 4).

In order to formulate the updating formulas, the above rules have to be converted
into proper updating equations. For example, in the global pollination step, flower pollen
gametes are carried by pollinators such as insects, and pollen can travel over a long
distance because insects can often fly and move in a much longer range. Therefore, Rule
1 and flower constancy (Rule 3) can be represented mathematically as

xt+1
i = xti + γL(λ)(g∗ − xti), (1)

where xti is the pollen i or solution vector xi at iteration t, and g∗ is the current best
solution found among all solutions at the current generation/iteration. Here γ is a scaling
factor to control the step size.
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Here L(λ) is the parameter, more specifically the Lévy-flights-based step size, that
corresponds to the strength of the pollination. Since insects may move over a long dis-
tance with various distance steps, a Lévy flight can be used to mimic this characteristic
efficiently. That is, L > 0 is drawn from a Lévy distribution

L ∼ λΓ(λ) sin(πλ/2)

π

1

s1+λ
, (s� s0 > 0). (2)

Here Γ(λ) is the standard gamma function, and this distribution is valid for large steps
s > 0. In theory, it is required that |s0| � 0, but in practice s0 can be as small as
0.1. However, it is not trivial to generate pseudo-random step sizes that correctly obey
this Lévy distribution (2). There are a few methods for drawing such random numbers,
and the most efficient one from our studies is that the so-called Mantegna algorithm
for drawing step size s by using two Gaussian distributions U and V by the following
transformation (Mantegna 1994)

s =
U

|V |1/λ
, U ∼ N(0, σ2), V ∼ N(0, 1). (3)

Here U ∼ (0, σ2) means that the samples are drawn from a Gaussian normal distribution
with a zero mean and a variance of σ2. The variance can be calculated by

σ2 =
[ Γ(1 + λ)

λΓ((1 + λ)/2)
· sin(πλ/2)

2(λ−1)/2

]1/λ
. (4)

This formula looks complicated, but it is just a constant for a given λ. For example,
when λ = 1, the gamma functions become Γ(1 + λ) = 1,Γ((1 + λ)/2) = 1 and

σ2 =
[ 1

1× 1
· sin(π × 1/2)

20

]1/1
= 1. (5)

It has been proved mathematically that the Mantegna algorithm can produce the random
samples that obey the required distribution (2) correctly (Mantegna 1994). By using this
pseudo-random number algorithm, 50 step sizes have been drawn to form a consecutive
50 steps of Lévy flights as shown in Fig. 2.

For the local pollination, both Rule 2 and Rule 3 can be represented as

xt+1
i = xti + ε(xtj − xtk), (6)

where xtj and xtk are pollen from different flowers of the same plant species. This essen-

tially mimics the flower constancy in a limited neighborhood. Mathematically, if xtj and

xtk comes from the same species or selected from the same population, this equivalently
becomes a local random walk if ε is drawn from a uniform distribution in [0,1].

In principle, flower pollination activities can occur at all scales, both local and global.
But in reality, adjacent flower patches or flowers in the not-so-far-away neighborhood are
more likely to be pollinated by local flower pollen than those far away. In order to mimic
this feature, a switch probability (Rule 4) or proximity probability p can be effectively
used to switch between common global pollination to intensive local pollination. To start
with, a naive value of p = 0.5 may be used as an initially value. A preliminary parametric
showed that p = 0.8 may work better for most applications.
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Flower Pollination Algorithm (or simply Flower Algorithm)

Objective min or max f(x), x = (x1, x2, ..., xd)
Initialize a population of n flowers/pollen gametes with random solutions
Find the best solution g∗ in the initial population
Define a switch probability p ∈ [0, 1]
while (t <MaxGeneration)

for i = 1 : n (all n flowers in the population)
if rand < p,

Draw a (d-dimensional) step vector L which obeys a Lévy distribution
Global pollination via xt+1

i = xt
i + γL(g∗ − xt

i)
else

Draw ε from a uniform distribution in [0,1]
Do local pollination via xt+1

i = xt
i + ε(xt

j − xt
k)

end if
Evaluate new solutions
If new solutions are better, update them in the population

end for
Find the current best solution g∗

end while
Output the best solution found

Figure 1. Pseudo code of the proposed Flower Pollination Algorithm (FPA).

