
When logic meets engineering: introduction to

logical issues in the history and philosophy of

computer science

(PRE-PRINT)

Liesbeth De Mol∗ and Giuseppe Primiero†
∗CNRS – UMR8163 STL, Université de Lille 3, France

† Department of Computer Science, Middlesex University, UK

June 7, 2016

1 Preface

The birth, growth, stabilization and subsequent understanding of a new field of
practical and theoretical enquiry is always a conceptual process including several
typologies of events, phenomena and figures spanning often over a long historical
period. This is especially true when the field in question is not uniquely identi-
fied by either the Academia, or the Laboratory, or the Industry. Computing is
a paradigmatic case. So diverse and conflicting are its origins, that the debates
on the nature of computer science have characterized its whole history. From its
early beginnings onward, computing has been variously labelled as a technology,
a science and as a form of mathematics. It has been said that computing is a
discipline dealing with machines that compute (see Newell, Perlis and Simon,
1967), with information processed by such machines (see Hartmanis and Lin,
1992) or with the algorithms that direct the behaviour of such processes (see
Knuth, 1974). Today, when computers are so extensively present in our lives,
one would expect that theoreticians and practitioners in the field of computing
would have found, at least, some consensus on these questions. The opposite is
true however and there is still much controversy on the scientific, engineering
and experimental qualifications pertaining to the discipline.1 The aim of the
present special issue is to investigate these tensions within computer science by
focusing on some of the figures and questions at the core of its relation with
logic.

1See Tedre, 2015 for a recent in-depth study of the past and ongoing debates on what
computer science is.

1

Until recently, besides few historical and philosophical contributions,2 not
much attention was devoted to the complexity of this topic. One reason for
this is that in order to study the historical and philosophical influence of for-
mal methods in computer science, one should also engage with the technology:
to understand in what sense, for instance, Post production systems have
played a role in the history of compiler design, or how a formal system like
Hoare logic is the basis of systems used today to reason about programs in
terms of states of the store and the heap. The need of technical understanding to
write a proper history of computer science was recently at the centre of a debate
within the community of historians of computing. In the 2014 Kailath lecture
at Stanford titled Let’s not dumb down the history of computer science, Donald
Knuth explained his regret for the so-called professionalization of the history of
computing which has implied an increasing neglect of technical content for the
sake of more socially, institutional, politically and/or industry oriented histories.
This talk resulted in lively discussions and finally a short piece Haigh, 2015 in
the Communications of the ACM. A similar argument holds for the philosoph-
ical community as well. Computing and engineering at large have always been
a significant source of inspiration for philosophical research. Such research has
been directed either to the conceptual analysis of important and largely appeal-
ing themes, for example incompleteness and complexity; or it has focused on
non-technical, often ethically oriented topics. This has attracted some interest
from computer science practitioners, who have indulged in technically-aware re-
flections on their discipline, but a common field recognised by all parties, where
philosophers dare to be really technically prepared is still missing.

Precisely to tackle such need for a history and philosophy of computing that
engages with both formal and actual computational and programming practices,
the first International Conference for the History and Philosophy of Computing
(HaPoC) was organized in 2011 and was followed in 2013 by the foundation of
the DHST Commission for the History and Philosophy of Computing (HaPoC).3

One of the aims of the commission is to organize regular meetings, providing an
open platform for historians, philosophers, computer scientists, logicians, pro-
grammers, mathematicians (and all other figures involved by the field at large)
to discuss across their own disciplinary boundaries and to offer the open envi-
ronment required to reflect on all facets of computing. The present collection
of papers, which resulted from the first International Conference on the History
and Philosophy of Computing, aims exactly at this kind of reflection, by bring-
ing to the fore the problem of bridging the gap between formal methods and
practices of computing.

2See e.g. Mahoney, 1988, Aspray, 1990, MacKenzie, 2001, Davis, 2001, Turner , 2014.
3The website of the commission can be found at www.hapoc.org. For a more detailed dis-

cussion of the need for more technical content within the history and philosophy of computing,
see De Mol and Primiero, 2014.

2

2 The significance of logic within the history of
computer science

With the rise of the modern computer and the practices that surrounded it, came
the realization that modern computing is as much a product of engineering as it
is the result of formal and mathematical science. For instance, as Stan Ulam, an
important figure in early computing practices of the late 40s and 50s, recounted
(Ulam, 1980, p. 94):

It is perhaps a matter of chance, that computer development be-
came possible only by a confluence of at least two entirely different
streams. One is the purely theoretical study of formal systems. The
study of how to formalize a description of natural phenomena or even
of mathematical facts. [...] The whole idea of proceeding by a given
set of rules from a given set of axioms was studied successfully in this
connection. The second stream is the technological development in
electronics, which came at just the right time.

