
Refactoring Preserves Security

Florian Kammüller

Department of Computer Science
Middlesex University London
f.kammueller@mdx.ac.uk

Abstract. Refactoring allows changing a program without changing its
behaviour from an observer’s point of view. To what extent does this
invariant of behaviour also preserve security? We show that a program
remains secure under refactoring. As a foundation, we use the Decen-
tralized Label Model (DLM) for specifying secure information flows of
programs and transition system models for their observable behaviour.
On this basis, we provide a bisimulation based formal definition of refac-
toring and show its correspondence to the formal notion of information
flow security (noninterference). This permits us to show security of refac-
toring patterns that have already been practically explored.

1 Introduction

In distributed systems, we are interested in specifying and verifying security1 of
data values. Usually, values are labelled to indicate their confidentiality level.
The labels express the owners and the readers of a value. However, a value in
itself is not security critical: everyone may know the value 42 but in association
with a specific usage it can become a secret, for example, if 42 is the PIN code of
an online banking account. Security models, like the decentralized label model
(DLM) [10] we use for the presentation of our framework, assign security labels
to the input and output variables (or channels) of a computer program. This
enables the analysis of flows of values through this program judging whether
certain computations violate the specified secure information flows. This analysis
is called Information Flow Control (IFC) [2]. Besides the easy to spot direct flows,
e.g., by assignment or parameter passing, there are more subtle cases where “the
information flow is disguised as control flow” [1], like in the classical if-then-else
example,where the control flow copies the confidential bit xH to the public yL.

if xH = 1 then yL := 1 else yL := 0 end

Refactoring [4,9] is a technique that is applied in order to improve the inter-
nal structure of a software artifact to enhance readability of the code, make it
more amenable to extensions, and thus support its maintainability. Integrated
Development Environments (IDE) like Eclipse support refactoring.

Our contribution is a correspondence theorem between a formal characterisa-
tion of refactoring and a formal characterization of noninterference of a program.

1 for simplicity we concentrate on confidentiality in this paper.

Assuming that a program is initially correctly labeled, i.e., permits only the la-
beled information flows, then our theorem can be applied to show that a (proper)
refactoring of the program code preserves the security of that program. Thereby,
this paper provides a formal basis of what has been introduced by examples [5].

In this paper, we first review the concepts of the decentralized label model
(DLM) [10] (Section 2). Then, we provide a formal definition of refactoring and
information flow security, relating the two by a security preservation theorem
(Section 3). As a proof of concept, we finally show how our theoretical frame-
work can be applied. The refactoring mechanism “Extract method” for Java
Information Flow (Jif) [5] can now be shown to be security preserving by a
simple application of our theoretical framework (Section 4).

2 Decentralized Label Model — DLM

A value in the DLM model [10] always carries the label of the variable it resides
in. Values become labeled when they are read from input variables by that
variable’s label. If the program writes this variable, then the old label of the value
assigned to this variable is forgotten and the value becomes reassigned with the
new label of the destination. This process is called relabeling. To preserve security,
information may only flow up: the relabeling must respect the security levels in
that a value that has label L0 can be relabeled with label L1 iff L0 � L1. Writing
includes assignment of a value to a variable or passing a value as a parameter
to a method call but also implicit flows as described in the if-then-else example
above.

2.1 Labels

Every value used or computed in a program execution has an associated label
which stands for a set of allowed flows (owner, reader) from a principal owner
to a a principal reader. There may be a range of permitted flows for a variable,
therefore we accumulate all possible flows into labels. A label is a set of label
components that summarise the allowed flows for a single owner o, i.e., a com-
ponent (o,RK) specifies that the owner o permits all readers r ∈ RK . A label
can have a list of label components. The allowed flows of a label are given as the
union of all flows of all components of L and all flows (o, r) for all o for which
there is no component (o,RK) with r ∈ RK in L. The meaning of this addition
to the explicitly stated components in a label is: if a principal o is not an owner
in the label L, then L describes flows (o, r) for every principal r.

To summarise, a label L = {o0 : R0; . . . ; on : Rn}, where OL
def
= {oi | i ∈

0..n}, denotes the set of flows

[[L]]
def
= {(oi, r) | oi ∈ OL ∧ r ∈ Ri} ∪ {(o, r) | o /∈ OL}.

