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Abstract—In this paper I investigate methods of applying
reinforcement learning to continuous state- and action-space
problems without a policy function. I compare the performance
of four methods, one of which is the discretisation of the action-
space, and the other three are optimisation techniques applied to
finding the greedy action without discretisation. The optimisation
methods I apply are gradient descent, Nelder-Mead and Newton’s
Method. The action selection methods are applied in conjunction
with the SARSA algorithm, with a multilayer perceptron utilized
for the approximation of the value function. The approaches
are applied to two simulated continuous state- and action-space
control problems: Cart-Pole and double Cart-Pole. The results
are compared both in terms of action selection time and the
number of trials required to train on the benchmark problems.

I. INTRODUCTION

Reinforcement learning (RL) [1], [2] has many successes
in discrete and small action-space problems. However, many
interesting problems have large and/or continuous action-
space, for which it is not obvious which RL approach is the
most appropriate.

The most common methods utilised in the application of
RL to continuous action-space problems are either actor-critic
methods (AC) [3] or direct policy search (DPS) [4]. AC
requires the approximation of two functions: the value function
Q : S × A → R, giving the expected long term reward from
being in a given state s ∈ S and taking an action a ∈ A,
and the policy function π : S → A, which is a mapping
from states to actions. It is also common, when using AC
methods, to use the value function V : S → R, which is the
expected long-term, discounted reward when in state s ∈ S
and following π(s). DPS on the other hand seek to directly
optimise the policy function π(s) taking the value of the policy
to be the sum of discounted rewards received when following
that policy.

Another method, which is the method I investigate here,
is the implicit policy method (IPM), which approximates the
value function Q : S ×A → R; however, unlike AC methods,
no policy function is stored. Instead the action to take from
a given state is calculated as required from the Q function.
Despite being the method of choice when the action-space is
small or discrete [3], IPM is not frequently applied when the

action-space is large or continuous. This is due to the fact that
it becomes impossible to compare the values of every possible
action, and it has been stated that applying optimisation to the
action selection at every time-step would be prohibitively time
consuming [3], [5]. However, there have been some examples
of the successful use of IPM in continuous action-space [6]–
[8].

Here I investigate IPM using several different action se-
lection methods: discretisation, gradient descent, Newton’s
Method and Nelder-Mead. I compare these methods both in
terms of performance and action selection time on two well-
known continuous state- and action-space control benchmark
problems from the literature: the Cart-Pole problem and related
double Cart-Pole problem. In these experiments, apart from the
action selection method used, all parameter values are kept
constant. This allows a clear comparison of the performance
of the action selection methods, both in terms of speed:
action selection time and accuracy: reflected by the number
of training trials required by each approach.

The rest of the paper is organised as follows. Firstly, in
Section II, I give a brief summary of RL focussing on the
approach used here. Then, in Section III, I present the details
of the action selection methods which will be compared. In
Section IV I specify the details of the neural network I use
to approximate Q(s, a), and the derivation of ∇aQ(s, a) and
∇2
aQ(s, a), which are required to apply the derivative based

action selection methods. Sections V and VI give the details
of the experiments conducted on the Cart-Pole and double
Cart-Pole domains respectively, including results obtained.
Finally I present my conclusions and compare the performance
of the approaches across the different problem domains in
Section VII. In the conclusion I also give some indication
of problems which may arise when applying these approaches
with possible solutions and some directions for future work.

II. BACKGROUND

An RL agent learns to perform a task by experimenting
on that task and receiving feedback based on its current
performance. At any given time-step, the agent is in state
s ∈ S and must select an action a ∈ A. After applying



the selected action a to the environment, the agent receives a
numerical reward r ∈ R from the environment and transitions
to the resulting state s′ ∈ S. The reward could be negative in
order to represent a punishment for reaching undesirable states,
or, in the case of delayed rewards, the reward may be zero
until the terminal state. The delayed reward case is suitable
for several tasks, e.g. a board game where the reward is based
on the final outcome of the game, or a disaster avoidance
task where we simply attempt to avoid failure. An example of
disaster avoidance is the Cart-Pole problem used in this paper,
described in more detail in Section V.