These two different aspects of computer science, moreover, are not strictly sep-
arated: logic and technology work together, from the lowest hardware level,
governed by Boolean circuits and arithmetical operations in the stack mem-
ory; through the structure of assignment, sequencing, branching and iteration
operations defining modern high-level programming languages; up to the equiv-
alent abstract formulations of recursive definitions for algorithms. Accordingly,
(the history of) computer science can be understood only by investigating the
non-straightforward and non-linearly proceeding interactions between logic and
engineering practices, which influenced each other and which received, more-
over, further stimuli from external areas such as developments in business or
the experimental sciences.

The logical foundations of computing are, at least, well-known. They can
be traced back to the extensively studied debate on the foundations of mathe-
matics from the end of the XIXth – early XXth century. The Grundlagenkrisis
in mathematics notoriously brought the three foundationalist approaches to the
fore: the logicist, the formalist and the intuitionist programmes.4 The deriva-
tion of Russell’s Paradox in Frege’s Grundgesetze der Arithmetik, determined
the collapse of the first of these programmes, which aimed at deriving all math-
ematics from purely logical notions. This drawback in the search for founda-
tions meant that Hilbert’s finitist and formalist programme was reinvigorated
in its attack of problems such as consistency and decidability. It is within this
context that the work by mathematicians such as Church, Kleene, Post and
Turing has its origins. They each contributed in making the idea of calculation
a central topic in logic, by proposing different formalizations of computability,5

4See respectively Carnap, 1931, von Neumann, 1931 and Heyting, 1931 for a historical
representation of these three programmes. For a collection of source texts on the foundations
of mathematics, see van Heijnoort , 1967.

5See Turing, 1936/37.

3

effective calculability,6 generated set7 and solvability.8,9 These formalizations
were entirely in the spirit of the formalist programme, in the sense that they
allow ‘to abstract from the meaning of the symbols and to regard the proving
of theorems (of formal logic) as a game played with marks on paper according
to a certain arbitrary set of rules’ (Church, 1933, p. 842). Such formalizations
were required to prove that there is in fact no finite method to solve Hilbert’s
Entscheidungsproblem, or other related decision problems. As such, these re-
sults, next to Gödel’s incompleteness, broke Hilbert’s dream of making mathe-
matics void of ignorabimus.10 The fundamental problem of determining for any
assertion of first-order calculus whether or not it is valid, Hilbert’s Entschei-
dungsproblem (Decision Problem) in its original form, was proven (recursively)
unsolvable by Church, who showed it depends on the recursive solvability of
problems in the λ-calculus11 and by Turing who showed its dependence on the
decidability of decision problems for Turing machines, most notably the prob-
lem which we know today as the halting problem.12,13 Similar problems were
also proven unsolvable by Post already in the early 20s. Despite this strict link

6See Church, 1936a.
7See Post , 1965. Post developed this notion and its formalization in terms of generated sets

in 1921 and proved on its basis the (absolute) unsolvability of a particular decision problem for
his normal systems. However, he did not submit the results to a journal. In 1941 he submitted
an account of this work from the early 20s to the American Journal of Mathematics. The
paper was rejected but a shortened version was finally accepted and published in 1943.

8See Post , 1936.
9These notions of course expanded on iteration and recursion, whose first definitions can

be traced back to Bolzano (unnoticed), Cauchy and Weierstrass. See Adams, 2011 for an
extensive but accessible historical recollection of the notion of recursion as the foundation of
computability.

10See Mancosu, Zach and Badesa, 2009, p. 94, where it is explained that ‘[It was one
of Hilbert’s aims to provide] a mathematical justification for his belief that all well-posed
mathematical problems are solvable [i.e. the non-existence of ignorabimus in mathematics]
[...]. This [...] aim resulted in two specific convictions: that the axioms of mathematics, in
particular, of number theory, are complete [...]and secondly that the validities of first-order
logic are decidable (the decision problem). Soon [after Gödel’s incompleteness theorems]
Church was able to show [...] that the remaining aim of proving the decidability of predicate
logic was likewise doomed to fail.’