Figure 2. A series of 50 consecutive steps of Lévy flights.

2.3 Multiobjective Flower Pollination Algorithm (MOFPA)

A multiobjective optimization problem with m objectives can be written in general as

Minimize f1(x), f2(x), ..., fm(x), (7)

subject to the nonlinear equality and inequality constraints

hj(x) = 0, (j = 1, 2, ..., J), (8)

gk(x) ≤ 0, (k = 1, 2, ...,K). (9)
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In order to use the techniques for single objective optimization or extend the methods
for solving multiobjective problems, there are different approaches to achieve this. One
of the simplest ways is to use a weighted sum to combine multiple objectives into a
composite single objective

f =

m∑
i=1

wifi, (10)

with

m∑
i=1

wi = 1, wi > 0, (11)

where m is the number of objectives and wi(i = 1, ...,m) are non-negative weights.
The fundamental idea of this weighted sum approach is that these weighting coefficients

act as the preferences for these multiobjectives. For a given set of (w1, w2, ..., wm), the
optimization process will produce a single point of the Pareto front of the problem. For a
different set of wi, another point on the Pareto front can be generated. With a sufficiently
large number of combinations of weights, a good approximation to the true Pareto front
can be obtained. It is has proved that the solutions to the problem with the combined
objective (10) are Pareto-optimal if the weights are positive for all the objectives, and
these are also Pareto-optimal to the original problem (7) (Miettinen 1999; Deb 2001). In
practice, a set of random numbers ui are first drawn for a uniform distribution U(0, 1).
Then, the weights wi can be calculated by normalization. That is

wi =
ui∑m
i=1 ui

, (12)

so that
∑

iwi = 1 can be satisfied. For example, for three objectives f1, f2 and f3, three
random numbers/weights can be drawn from a uniform distribution [0, 1], and they may
be u1 = 0.2915, u2 = 0.9147 and u3 = 0.6821 in one instance of sampling runs. Then, we
have

∑
i = 1.8883, and w1 = 0.1544, w2 = 0.4844, w3 = 0.3612. Indeed,

∑
iwi = 1.000 is

satisfied.
In order to obtain the Pareto front accurately with solutions relatively uniformly dis-

tributed on the front, random weights wi should be used, which should be as different
as possible (Miettinen 1999). From the benchmarks that have been tested, the weighted
sum with random weights usually works well as can be seen below.

3. Validation and Numerical Experiments

There are many different test functions for multiobjective optimization (Zitzler and
Thiele 1999; Ziztler et al. 2000; Zhang et al. 2009), but a subset of some widely used
functions provides a wide range of diverse properties in terms of Pareto front and Pareto
optimal set. To validate the proposed MOFPA, a subset of these functions with con-
vex, non-convex and discontinuous Pareto fronts have been selected, including 7 single
objective test functions and 4 multiobjective test functions, and two bi-objective design
problems.
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3.1 Single Objective Test Functions

Before proceeding to solve multiobjective optimization problems, the algorithm should
first be validated by solving some well-known single objective test functions. There are
at least over a hundred well-known test functions. However, there is no agreed set of
test functions for validating new algorithms, though some review and literature do exist
(Ackley 1987; Floudas et al. 1999; Hedar 2012; Yang 2010a). Here, a subset of seven test
functions with diverse properties are used here.

The Ackley function can be written as

f1(x) = −20 exp
[
− 1

5

√√√√1

d

d∑
i=1

x2
i

]
− exp

[1

d

d∑
i=1

cos(2πxi)
]

+ 20 + e, (13)

which has a global minimum f∗ = 0 at (0, 0, ..., 0).
The simplest of De Jong’s functions is the so-called sphere function

f2(x) =

n∑
i=1

x2
i , −5.12 ≤ xi ≤ 5.12, (14)

whose global minimum is obviously f∗ = 0 at (0, 0, ..., 0). This function is unimodal and
convex.