In order to improve its performance on the task, the RL
agent seeks to maximise the rewards it receives, or to be
precise the sum of long-term discounted rewards (1), where t
is the time-step; rt+1 is the reward received in time-step t+1,
after taking at from st, and γ ∈ (0, 1] is the discount rate.
Normally γ < 1 to ensure the sum of rewards remains finite
and to assign more weight to rewards which will be received
in the short-term.

T−1∑
t=0

γtrt+1 (1)

The optimisation of the sum of discounted rewards is
achieved by the construction of a value function Q : S×A →
R, which is an approximation of the expected sum of long
term rewards when taking the given action from the given
state and then following the learned policy π : S → A. The
learned policy is a mapping from states to the action to take
when in that state. The Q function is defined as (2), and can be
recursively defined as (3), which is the sum of the immediate
reward and the expected sum of rewards which will be received
resulting from taking the next action from the next state.

Q(s, a) = E

{
T−1∑
k=0

γkr(sk+1, ak+1)
∣∣∣s0 = s, a0 = a

}
(2)

Q(st, at) = r + γQ(st+1, at+1) (3)

The learnt policy involves selecting the greedy action w.r.t.
the value function. In small, discrete action-space the agent
can select the greedy action by evaluating the value function
at every possible action (4).

argmax
a

Q(s, a), ∀a ∈ A (4)

The agent must also perform exploratory actions in order to
update the value function in unexplored areas of the state- and
action-space, which may lead to an improved policy. There are
several exploration methods commonly applied, in the discrete
action-space this may involve selecting a random action with a
small probability or selecting actions proportionately to their
value. These methods are known as ε-greedy and Softmax
exploration respectively [1].

The approximation of the expected sum of rewards Q(s, a)
can be updated on-line by temporal difference methods, in
which the TD error δ (5) is minimised. This TD error is then

used to update the values of Q(s, a) (6), where α is a step-size
parameter.

δt = rt+1 + γQ(st+1, at+1)−Q(st, at) (5)

Q(st, at)← Q(st, at) + αδt (6)

A. Continuous State- and Action-Space

When the state-space is continuous it is not possible to apply
a lookup table to store the Q values, as it is in the small,
discrete state- and action-space setting. Therefore function
approximation is often applied to approximate the Q function.
However, when the action space is continuous it is also
impossible to compare the values of each action from the
current state; thus, other methods must be employed.

The approximation of the Q function could be achieved
by an artificial neural network (ANN). Many types of ANN
have been successfully applied to the approximation of the
value function, e.g. CMAC, RBF, perceptron, MLP. Here, I
focus my presentation on the multilayer perceptron (MLP) as
this is the ANN I apply in this work. The MLP is a global
function approximator capable of approximating any function
to arbitrary accuracy, provided sufficient neurons are included
in the hidden layer [9].

When an ANN is employed to approximate the value
function, the update is then applied to the parameters of the
ANN (the synaptic weights) rather than directly updating the
value associated with the specific state and action. The update
equation is then (7), where ~θ is the parameter vector for the
ANN.

~θ ← ~θ + αδt∇~θQ(st, at) (7)

In the continuous action-space setting exploration is often
applied through Gaussian exploration [10]. In Gaussian ex-
ploration a Gaussian random variable is added to the greedy
action before it is applied to the environment. This is more
appropriate than ε-greedy and Softmax when the action-space
is continuous.

When the action-space is continuous some researchers be-
lieve it is infeasible to directly solve the optimisation prob-
lem (4) at every time-step [3], [5]. Therefore, separate function
approximators are often applied to approximating the policy
function. This approach, which employs both the Q function
and the π function, is the actor-critic method [5].