11That is, his formalization of effective calculability (next to general recursive functions).
More precisely, he proved that the problem to decide for any λ-defined formula whether or
not it has a normal form is recursively unsolvable (Theorem XVIII of Church, 1936a). On
the basis of this result, Church was able to show that the Entscheidungsproblem is unsolvable
in any system of symbolic logic which is adequate to a certain portion of arithmetic and is
ω-consistent (as a Corollary of Theorem XIX in Church, 1936a.). In another short paper
Church, 1936b, he then showed that this result can be extended to first-order logic, hence
proving the unsolvability of Hilbert’s Entscheidungsproblem.

12More specifically, Turing proved that there exists no (Turing) machine which allows to
decide for any Turing machine whether or not it is circular or circle-free. In Turing’s termi-
nology, circularity means that the machine never writes down more than a finite number of
symbols (halting behavior). A non-circular machine is a machine that never halts and keeps
printing digits of some computable sequence of numbers. On its basis, Turing then proved
that also the problem to determine for any given machine whether or not it will ever print
some symbol x cannot be computed by a Turing machine and showed that this problem can
be reduced to first-order logic.

13For a comparative study of the different formalizations proposed by Church, Kleene, Post
and Turing and their connection with decision problems, see Gandy, 1988.

4

to effective calculability, the mere idea of using computations in mathematics
was very much opposed by Hilbert, who considered the practical concerns of
calculation removed from his interests.14 Ironically, it were exactly the different
formalist devices and techniques by which impossibility results were obtained,
such as the universal Turing machine or the λ-calculus, that would also allow
to provide (some of) the theoretical foundations of computer science.15

The third foundationalist programme also had an important and lasting in-
fluence on the theoretical foundation of computing. Brouwer’s subject-based
constructivist interpretation of mathematical truths, resulting in the formaliza-
tion of Intuitionistic Logic by Kolmogorov and Heyting in the early ’30s with the
rejection of the Law of Excluded Middle, reflected more closely the algorithmic
reconstruction of the rules for classical predicate logic. This approach matched
the idea of execution of rules for a classical language. Later, the coupling of
logic and computation was advanced further. The algorithmic operators S,K, I
of the combinatorial calculus were defined as computationally equivalent repre-
sentations by trees of any operation in the (untyped) version of the λ-calculus
(and hence to recursive functions). In this they constituted a further Turing
complete language. The equivalence of the type of such operators to the axiom
schemas

K : A→ (B → A)

S : (A→ (B → C)) → ((A→ B) → (A→ C))

and function application corresponding to Modus Ponens made this in turn
equivalent to the implicational fragment of Intuitionistic Logic (and hence the
typed λ-calculus), as suggested by Curry; this equivalence was later rediscov-
ered by Howard for natural deduction, a correspondence known today as the
Curry-Howard isomorphism, which influenced the construction of computational
systems like Martin-Löf’s Type Theory and (much later) the development of
proof checkers and automated theorem provers, such as Coq and Isabelle/HOL.
The family of strongly normalizing typed systems are today the basis for vari-
ous functional programming languages, with guarantee of important properties
such as termination (by strong normalization) and memory access consistency
(by typing).

But the relevance of these formal results in logic for later computing prac-
tices were certainly not evident, if not entirely disregarded, in the early days: the
modern computer was not developed yet and the original context of those formal
works was pure rather than applied mathematics. In this latter context, human
and machine computational practices became more and more important because
of, amongst others, advances in military research, requiring for example new fir-
ing tables for every type of new gunnery.16 It is for instance well-known today

14In an influential report on algebraic number theory known as Zahlbericht and published
in 1897, Hilbert explicitly favours a more conceptual approach over a computational one (see
for instance Corry, 2008 for more details).

15See for instance the papers by Felice Cardone and Edgar Daylight in this volume.
16In Polachek , 1997, p. 25 the following description is given of firing tables: ‘[D]uring

5

that ENIAC, one of the first electronic and programmable computers, was the
answer to the problems encountered at the Ballistic Research Lab at Aberdeen
Proving Ground with the timely computation of ballistic tables: the combina-
tion of the computations of the differential analyzer – an analogue machine –
and the teams of human computers could not cope with the demands of the
military. They were too slow.17 It was within this context of slow, error-prone
human and machine computations that the first electronic and programmable
computers such as ENIAC, the Baby Manchester machine, the EDSAC or the
ACE and EDVAC designs were developed in the late 1940s.18 These machines
were real behemoths when compared to modern-day computers and access to
them was restricted to a selected number of people with diverse backgrounds:
engineers, like Eckert and Mauchly, but also mathematicians or logicians like
Turing, von Neumann or Curry. Partly thanks to the war effort, these people
were forced to work together and disciplinary boundaries had to be crossed,
especially between pure mathematics and engineering. Before that time, the
connection between logic and digital circuitry had been made, amongst others,
by Claude Shannon and Victor Shestakov who showed how to represent digital
circuits by Boolean algebras.19 Beyond this basic hardware level, though, the
electronic programmable computer required a deeper reflection on the use of
logic to control computations: on the one hand, programmability meant the
possibility of use for a variety of purposes; on the other, the electronic nature
of computers meant they were too fast for humans to follow the computation.
As von Neumann explained (von Neumann, 1948, p. 2):