Easom’s function

f3(x) = (−1)d+1
d∏
i=1

cos(xi) exp
[
−

d∑
i=1

(xi − π)2
]
, (15)

whose global minimum is f∗ = −1 at x∗ = (π, ..., π) within −100 ≤ xi ≤ 100. It has
many local minima.

Griewank’s function

f4(x) =
1

4000

d∑
i=1

x2
i −

d∏
i=1

cos(
xi√
i
) + 1, −600 ≤ xi ≤ 600, (16)

whose global minimum is f∗ = 0 at x∗ = (0, 0, ..., 0). This function is highly multimodal.
Rastrigin’s function

f5(x) = 10d+
d∑
i=1

[
x2
i − 10 cos(2πxi)

]
, −5.12 ≤ xi ≤ 5.12, (17)

whose global minimum is f∗ = 0 at (0, 0, ..., 0). This function is highly multimodal.
Rosenbrock’s function

f6(x) =

d−1∑
i=1

[
(xi − 1)2 + 100(xi+1 − x2

i )
2
]
, (18)

whose global minimum f∗ = 0 occurs at x∗ = (1, 1, ..., 1) in the domain −5 ≤ xi ≤ 5
where i = 1, 2, ..., d.
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Figure 3. Convergence rate during iterations. The objective is plotted versus the iteration (left), and the same
results are shown in a logarithmic scale (right).

Zakharov’s function

f7(x) =

d∑
i=1

x2
i +

(1

2

d∑
i=1

ixi

)2
+
(1

2

d∑
i=1

ixi

)4
, (19)

has its global minimum f∗ = 0 at (0, 0, ..., 0).
In order to compare the performance of FPA with other existing algorithms, each algo-

rithm is first tested using the most widely used implementation and parameter settings.
For genetic algorithms (GA), a crossover rate of pcrossover = 0.95 and a mutation rate of
pmutation = 0.05 are used (Holland 1975; Goldberg 1989; Yang 2010a). For particle swarm
optimization (PSO), a version with an inertia weight θ = 0.7 is used, and its two learning
parameters β1 = β2 are set as 1.5 (Kennedy and Eberhart 1995; Yang 2010a). Also, to
ensure a fair comparison, the same population size should be used whenever possible. So
n = 25 has been used for all three algorithms.

To get some insight into the parameter settings of the FPA, a detailed parametric
study has been carried out by varying p from 0.05 to 0.95 with a step increase of 0.05,
λ = 1, 1.25, 1.5, 1.75, 1.9 and n = 5, 10, 15, ..., 50. It has been found that n = 25, p = 0.8,
γ = 0.1 and λ = 1.5 works for most cases. The parameter values used for all three
algorithms are summarized in Table 1.

Table 1. Parameter values for each algorithm.

PSO n = 25, θ = 0.7, β1 = β2 = 1.5
GA n = 25, pcrossover = 0.95, pmutation = 0.05
FPA n = 25, λ = 1.5, γ = 0.1, p = 0.8

The convergence behaviour of genetic algorithms and PSO during iterations have been
well studied in the literature. For FPA, various statistical measures can be obtained
from a set of runs. For example, for the Ackley function f1, the best objective values
obtained during each iteration can be plotted in a simple graph as shown in Fig. 3 where
a logarithmic plot shows that the convergence rate is almost exponential, which implies
that the proposed algorithm is very efficient.

For a fixed population size n = 25, this is equal to the total number of function
evaluations is 25,000. The best results obtained in terms of the means of the minimum
values found are summarized in Table 2.
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Table 2. Comparison of algorithm performance: mean values.