An alternative is to attempt to optimise the policy function
without learning the value function. This is achieved by taking
the value of the current policy to be the J function, which
is defined as the sum of discounted rewards received in an
episode when following the current policy (1). As this function
is dependant only on the policy it is sometimes written as
J(π) or J(~θ), where ~θ are the parameters of the approximation
of the policy function. These parameters are then updated in
order to maximise the J function. This is direct policy search,
which includes policy gradient [3] and evolutionary algorithm
approaches [11], [12].

Another approach is to attempt to directly optimise the
value function w.r.t. the action, in order to find the action



which is expected to lead to the highest sum of rewards. This
optimisation must be performed at every time-step in order
to select actions to take. Despite the fact that it has been
suggested that directly solving this optimisation problem at
every time-step is infeasible [3], [5], this is often the sug-
gested approach if the action space is small and discrete [3].
Moreover, there are some examples of such approaches being
successfully applied in the literature [7], [8], [13], where they
are also compared to an AC method. I refer to this approach
as implicit policy method (IPM), and it is this approach I
focus on in this work. This approach does not require an
explicit policy function as the action selection becomes a case
of selecting the a ∈ A which maximises Q(s, a). However, it
is unclear which method should be applied to selecting this
action. Some researchers have suggested the application of
gradient descent [2], [8], whilst others discretise the action
space in order to allow comparison of the values of all ac-
tions in this reduced action-space [8]. Alternative optimisation
methods have been applied such as Newton’s Method [7] and
Nelder-Mead [13]. Each of these action selection methods are
described in greater detail in Section III.

III. ACTION SELECTION METHODS

In the following I describe the details of the methods
used, which are discretisation, gradient descent, Nelder-Mead
and Newton’s Method. Discretisation of the action space has
been applied in [8], gradient based optimisation has been
suggested in [2], [8] and applied in [6], Newton’s Method
has been applied in [7], and Nelder-Mead has been utilised
in [13]. These descriptions are in terms of scalar actions
as the following experiments use scalar actions; however,
all approaches described here could be adapted to higher
dimensional action-spaces.

A. Discretisation

The simplest approach is to discretise the action-space
and to select actions from this new, smaller action-space
Ad = {amin, amin+a∆, . . . , amax−a∆, amax}, where amin
and amax are the minimum and maximum action values
respectively. This approach is described in [8].

This method allows the selection of actions from a reduced
action-space which spans the continuous action-space with a
granularity determined by the parameter a∆. The issues with
this method are that it is difficult to know the granularity
required for a given problem in advance, and the smaller a∆

is the larger the cardinality of Ad will be. Therefore there is
a trade off between coarseness of action-space and time taken
to evaluate all actions in Ad. On the other hand this algorithm
benefits from its simplicity and that it has only one tunable
parameter which must be set: a∆.

B. Gradient Descent

A more sophisticated approach is to apply the gradient
descent algorithm [14], which utilises the first partial derivative
of the value function w.r.t. the action to find a search direc-
tion. The only additional requirement when applying gradient

descent is the first derivative of the value function, from which
small updates are iteratively made to the action in the direction
of the gradient (8), where β is a small positive step-size
parameter.

a← a− β∇aQ(s, a) (8)

Although gradient decent requires little computation, due to
relying only on the first derivative of the value function for the
search direction, it can be excruciatingly slow depending on
the problem and is also highly susceptible to becoming trapped
in local optima [14]. To mitigate the fact that gradient descent
is susceptible to converging to local minima I restart this
approach from several initial points. The search is run from
each initial action in the set {amin, amin + a∆, . . . , amax −
a∆, amax}.

To allow the algorithm to terminate before the maximum
number of iterations is reached, and therefore speed up the
action selection process, an early convergence detection pa-
rameter ζ was used. The algorithm was terminated if the action
at a given iteration is not sufficiently different from the action
at the previous iteration, where ζ is the value used to determine
if the change is sufficient using: |ak − ak−1| < ζ.