[It is] necessary to consider carefully the ability of the computing
mechanism to take our intention correctly. And the person control-
ling the machine must foresee where it can go astray, and prescribe
in advance for all contingencies. To appreciate this, contemplate the
prospect of locking twenty people for two years during which they
would be steadily performing computations. And you must give
them such explicit instructions at the time of incarceration that at
the end of two years you could return and obtain the correct result
for your lengthy problem! This dramatizes the necessity for high
planning, foresight, and consideration of the logical nature of com-
putation. This integration of logic in the problem is a consequence

the Wold War II period [t]he Army depended entirely on the accurate aiming of shells our
guns fired at enemy targets. [...] The procedure was to aim first at enemy targets based
on information provided in firing tables and, in the event the target was missed, to make
corrections on information also provided by these tables [...] The information in the table
was used directly by the gunner or was incorporated in the firing mechanism appended at
the artillery equipment, anti-aircraft gun, or bomb sight’. For a detailed study of calculatory
practices before the rise of the modern computer, see Grier , 2007.

17See Grier , 2007; Polachek , 1997.
18There has been much debate within the history of computing about ‘the first’ computer.

Today, historians consider this question no longer legitimate since much depends on how one
defines ‘computer’ and adjectives such as ‘stored-program’ or ‘general-purpose’ which one
often associates with it.

19See Shannon, 1938 and Shestakov , 1941.

6

of the high speed.20

Computers were born from the need of speed and precision in computations; and
now logic was called for controlling (the correctness of) computations that were
too fast for humans to check. One application of this requirement is the so-called
stored-program idea which, roughly speaking, meant storing both instructions
and data in the machine.21 Another application was the development of the
flowchart notation by von Neumann and Goldstine which relies heavily on logical
terminology (for instance, the use of bound and free variables).

With the need for logical control over dynamically performed computations
came also the need to develop communication means, feasible for both ma-
chine and human user. In the early days, such communications proceeded ei-
ther through direct physical wiring (as in the case of the orginal ENIAC) or
through a very primitive order code very close to the machine. As a result,
‘programming’ the machine, as we call it today, was an extremely laborious and
error-prone task and it became clear that much time could be gained if one
could communicate with the machine in a ‘language’ that would abstract more
from the hardware and allow to automate processes, e.g. calling a subroutine
and returning to the main procedure.22 Of course, this meant also the need for
a computational method to ‘translate’ such language to machine language. In
this way, the steady development of so-called high-level programming languages
and compilers went hand-in-hand. The first compilers and languages were de-
veloped in the late 50s. Logic kept playing a crucial role: to give a few examples,
Haskell B. Curry, who had also worked with ENIAC, developed in the late 40s
a theory of program composition insisting on the significance of formal logic in
this context;23 Chomsky relied on Post’s formal devices to define his hierarchy
of languages which even today forms the foundation of compiler design;24 Mc-
Carthy used notions coming from λ-calculus and recursive functions to define
the LISP language.25 Simplicity of programming and increasing computational
power helped the commercialization of the computers, the emergence of the
programmer’s profession and the increasing academic acknowledgement of com-
puter science.26 These developments resulted in a range of problems which have
been identified as a software crisis in the late 60s and (especially) early 70s by
a selected group of people. Dijkstra, during his Turing award lecture in 1972,

20The italics is ours.
21See Haigh, Priestley and Rope, 2014 for a detailed discussion of the stored-program con-

cept. This principle has led to attributing the invention of the modern computer to Turing,
because his Universal Machine requires instructions to be treated as data and conversely.
It is clear, though, from recent historical research, that the development of the idea of the
electronic, general-purpose and stored-program computer is more complicated and cannot be
attributed to Turing alone. See especially Daylight , 2014 and Haigh, 2014.

22For a discussion of the introduction of the so-called language metaphor in computer sci-
ence, see Nofre, Priestley and Alberts, 2014.

23Amongst others, he connected this work to combinatory logic, lambda calculus and re-
cursive functions. See De Mol, Carlé and Bullynck , in print for a detailed discussion.