Functions GA PSO FPA
f1 8.29e-9 7.12e-12 5.09e-12
f2 6.61e-15 1.18e-24 2.47e-26
f3 -0.9989 -0.9998 -1.0000
f4 5.72e-9 4.69e-9 1.37e-11
f5 2.93e-6 3.44e-6 4.52e-7
f6 8.97e-6 8.21e-8 6.19e-8
f7 8.77e-4 1.58e-4 9.53e-5

3.2 Multiobjective Test Functions

In the rest of the paper, the parameters in MOFPA are fixed, based on a preliminary
parametric study, and p = 0.8, λ = 1.5, and a scaling factor γ = 0.1 are used. The
population size n = 50 and the number of iterations is set to t = 1000. The following
four functions will be tested:

• ZDT1 function with a convex front (Zitzler and Thiele 1999; Zitzler et al. 2000)

f1(x) = x1, f2(x) = g(1−
√
f1/g),

g = 1 +
9
∑d

i=2 xi
d− 1

, x1 ∈ [0, 1], i = 2, ..., 30, (20)

where d is the number of dimensions. The Pareto-optimality is reached when g = 1.
• ZDT2 function with a non-convex front

f1(x) = x1, f2(x) = g(1− f1

g
)2,

where g is the same as given in ZDT1.
• ZDT3 function with a discontinuous front

f1(x) = x1, f2(x) = g
[
1−

√
f1

g
− f1

g
sin(10πf1)

]
,

where g in functions ZDT2 and ZDT3 is the same as in function ZDT1. In the ZDT3
function, f1 varies from 0 to 0.852 and f2 from −0.773 to 1.

• LZ function (Li and Zhang, 2009; Zhang and Li, 2007)

f1 = x1 +
2

|J1|
∑
j∈J1

[
xj − sin(6πx1 +

jπ

d
)
]2
,

f2 = 1−
√
x1 + +

2

|J2|
∑
j∈J2

[
xj − sin(6πx1 +

jπ

d
)
]2
, (21)

where J1 = {j|j is odd } and J2 = {j|j is even } where 2 ≤ j ≤ d. This function has

9
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Table 3. Summary of results.

Functions Errors (1000 iterations) Errors (2500 iterations)
ZDT1 1.1E-6 3.1E-19
ZDT2 2.7E-6 4.4E-10
ZDT3 1.4E-5 7.2E-12
LZ 1.2E-6 2.9E-12

a Pareto front f2 = 1−
√
f1 with a Pareto set

xj = sin(6πx1 +
jπ

d
), j = 2, 3, ..., d, x1 ∈ [0, 1]. (22)

After generating 100 Pareto points by MOFPA, the Pareto front generated by MOFPA
is compared with the true front f2 = 1−

√
f1 of ZDT1 (see Fig. 4).

Let us define the distance or error between the estimate Pareto front PF e to its cor-
responding true front PF t as

Ef = ||PF e − PF t||2 =

N∑
j=1

(PF ej − PF tj )2, (23)

where N is the number of points.
The variation of convergence rates or the convergence property can be viewed by

plotting out the errors during iterations. As this measure is an absolute measure, which
depends on the number of points. Sometimes, it is easier to use a relative measure in
terms of the generalized distance

Dg =
1

N

√√√√ N∑
j=1

(PFj − PF tj )2. (24)

The results for all the functions are summarized in Table 3, and the estimated Pareto
fronts and true fronts of other functions are shown in Fig. 4 and Fig. 5. In all these
figures, the vertical axis is f2 and the horizontal axis is f1.

3.3 Analysis of Results and Comparison

In order to compare the performance of the proposed MOFPA with other established
multiobjective algorithms, we have selected a few algorithms with available results from
the literature. In case of the results are not available, the algorithms have been im-
plemented using well-documented studies and then generated new results using these
algorithms. In particular, other methods are also used for comparison, including vector
evaluated genetic algorithm (VEGA) (Schaffer 1985), NSGA-II (Deb et al., 2000), mul-
tiobjective differential evolution (MODE) (Babu 2007; Xue 2004), differential evolution
for multiobjective optimization (DEMO) (Robič and Filipič 2005), multiobjective bees
algorithms (Bees) (Pham and Ghanbarzadeh, 2007), and strength pareto evolutionary
algorithm (SPEA) (Deb et al. 2002; Madavan 2002). The performance measures in terms
of generalized distance Dg are summarized in Table 4 for all the above major methods.