This approach has considerably more parameters to tune
than discretisation: maximum iterations η, step-size β, initial
action step-size parameter a∆ and an early convergence pa-
rameter ζ.

C. Nelder-Mead

An alternative method which does not rely on the derivative
is Nelder-Mead [15]. This method utilises a simplex approach
whereby when optimising points in an n-dimensional space, a
simplex of n+1 points in n-dimensional space are maintained.

The algorithm proceeds by, at each iteration, performing one
of four operations: shrink, reflect, expand or contract to update
the simplex according to certain conditions. There are four
parameters: ρ, χ, γ and σ, which affect reflection, expansion,
contraction and shrinkage respectively. Here I apply the same
values of these parameters as [16]: ρ = 1, χ = 2, γ = 0.5, σ =
0.5. Other values were experimented with but none produced
improved results. Therefore the only parameter to be tuned
is the number of iterations of the Nelder-Mead algorithm to
apply η.

As Nelder-Mead is a derivative-free method it does not
require the calculation of the derivative of the value function,
and thus can be applied in conjunction with any function
approximation method. Also, the action selection can be very
quick depending only on the number of iterations performed
and the speed of calculating Q(s, a), which is very fast with
most function approximation techniques.

D. Newton’s Method

Newton’s Method [14] is a widely applied derivative-based
approach, which utilises both the first and the second derivative
of the objective function when calculating the search direction.
By also utilising the second derivative Newton’s Method can
converge much faster than if only the gradient were used [14],
[17].



Originally applied as an iterative approach to finding zeros
of a function, Newton’s Method is also widely utilised as an
optimisation method by applying it to finding values where
the first derivative is zero. In this case the first and second
partial derivatives of Q(s, a) w.r.t. a are used (9).

a← a− ∇aQ(s, a)

∇2
aQ(s, a)

(9)

As this algorithm converges to points where the first deriva-
tive is zero, which may be local minima as well as local
maxima, it is essential that this algorithm is repeated from
several initial points in order to find the maximum.

As this method relies on the availability of the first and
second partial derivatives of the value function it may not be
applicable to all function approximation techniques. However
when a MLP is used to approximate Q(s, a) the partial
derivatives can be calculated quickly based on the structure
of the ANN.

There are additional considerations when Newton’s Method
is applied to optimizing an objective function with an input
dimension greater than one. In such cases the Hessian must be
positive definite to ensure the search direction is defined, and
the inverse of the Hessian must be calculated at each iteration.
Modified versions of Newton’s Method may be applied to
overcome these problems such as quasi-Newton methods [17].

In this approach, as with gradient descent, the algorithm
was restarted from several different initial actions, thus an
initial action step-size parameter a∆ was applied to determine
the initial actions. Also, as with gradient descent an early
convergence parameter ζ and the number of iterations η
have to be set. However, unlike gradient descent no step-
size parameter is required. This results in the following three
tunable parameters: maximum iterations η, initial action step-
size a∆ and early convergence parameter ζ.

IV. ARTIFICIAL NEURAL NETWORK

Here I provide details of the ANN architecture used to
approximate Q(s, a) in the following experiments. I will then
present the derivation of the first and second partial derivatives
of the value function w.r.t. a, which are required when apply-
ing gradient descent and Newton’s Method to action selection.

A. Architecture

The ANN architecture used in these experiments was an
MLP with one hidden layer. The activation function at the
hidden nodes was hyperbolic tangent and linear at the output
layer. The calculation of the output is shown in Equations (10),
where O(~x) is the output of the ANN when presented with
input vector ~x (comprising s and a); N and M are the number
of nodes at the input and hidden layers respectively; vi,j is
the synaptic weight between input i and hidden node j; wj
is the weight from hidden node j to the output node; h outj
and h inj are the input to and the output from hidden node
j; b hidj and b out are the bias weights to the hidden and

output nodes.