24See e.g. Chomsky, 1959.
25See McCarthy, 1960.
26See for instance Ensmenger , 2010.

7

which had a profound impact on the community, used the term software crisis
as follows (Dijkstra, 1972, pp. 860–861, the italics is ours):27

[In the early days] one often encountered the naive expectation that,
once more powerful machines were available, programming would no
longer be a problem, for then the struggle to push the machine to its
limits would no longer be necessary and that was all that program-
ming was about wasn’t it? But in the next decades something com-
pletely different happened: more powerful machines became avail-
able, not just an order of magnitude more powerful, even several
orders of magnitude more powerful. But instead of finding ourselves
in a state of eternal bliss with all programming problems solved, we
found ourselves up to our necks in the software crisis! [...] The
major cause is ... that the machines have become several orders of
magnitude more powerful! To put it quite bluntly, as long as there
were no machines, progamming was no problem at all; when we
had a few weak computers, programming became a mild problem,
and now we have gigantic computers, programming has become an
equally gigantic problem.[...] To put it in another way: as the power
of available machines grew by a factor of more than a thousand, so-
ciety’s ambition to apply these machines grew in proportion, and it
was the poor programmer who found his job in this exploded field
of tension between ends and means.

Typical problems that started arising were software failure, unreliability and
malfunctioning, at least partly due to large software projects becoming too
complex to manage. These problems were considered by some the result of
the theory lagging behind the demands and expectations of society, a reflection
which lead to the development of a new discipline called software engineer-
ing. Software engineering at that time, with a slightly more confined meaning
than today, was referring to the use of formal methods within programming as a
means to attack typical problems of this so-called crisis. At the same time it was
also aimed at providing a more scientific status that a part of the community as-
pired to ascribe to the discipline by developing a solid theoretical methodology.
Figures of the calibre of Dijkstra and Hoare defended the programs-as-proofs
identity, with criteria of correctness and termination being paramount and to
be proven in a logical or mathematical fashion.28 New techniques were devel-
oped to integrate more logical approaches into programming methods.29 For
example, Dijkstra’s method of ‘structured programming’ was developed to deal

27The 1968 NATO Software Engineering conference is the classic reference for the origin
of the term ‘software crisis’. As it has been argued in Haigh, 2010, one should be careful
in overestimating the impact of this so-called crisis and the NATO conference. In fact, as
he shows, ‘the idea of a ‘software crisis’ entered common use [....] following the 1972 Turing
Award lecture [...] [of] Edsger Dijkstra’ (Haigh 2010, p. 3).

28See for instance Dijkstra, 1968 and Hoare, 1969. The story and origin of the extended
Curry-Howard isomorphism is still partly unclear and deserves an analysis on its own.

29See the paper by Maarten Bullynck in this volume.

8

with, amongst others, problems of correctness;30 Scott and Strachey developed
denotational semantics for programming;31 and de Bruijn aimed at formally
verifying the whole of mathematics by writing AUTOMATH, a language also
making use of types to induce the identity of theorems and output of an au-
tomated derivation.32 But while these researches pointed at the primal role of
logic in the design and construction of programs, the essential and delicate bal-
ance between the theoretical and practical aspects pertaining to computing was
becoming pressing. The introduction of, for instance, the typed lambda-calculus
into computer science was meant as a faithful modelling of well-specified com-
putations in formally correct expressions. But the former, when intended as
calculations actually executed on finite machines, operated by fallible program-
mers and users in a given social context, exceed the degree of precision of the
latter by a much higher level of complexity. This position, counter-balancing
the formalist view on correctness and validation with a more practical approach,
was soon put forward by part of the computer science community. The refer-
ence to the social and multi-layered aspect of computational well-functioning
(see e.g. De Millo et al., 1979), as well as the practical impossibility to exclude
essential aspects of computational malfunctions due to the physical nature of
the processes involved (see e.g. Fetzer , 1988) were considered.33

Despite tensions between those insisting on the role of logic and those less
convinced of its applicability have been recurring throughout the history of
computer science, the need for formal methods is higher than ever. One major
reason, present already in the above quotes by von Neumann and Dijkstra, is
that the more ambitious society becomes in applying computation, the lesser
control we have over what is happening inside the (networks of) machines. As
a result, automatic certification relying heavily on formal methods is becoming
increasingly important, especially in the context of cyber-physical and safety-
critical computational systems like in avionics and the autonomous automotive
industries, i.e. in applications where computations are no longer taken in iso-
lation, but rather as elements in sensitive connection to humans.34 Hence, it
is clear that the relations between formal logic, engineering practices and phys-