It is clearly seen from Table 4 that the proposed MOFPA obtained better results for
almost all four cases.
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Figure 4. a) Pareto front of test function ZDT1, and b) Pareto front of test function ZDT2.

Figure 5. a) Pareto front of test function ZDT3, and b) Pareto front of test function LZ.

Table 4. Comparison of Dg for n = 50 and t = 500 iterations.

Methods ZDT1 ZDT2 ZDT3 LZ

VEGA 3.79E-02 2.37E-03 3.29E-01 1.47E-03
NSGA-II 3.33E-02 7.24E-02 1.14E-01 2.77E-02
MODE 5.80E-03 5.50E-03 2.15E-02 3.19E-03
DEMO 1.08E-03 7.55E-04 1.18E-03 1.40E-03
Bees 2.40E-02 1.69E-02 1.91E-01 1.88E-02
SPEA 1.78E-03 1.34E-03 4.75E-02 1.92E-03
MOFPA 7.11E-05 1.24E-05 5.49E-04 7.92E-05

4. Structural Design Examples

Design optimization, especially design of structures, has many applications in engineering
and industry. As a result, there are many different benchmarks with detailed studies in
the literature (Kim et al. 1997; Pham and Ghanbarzadeh 2007; Ray and Liew 2002;
Rangaiah 2008). In the rest of this paper, MOFPA will be used to solve two design case
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studies: design of a beam and a disc brake (Osyczka and Kundu 1995; Ray and Liew
2002; Gong et al. 2009).

4.1 Welded Beam Design

Multiobjective design of a welded beam is a classical benchmark which has been solved
by many researchers (Deb 1999; Ray and Liew 2002). The problem has four design
variables: the width w and length L of the welded area, the depth d and thickness h of
the main beam. The objective is to minimize both the overall fabrication cost and the
end deflection δ.

The detailed formulation can be found in (Deb 1999; Ray and Liew 2002; Gong et al.
2009). Here the main problem is rewritten as

minimise f1(x) = 1.10471w2L+ 0.04811dh(14.0 + L), minimize f2 = δ, (25)

subject to

g1(x) = w − h ≤ 0,

g2(x) = δ(x)− 0.25 ≤ 0,

g3(x) = τ(x)− 13, 600 ≤ 0,

g4(x) = σ(x)− 30, 000 ≤ 0,

g5(x) = 0.10471w2 + 0.04811hd(14 + L)− 5.0 ≤ 0,

g6(x) = 0.125− w ≤ 0,

g7(x) = 6000− P (x) ≤ 0,

(26)

where

σ(x) = 504,000
hd2 , Q = 6000(14 + L

2 ),

D = 1
2

√
L2 + (w + d)2, J =

√
2 wL[L

2

6 + (w+d)2

2 ],

δ = 65,856
30,000hd3 , β = QD

J ,

α = 6000√
2wL

, τ(x) =
√
α2 + αβL

D + β2,

P = 0.61423× 106 dh3

6 (1− d
√

30/48

28 ).

(27)

The simple limits or bounds are 0.1 ≤ L, d ≤ 10 and 0.125 ≤ w, h ≤ 2.0. This design
problem has been solved using the MOFPA. The approximate Pareto front generated by
the 50 non-dominated solutions after 1000 iterations are shown in Fig. 6. This is consistent
with the results obtained by others (Ray and Liew 2002; Pham and Ghanbarzadeh 2007).

4.2 Disc Brake Design

The objectives are to minimize the overall mass and the braking time by choosing optimal
design variables: the inner radius r, outer radius R of the discs, the engaging force F
and the number of the friction surface s. This is under the design constraints such as the
torque, pressure, temperature, and length of the brake (Ray and Liew 2002; Pham and
Ghanbarzadeh 2007).

12
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Figure 6. Pareto front for the bi-objective beam design where the horizontal axis corresponds to cost and the
vertical axis corresponds to deflection.