O(~x) = b out+

M∑
j=1

wjh outj

h outj = tanh (h inj)

h inj = b hidj +

N∑
i=1

vi,jxi

(10)

B. Derivation of Partial Derivatives

The Gradient and Newton’s Method action selection meth-
ods require ∇aQ(s, a) and Newton’s Method also requires
∇2
aQ(s, a). Both of which can be calculated analytically based

on the equations of the MLPs output (10). The equations for
∇aQ(s, a) and ∇2

aQ(s, a) are derived in Equation (11) and
Equation (12) respectively.

∇aQ(s, a) =
∂O(~x)

∂xN
=

M∑
j=1

∂O

∂h outj

∂h outj
∂h inj

∂h inj
∂xN

=

M∑
j=1

wj tanh
′ (h inj)vN,j

(11)

where tanh′ (x) = 1− tanh2 (x).

∇2
aQ(s, a) =

∂

∂xN

[
M∑
j=1

wj tanh
′ (h inj)vN,j

]

=

M∑
j=1

wj
∂tanh′ (h inj)

∂h inj

∂h inj

∂xN
vN,j

=

M∑
j=1

wj tanh
′′ (h inj)v

2
N,j

(12)

where tanh′′ (x) = −2 tanh (x) tanh′ (x).

V. CART-POLE

The Cart-Pole problem is the control of a cart on a limited
track which has a pole attached to it by a free joint. The
pole must be maintained in the balanced position by applying
force to the cart, without the cart reaching the edge of the
track (Fig.1).

The state vector comprises the pole angle, pole angular
velocity, cart distance from centre of track and cart velocity
s = [θ, θ̇, x, ẋ]>. The action is the force applied to the cart
a = F ∈ [−10, 10]N.

This problem is a very well known control benchmark
problem often used by the RL community [1], [4], [10], [18],
[19]. Commonly actions are limited to discrete values [19],
[20], rather than the continuous range permitted here.

A. Description

The standard Cart-Pole problem, is a widely used con-
trol benchmark problem [10], [19]. In many applications
the actions are limited to A = {0,±10}N; here, however,
continuous actions A = [−10, 10]N are permitted in order to
evaluate the performance of the algorithms in the continuous
action-space. The parameters of the environment used in this
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Fig. 1. Diagram of the Cart-Pole problem. The cart is on a limited track with
a pole attached to it, but free to rotate. The angle of the pole from the balance
position is θ and x is the position of the cart from the centre of the track.

TABLE I
CART-POLE PARAMETERS

Parameter Value
Cart mass (mc) 1 kg
Pole mass (m) 0.1 kg

Gravitational constant (g) 9.81 m/s2

Half pole length (l) 0.5 m
Cart friction (µc) 5 × 10−4

Pole friction (µp) 2 × 10−6

Time increment (∆t) 0.02 s
Maximum force (Fmax) 10 N

experiment are listed in Table I, and the equations of motion
used to update the environment are specified in (13), which
are the same as those used in [19].

φ = −F −mlθ̇2 sin θ + µc sgn (ẋ)

θ̈ =
g sin θ + φ cos θ − µpθ̇

ml

l
(

4
3 −

m cos2 θ
mc+m

)
ẍ =

F +ml
(
θ̇2 sin θ − θ̈ cos θ

)
− µc sgn (ẋ)

mc +m

(13)

For each episode the simulation was run for a maximum
simulation time of 120 s and was terminated immediately if
either the pole fell or the cart reached the edge of the track.
The pole was considered to have fallen if |θ| > π/15, and
the cart was considered to have reached the edge of the track
if |x| > 2.4. Every 0.02 s the RL agent selected an action;
the environment was updated using the Runge Kutta fourth
order numerical integration method and then the reward was
calculated. The reward was zero at all time-steps until failure,
i.e. the pole fell or the cart reached the edge of the track, at
which time a reward of -1 was received.