30See Dijkstra, 1972.
31See Scott and Strachey, 1971.
32See De Bruijn, 1968.
33The complex formulation of notions of formal correctness, reliable design, effective de-

bugging and so on are all still central issues in the academic and industrial development of
mainframe and especially software systems. For a philosophical, rather than strictly techni-
cal, categorization and definition of the problem of computational errors, see e.g. Fresco and
Primiero, 2013 and Floridi, Fresco and Primiero, 2015. For the argument on the practical
impossibility of program correctness, see for example the paper by Selmer Bringsjord in this
volume. For the evolution of computational systems in relation to the user, see for example
the paper by Graham White in this volume.

34By way of example, consider the recent development of a formally verified C compiler,
part of the CompCert project (see http://compcert.inria.fr/motivations.html): ‘[This
compiler is not] [f]or non-critical, “everyday” software [where] bugs introduced by the compiler
are negligible compared to those already present in the source program [but for] safety-critical
or mission-critical software, where human lives, critical infrastructures, or highly-sensitive
information are at stake.’.

9

ical machinery characterize some fundamental issues within computer science
and its history: tensions and convergences which one needs to reflect upon to
understand the nature of the discipline.

3 Discussion of contributions

In the present special issue we approach various apparently distinct issues con-
cerning computability at large, correctness, software design and implementation,
program semantics and human-computer interaction, with each contribution
being commonly characterised in a double way: first, each author plays with
the combination of historical background and philosophical insight we consider
essential in exploring a technical and theoretical relevant issue in computing;
second, every contribution insists on the relevance of logic and formal methods
as the counterpart to the engineering practice, constituting the double face of
the discipline. The arrangement of the papers in this volume also reflects a
historically aware presentation of facts and topics.

We have already briefly pointed out above how the most common lore, which
traces the history of computing back to the role of Turing, is largely a simplifi-
cation. The logical roots of computer science are to be contextualised in a larger
set of research fields and figures, each contributing specific and very crucial re-
sults to the field as we know it today. Certainly Turing deserves a prominent
position. As historians and history-aware philosophers of computing, however,
it is of the greatest relevance to understand how, why and by whom Turing
came to be recognised very often as the father of the discipline. This is the task
that Edgar Daylight is set to approach: with a historical analysis that stretches
over results in logic including not only Turing, but recasts of his results by
Kleene, Rosenbloom, Markov, he is able to identify a particular group of actors
– including Booth, Carr, Gill and Gorn – who were looking for a more theoret-
ical foundation of computation and found it in (recast versions of) the work of
Turing.

The two decades across the ’60s and the ’70s have been often identified as
a turning point for the development of computing as an academic and scientific
discipline: many of the research methods currently at its core were initiated at
this time, both at the low-level of machines, the higher-level of programs and
the communications between them. The software crisis and the problematic
confrontation with implementations solicited the development of new program-
ming paradigms and semantic theories of programming like the denotational,
axiomatic and event-based ones, aimed at a mathematical theory independent
from particular implementations and allowing, for instance, to prove program
correctness or equivalence. The problems associated with connecting the formal
approaches with the practice of computing became apparent also in this context.
Maarten Bullynck reflects on the case of the computation of a list of primes to
discuss stepwise, structured and formally verified programming and considers
the limitations imposed by user-machine interaction in implementations for sys-
tems such as the MULTICS and the ILLIAC IV. In what could be seen as a

10

parallel exploration of the limitations of logical approaches to the semantics of
programs, Felice Cardone reconstructs the historical and conceptual evolution
of the principle of continuity from recursion in the 50s, through Scott’s deno-
tational semantics at the end of the ’60s and Dijkstra’s work in the ’70s: in
this formal analysis, continuity is identified and explained as the principle that
qualifies performed computations as finitary, and hence bounded by the time-
related constraints of mathematical computation to be executed by machines, a
notion that will have large conceptual consequences in modern computing, e.g.
for concurrency.