This bi-objective design problem can be written as:

Minimize f1(x) = 4.9× 10−5(R2 − r2)(s− 1), f2(x) =
9.82× 106(R2 − r2)

Fs(R3 − r3)
, (28)

subject to

g1(x) = 20− (R− r) ≤ 0,

g2(x) = 2.5(s+ 1)− 30 ≤ 0,

g3(x) = F
3.14(R2−r2) − 0.4 ≤ 0,

g4(x) = 2.22×10−3F (R3−r3)
(R2−r2)2 − 1 ≤ 0,

g5(x) = 900− 0.0266Fs(R3−r3)
(R2−r2) ≤ 0.

(29)

The simple limits are

55 ≤ r ≤ 80, 75 ≤ R ≤ 110, 1000 ≤ F ≤ 3000, 2 ≤ s ≤ 20. (30)

It is worth pointing out that s is discrete. In general, MOFPA has to be extended in com-
bination with constraint handling techniques so as to deal with mixed integer problems
efficiently. However, since there is only one discrete variable, the simplest branch-and-
bound method is used here.

In order to see how the proposed MOFPA perform for the real-world design problems,
the same problem has also been solved using other available multiobjective algorithms.
50 solution points are geneated using MOFPA to form an approximate to the true Pareto
front after 1000 iterations, as shown in Fig. 7.

The comparison of the convergence rates is plotted in the logarithmic scales in Fig. 8. It
can be seen clearly that the convergence rate of MOFPA is the highest in an exponentially

13
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Figure 7. Pareto front of the disc brake design.

decreasing way. This suggests that MOFPA provides better solutions in a more efficient
way.

The above results for 11 test functions in total and two design examples suggest that
MOFPA is a very efficient algorithm for multiobjective optimization. The proposed algo-
rithm can deal with highly nonlinear, multiobjective optimization problems with complex
constraints and diverse Pareto optimal sets.

5. Discussions and Conclusions

Multiobjective optimization in engineering and industry is often very challenging to solve,
necessitating sophisticated techniques to tackle. Metaheuristic approaches have shown
promise and popularity in recent years.

In the present work, a new algorithm, called flower pollination algorithm, has been
formulated for multiobjective optimization applications by mimicking the pollination
process of flowering plants. Numerical experiments and design benchmarks have shown
that the proposed algorithm is very efficient with an almost exponential convergence
rate, based on the comparison of FPA with other algorithms for solving multiobjective
optimization problems.

It is worth pointing out that mathematical analysis is highly needed in the future work
so as to gain insight into the true working mechanisms of the metaheuristic algorithms
such as MOFPA. FPA has the advantages such as simplicity and flexibility, and in many
ways, it has some similarity to that of cuckoo search and other algorithms with Lévy
flights (Yang 2010a, 2011b), however, it is still not clear that why FPA works well. In
terms of number of parameters, FPA has only one key parameter p together with a scaling
factor γ, which makes the algorithm easier to implement. However, the nonlinearity
in Lévy flights make it difficult to analyse mathematically. It can be expected that
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Figure 8. Convergence comparison for the disc brake design.

this nonlinearity in the algorithm formulations may be advantageous to enhance the
performance of an algorithm. More research may reveal the subtlety of this feature.

For multiobjective optimization, an important issue is how to ensure the solution points
can distribute relatively uniformly on the Pareto front for test functions. However, for
real-world design problems such as the design of a disc brake and a welded beam, the
solutions are not quite uniform on the Pareto fronts, and there is still room for im-
provement. However, simply generating more solution points may not solve the Pareto
uniformity problem easily. In fact, it is still a challenging problem on how to maintain a
uniform spread on the Pareto front, which requires more studies. It may be useful as a
further research topic to study other approaches for multiobjective optimization, such as
the ε-constraint method, weighted metric methods, Benson’s method, utility methods,
and evolutionary methods (Miettinen 1999; Coello 1999; Deb 2001).

On the other hand, further studies can focus on more detailed parametric analysis and
gain insightful of how algorithm-dependent parameters can affect the performance of an
algorithm. Furthermore, the linearity in the main updating formulas makes it possible
to do some theoretical analysis in terms of dynamic systems or Markov chain theories,
while the nonlinearity in terms of Lévy flights can be difficult to analyze FPA exactly.
All these can form useful topics for further research.
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