The initial state at the beginning of each episode was
[0+ o, 0, 0, 0]>, where o was a uniformly randomly generated
offset in the range [−0.05, 0.05]. The selected action, including
any exploration, was limited to the allowable range before
being applied to the simulation.

TABLE II
CART-POLE REINFORCEMENT LEARNING PARAMETERS

Parameter Value
RL discount rate (γ) 0.9

RL step-size (α) 0.2
ANN hidden node quantity 7
ANN initial weight range [-0.2,0.2]

ANN learning rate 0.3
ANN momentum 0.75

B. Method

The RL algorithm applied to the updating of the value
function was SARSA [1]. When running these experiments
the RL parameters, including the parameters and architecture
of the ANN used to approximate the value function, were kept
constant for all four action selection methods. The values of
these parameters are listed in Table II.

Gaussian exploration was applied by adding a random
value, from the normal distribution, to the selected action.
The exploration schedule was implemented by multiplying the
random exploration value by an exploration parameter before
adding it to the selected action. This exploration parameter
was initially set to 1, but was reduced at each time-step by
0.001 until it reached 0. The exploration parameter was reset
to 1 at the start of each trial.

When running the experiment with different action selection
methods, only the action selection method was changed. Each
of the action selection methods applied have some parameters
to be tuned, the details of the parameter values used for each
method are listed below. These values were found to produce
the best results on this problem after some experimentation
with different values.

The parameters which are specific to each of the action
selection methods and their values for this experiment were as
follows: Discretisation: a∆ = 0.01. Gradient descent: a∆ =
0.05, η = 15, ζ = 0.0001 and β = 0.05. Nelder-Mead: η = 5.
Newton’s Method: a∆ = 0.5, η = 15 and ζ = 0.0001.

C. Results

The results presented in Table III were produced by running
the experiment 100 times with each of the four action selection
methods. The table consists of the percentage of successful
runs; the minimum, median and maximum number of trials
taken before the RL agent was able to successfully balance the
pole for the full simulation time of 120 s and the median time
taken to select the action to be taken. A run was considered
successful if the agent was able to balance the pole without
reaching the edge of the track for the full simulation time
within 1000 trials.

As can be observed from Table III, all methods were able
to succeed in all runs; however, Newton’s Method trained in
fewer trials on average than all other methods, whilst also
performing the action selection in considerably less time than
gradient descent and discretisation. Nelder-Mead performed
the action selection in the fastest time, but achieved a similar



TABLE III
CART-POLE RESULTS

Method Successful
runs

Trials to Train
(min / median / max)

Action
Selection

Time
Discretisation 100% 53 / 109.5 / 236 39 µs

Gradient Descent 100% 49 / 103 / 258 221 µs
Nelder-Mead 100% 48 / 98.5 / 316 4 µs

Newton’s Method 100% 37 / 75.5 / 372 9 µs
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Fig. 2. Average balance time in each training trial over 100 runs.

average trials to train to that of discretisation and gradient de-
scent. Discretisation and gradient descent require much more
time for action selection as they evaluate Q(s, a) many more
times, due to the smaller a∆ values. Although discretisation
does not perform any iterative search, it still evaluates the
value function from 201 different action values.

The average balance time in each trial for the four different
action selection methods is shown in Fig. 2. This plot was
produced by running the experiment 100 times for the maxi-
mum number of trials, i.e. not stopping at the first trial where
balance was achieved. These balance times were averaged
over all runs for each trial. Newton’s Method achieves a
longer balance time in the earlier trials than the other three
methods which all perform similarly. However, in the trials
after training, after approximately 200 trials depending on the
method, all approaches achieve similar average balance times
for all remaining trials.