The mentioned debate on the notion and theoretical possibility of formal
verification is at the core of the duality between logic and engineering in com-
puter science. In open contrast with practitioners like Dijkstra and Hoare who
understood programs as instances of proofs and insisted on the need to prove
their correctness by logical means, the highly debated and influential paper Fet-
zer , 1988 claimed the impossibility of such a request, in view of the physical,
non-purely theoretical nature of computational objects. The debate on pro-
gram verification has spanned for decades, and has never been really closed,
still generating conflicts of ideas today. In his contribution, Selmer Bringsjord
re-opens the debate at a different level, by attacking the very core of Fetzer’s
argument, namely its logical consistency, claiming it is a self-refuting position
on the basis that it is construed on the very same fallibility that the original
attributes to computing. Hence, once again, logical correctness and physical
implementation of computation (in humans or in machines) are opposed and
compared, in what seems to reinforce the dual nature of this field. This relation
between the logic of the machine and the logic of the human is at the core of
the analysis of the final contribution: Graham White explores – with the help
of many historical examples – how the various levels of abstraction from hard-
ware on, are controlled by languages that are meant to accommodate the human
user’s intention and her understanding of the computation to be performed, and
how such relation moves also in the opposite direction, with improvements in
hardware and software to force accommodations by the user.

With this collection we hope to strengthen the bridge between the commu-
nity of historians and philosophers of logic with computing. It is essential that
both areas better understand and appreciate how computing and the related
machinery represent the evolving state of formal logic; and how the latter has
been a crucial, although not unique element, in the evolution of the former.

References

Adams, R., 2011. An early history of recursive functions and computability,
Boston, MA: Docent Press.

Aspray, B., 1990. John von Neumann and the origins of modern computing,
Cambridge, MA: MIT Press.

11

Carnap, R., 1931. ‘Die logizistische Grundlegung der Mathematik’, Erkenntnis,
2, 91–105.

Chomsky, N., 1959. ‘On certain formal properties of grammars’, Information
and Control, 2, 137–167.

Church, A., 1933. ‘A set of postulates for the foundation of logic (second paper)’,
Annals of Mathematics, 34, 839–864.

Church, A., 1936a. ‘An unsolvable problem of elementary number theory’,
American Journal of Mathematics, 58, 345–363.

Church, A., 1936b. ‘A note on the Entscheidungsproblem’, The Journal of Sym-
bolic Logic, 1, 40–41.

Corry, L., 2008. ‘Number crunching vs. number theory: computers and FLT,
from Kummer to SWAC (1850–1960) and beyond’, Archive for the History
of Exact Sciences, 62, 393–455.

Davis, M., 2001. Engines of logic: mathematicians and the origin of the com-
puter, New York: W.W. Norton & Co.

Daylight, E., 2014. ‘A Turing tale’, Communications of the ACM, 57, 36–38.

de Bruijn, N.G., 1968. AUTOMATH, a language for mathematics, Report 66-
WSK-05, Department of Mathematics, Eindhoven University of Technol-
ogy.

De Millo, R., Lipton, R. and Perlis, A., 1979. ‘Social processes and proofs of
theorems and programs’, Communications of the ACM, 22, 271–280.

De Mol, L., Carlé, M., Bullynck, M., ‘Haskell before Haskell: an alternative
lesson in practical logic of the ENIAC, Journal of Logic and Computation,
in print, doi: 10.1093/logcom/exs072.

De Mol, L. and Primiero, G., 2014. ‘Facing computing as technique: towards a
history and philosophy of computing’, Philosophy & Technology, 27, 3, pp
321-326.

Dijkstra, E.W., 1968. ‘A constructive approach to the problem of program cor-
rectness’, BIT numerical mathematics, 8, 174–186.

Dijkstra, E.W., 1972. ‘Notes on Structured Programming’, in: Dahl, O.J., Di-
jkstra, E.W. and Hoare, C.A.R., eds., Structured programming, London:
Academic Press Ltd., pp. 1–82.

Dijkstra, E. W., 1972. ‘The humble programmer’, Communications of the ACM,
15, 859–866.

Ensmenger, N. 2010. The computer boys take over, Cambridge, MA: MIT Press.

12

Fetzer, J., 1988. ‘Program verification: the very idea’, Communications of the
ACM, 37, 1048–1063.

Floridi, L., Fresco, N. and Primiero, G., 2015. ‘On malfunctioning software’,
Synthese, 192, 1199–1220.

Fresco, N. and Primiero, G., 2013. ‘Miscomputation’, Philosophy and Technol-
ogy, 26, 253–272.

Gandy, R., 1988. ‘The confluence of ideas in 1936’, in: Herken, R., ed., The
universal Turing machine, Oxford: Oxford University Press, pp. 55–111.

Grier, D. A. 2007. When computers were human, Princeton: Princeton Univer-
sity Press.

Haigh, T., 2010. ‘Dijkstra’s crisis: The end of Algol and the beginning of soft-
ware engineering: 1968-72’, in: Workshop on the history of software, Euro-
pean styles, Lorentz Center, University of Leiden.