VI. DOUBLE CART-POLE

The double Cart-Pole problem is an extension of the stan-
dard Cart-Pole problem whereby the cart has two poles of dif-

θ1

θ2

x

Fig. 3. Diagram of the double Cart-Pole problem. The cart is on a limited
track with two poles, of differing lengths, attached to it. The poles are both
free to rotate. The angles of the two poles from the balance position are θ1
and θ2. x is the position of the cart from the centre of the track.

ferent lengths attached, both of which must be balanced [21].
The simulation in this experiment is the same as that of [5]
except the maximum time of the simulation was 120 s rather
than 20 s, making the task more challenging.

The state vector comprises the angle and angular velocity of
each pole, cart distance from centre of track and cart velocity
s = [θ1, θ̇1, θ2, θ̇2, x, ẋ]

>, and the action is the force applied
to the cart a = F ∈ [−40, 40]N.

A. Existing Approaches

This double pole variant of the well known Cart-Pole
benchmark has been used since [21] and has been applied
as a benchmark for RL approaches [5], and for evolutionary
algorithm based approaches [22]–[25]. In some cases these
have also included a variant where the angular velocities are
omitted from the state representation to make the task non-
markovian; however, as I do not attempt to solve the problem
of POMDPs here, I do not attempt this variant.

B. Description

The parameters used in this experiment are listed in Ta-
ble IV, and the equations of motion used to update the
environment are (14), as was used in [5].

φi = 2miθ
2
i sin θi +

3

4
mi cos θi

(
2
µiθ̇i
mili

+ g sin θi

)

ẍ =
F − µc sgn(ẋ) +

∑2
i=1 φi

mc +
∑2
i=1mi

(
1− 3

4cos
2θi
)

θ̈i = −
3

8li

(
ẍ cos θi + g sin θi +

µiθ̇i
mili

) (14)

Each simulation was run for a maximum simulated time of
120 s and was terminated immediately if either of the poles
fell or the cart reached the edge of the track. A pole was
considered to have fallen if |θi| > π/15, and the cart was
considered to have reached the edge if |x| > 2.4. Every 0.02 s
an action was selected by the RL agent, the environment was
updated using the Runge Kutta fourth order method and the
reward was calculated. The reward was -1 if one of the poles
fell or the cart reached the edge of the track and 0 otherwise.



TABLE IV
DOUBLE CART-POLE PARAMETERS

Parameter Value
Cart mass (mc) 1 kg

Pole one mass (m1) 0.1 kg
Pole two mass (m2) 0.01 kg

Gravitational constant (g) 9.81 m/s2

Pole one length (l1) 1 m
Pole two length (l2) 0.1 m

Cart friction (µc) 5 × 10−4

Pole one friction (µ1) 2 × 10−6

Pole two friction (µ2) 2 × 10−6

Time increment (∆t) 0.02 s
Maximum force (Fmax) 40 N

TABLE V
DOUBLE CART-POLE REINFORCEMENT LEARNING PARAMETERS

Parameter Value
RL discount rate (γ) 0.9

RL step-size (α) 0.2
ANN hidden node quantity 12
ANN initial weight range [-0.3,0.3]

ANN learning rate 0.2
ANN momentum 0.6

The initial state at the beginning of each episode was
[ π180 , 0, 0, 0, 0, 0]

>, this is the same as the initial state used
in [5]. The selected action was limited to the allowable range
before applying to the simulation.

This application of the double Cart-Pole problem is slightly
different to that described in [5] in that the length of time
the agent was required to balance the poles for was 120 s
(rather than 20 s) which makes the task more difficult. Also
the maximum range of exploratory actions in [5] was orders of
magnitude larger than the allowable actions, thereby encour-
aging the agent to learn a bang-bang controller. Here, as I am
specifically interested in continuous actions, I do not influence
the learnt policy through use of such large exploratory actions.

C. Method

The same architecture and algorithms are applied as with
the Cart-Pole problem (Section V), the parameters used in
the double Cart-Pole problem are listed in Table V. Gaussian
exploration was also applied as the Cart-Pole approach, but
with the exploration parameter initially set to 1, and reduced
at each time-step by 0.01 until it reached 0.

The parameters which are specific to each of the action
selection methods and their values for this experiment were as
follows: Discretisation: a∆ = 0.01. Gradient descent: a∆ =
0.05, η = 10, ζ = 0.0001 and β = 0.02. Nelder-Mead: η = 5.
Newton’s Method: a∆ = 0.5, η = 15 and ζ = 0.0001.

D. Results

The results were produced similarly with the single Cart-
Pole results. Table VI presents the results of 100 runs of

TABLE VI
DOUBLE CART-POLE RESULTS

Method Successful
runs

Trials to Train
(min / median / max)

Action
Selection

Time
Discretisation 100% 75 / 283 / 671 148 µs

Gradient Descent 100% 61 / 280.5 / 723 509 µs
Nelder-Mead 100% 52 / 270 / 984 16 µs

Newton’s Method 100% 33 / 191 / 705 38 µs

the experiment using each of the different action selection
methods. The table shows the percentage of successful runs;
the average number of trials taken to successfully balance the
poles for the full simulation time of 120 s.

As can be seen from Table VI, all methods were able to
achieve success in 100% of the runs. However, Newton’s
Method requires far fewer trials to train on average. Whilst
the other three methods required a similar average number of
trials to train.

Nelder-Mead achieved the fastest median action selection
time (Table VI), taking half the time required by Newton’s
Method. However, Nelder-Mead and Newton’s Method both
took considerably less time to select actions than discretisation
and gradient descent.

The average balance time per trial taken from 100 runs is
presented in Fig. 4. This was produced by continuing training
even after the agent is able to successfully balance the poles for
the full simulation time (120 s). It can be seen that Newton’s
Method is able to balance for longer in the earlier trials, which
suggests superior actions were selected. In later trials there is
not such an obvious difference between the methods.

VII. CONCLUSION

Here I have applied four different continuous action se-
lection methods to two continuous state- and action-space
control benchmark problems from the literature. The SARSA
RL algorithm was applied with an MLP approximating the
state-action value function. In order to ensure the results of
each of the action selection methods are directly comparable,
all parameters for the RL approach and MLP were fixed,
including the exploration schedule. For each approach only
the parameters for that particular action selection method were
tuned. The action selection methods were then compared both
in terms of the time they took to select actions, and the quality
of the overall RL approach when they were utilised.

From the experiments conducted here it can be seen that
when Newton’s Method is employed for action selection
training can be achieved in fewer trials than with the other
methods considered here. Newton’s Method was also the
second fastest in action selection time. Nelder-Mead was
the fastest to select actions, taking approximately half the
time required by Newton’s Method. However, both of these
methods took considerably less time than discretisation and
gradient descent to select actions.
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Fig. 4. Average balance time in each training trial of 100 runs.

As the multiple runs of Newton’s Method from different
initial actions do not depend on previous runs, the time taken
could be reduced by applying parallel computation. This could
also be applied to both gradient descent and discretisation,
however, they were not able to match Newton’s Method in
terms of trials to train, and also took far longer to select
actions. Nelder-Mead would not be subject to such speed
improvements as each iteration requires the previous values.

The main problem with the use of Newton’s Method is
the fact that with a higher dimensional action-space extra
computation would be required to repeatedly compute the
inverse of the Hessian. It would be interesting to investigate
the possibility of applying Newton’s Method to problems with
higher dimensional continuous action-space, and the impact
this has on the action selection time. It may be possible to
overcome this extra computation through the application of
quasi-Newton methods [17].

Future work should investigate the application of a wider
range of action selection methods and also compare the
performance of the different approaches on a larger set of
benchmarks. It would be particularly interesting to investigate
how the action selection methods scale to problems with
higher dimensional action-spaces and the applicability of these
methods on physical control problems, rather than simulations,
where the action selection time is more crucial.
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