Haigh, T., 2014. ‘Actually, Turing did not invent the computer’, Communica-
tions of the ACM, 57, 36–41.

Haigh, T., Priestley, M. and Rope, C., 2014. ‘Reconsidering the stored-program
concept’, IEEE Annals of the history of computing, 36, 4–17.

Haigh, T., 2015. ‘The tears of Donald Knuth’, Communications of the ACM,
58, 40–44.

Hartmanis, J. and Lin, H., 1992. ‘What is computer science and engineering’, in:
Hartmanis, J. and Lin, H., eds., Computing the future: a broader agenda for
computer science and engineering, Washington, D.C.: National Academy
Press, pp. 163–216.

Heyting, A., 1931. ‘Die intuitionistische Grundlegung der Mathematik’, Erken-
ntnis 2, 106–115.

Hoare, T., 1969. ‘An axiomatic basis for computer programming’, Communica-
tions of the ACM, 12, 576–580.

Knuth, D., 1974. ‘Computer science and its relation to mathematics’, American
Mathematical Monthly, 81, 323–343.

MacKenzie, D. 2001. Mechanizing proof – computing, risk and trust, Cambridge,
MA: MIT Press.

Mahoney, M.S. 1988. ‘The history of computing in the history of technology’,
IEEE Annals of the History of Computing, 10, 113–125.

Mancosu, P., Zach, R. and Badesa, C. 2009. ‘The development of mathematical
logic from Russell to Tarski, 1900 - 1935’, in: Haaparanta, L., ed., The
development of modern logic, New York: Oxford University Press, pp. 318–
470. Available online at: www.ucalgary.ca/ rzach/static/history.pdf.

13

McCarthy, J., 1960. ‘Recursive functions of symbolic expressions and their com-
putation by machine, Part I’, Communications of the ACM, 3, 184–195.

Newell, A., Perlis, A. J., and Simon, H. A., 1967. ‘Computer science’, Science,
157, 1373–1374.

Nofre, D., Priestley, M. and Alberts, G., 2014. ‘When technology became lan-
guage: the origins of the linguistic conception of computer programming,
1950–1960’, Technology and Culture, 55, 40–75.

Polachek, H. 1997. ‘Before the ENIAC’, IEEE Annals of the History of Com-
puting, 19, 25–30.

Post, E. L., 1965. ‘Absolutely unsolvable problems and relatively undecidable
propositions - Account of an anticipation’, in: Davis, M., ed., The Unde-
cidable. Basic papers on undecidable propositions, unsolvable problems and
computable functions, New York: Raven Press, pp. 340–433.

Post, E. P., 1936. ‘Finite combinatory processes - Formulation 1’, The Journal
of Symbolic Logic, 1, 289–291.

Scott, S. and Strachey, C., 1971. Toward a mathematical semantics for computer
languages, Oxford Programming Research Group Technical Monograph.
PRG-6.

Shannon, C., 1938, A symbolic analysis of relay and switching circuits, Trans-
actions of the American Institute of Electrical Engineers, 57, 713–723.

Shestakov, V.I., 1941. Algebra of two poles schemata (Algebra of A-schemata),
Journal of Technical Physics, 11, 532–549 (in Russian).

Tedre, M. 2015. The science of computing. Shaping a discipline, Boca Rato:
CRC Press.

Turing, A. M., 1936/37. ‘On computable numbers with an application to the
Entscheidungsproblem’, Proceedings of the London Mathematical Society,
42, 230–265.

Turner, R. 2014, The philosophy of computer science, The Stanford ency-
clopedia of philosophy (Winter 2014 Edition), Edward N. Zalta (ed.),
urlhttp://plato.stanford.edu/archives/win2014/entries/computer-science/.

Ulam, S. 1980. ‘Von Neumann: the interaction of mathematics and computing’,
in: J. Howlett, N. Metropolis and G.-C. Rota, eds., A History of computing
in the twentieth century. Proceeding of the international research conference
on the history of computing, Los Alamos, 1976, New York: Academia Press,
pp. 93–99.

van Heijenoort, J., 1967. From Frege to Gödel: A source book in mathematical
logic 1879–1931, Cambridge, MA: Harvard University Press.

14

von Neumann, J., Die formalistische Grundlegung der Mathematik. Erkenntnis,
2, pp. 116–121, 1931.

von Neumann, J. 1948. ‘Electronic methods of computation’, Bulletin of the
American Academy of Arts and Sciences, 1, 2–4.

15