For example, for the label Lex
def
= {al : {eve}; bob : {al}} we have

[[Lex]] = {(al, al), (al, eve), (bob, bob), (bob, al), (eve, eve), (eve, al), (eve, bob)}.
assuming that al, bob, and eve are all possible principals.

2.2 Label Lattice and Relabeling

Given this interpretation of labels as sets of allowed flows (o, r), the set of labels
forms a complete lattice together with the following partial order on labels.

L0 � L1
def
= [[L0]] ⊇ [[L1]]

The lattice operations join � and meet � are defined as follows.

L0 � L1
def
= [[L0]] ∩ [[L1]]

L0 � L1
def
= [[L0]] ∪ [[L1]]

When values flow from one variable with label L0 to another with label L1 we
call this a relabeling as discussed above; it is allowed if L1 is equally or more
restrictive than L0, i.e., L0 � L1.

The lattice operations join (�) and meet (�) allow combining labels thus
supporting inference of labels for compound expressions.

owners(L1 � L2) = owners(L1) ∪ owners(L2)
readers(L1 � L2, O) = readers(L1, O) ∩ readers(L2, O)

The dual equations hold for the operation meet (�).
In the following, we assume that all program variables are labelled correctly,

i.e., the labels correspond to the actual flows in the programs. In practice, this
assumption is enforced by a process of (static) checking.

2.3 Observation and State Transition Model

In the decentralised label model, an observation happens when values are written
to output channels (variables) which have a set of readers associated to it. These
are the principals who will be able to observe values written to that destination (a
channel or variable). The owners assigned to an input variable are the principals
whose data was observed in order to obtain that value.

For the system model we follow the classical state transition model mainly
used for security modeling, e.g., [6,7,8]. A system is described by its traces of
events. Since we consider a programming system, the events are changes of state
variables according to inputs, outputs, and computation steps. Each step in
the state transition corresponds to a step in the operational semantics of the
programming language. We consider deterministic programming languages with
no real parallelism, i.e., events happening in different steps lead to traces where
“parallel” events are resolved using interleaving. A system trace in our model is
a possibly infinite sequence s0 → s1 → s2 → . . . of maps si : Var �→ Val from

program variables Var
def
= {v0, . . . , vn} to their values Val

def
= {a0, . . . , an}. In our

system model, we assume that each state is reachable from some initial state
sinit , i.e., sinit →∗ s0. Each variable vi in the program has a DLM label assigned
to it and the transition relation respects the labeling.

3 Security of Refactoring

Let Var
def
= {v0, . . . , vn} denote the labeled state variables of program P and Q.2

We define a map L that assigns to each variable its label, i.e., set of compo-
nents.

L : vi �→ {(oj , Rj) | oj ∈ P ∧Rj ⊆ P}, j ∈ 0..m, i ∈ 0..n

The indistinguishability relation ∼α describes that from an observation point
α (which is a label) two states s0, s1 : Var �→ Val look the same, i.e., variables
that are at or below α appear equal in s0, s1.

s0 ∼α s1
def
= dom(s0) = dom(s1) ∧ ∀v ∈ Var . L(v) � α ⇒ s0(v) = s1(v).

Indistinguishability is often called “low-equivalence”: only variables that are
above α may differ in states that are related. Thus an attacker at level α cannot
perceive a difference in different program runs that are due to variables labeled
with a more restrictive label (higher in the order �).

We use the highest observation point seeing all variables (in terms of �) to
express the program equality that defines a refactoring.

Definition 1 (Refactoring). Let s0, t0 be states in P and Q respectively. Let

Obs
def
=

�

i∈0..n

L(vi).

Q is a refactoring of P iff

s0 ∼Obs t0 and s0 → s�0 implies t0 →∗ t�0 and s�0 ∼Obs t�0 for some t�0.

For an attacker we can specify a viewpoint in order to quantify his attack pow-
ers. For the sake of the generality of the exposition, we assume a very powerful at-

tacker that is a principal a ∈ P with observation point Att
def
=

�
i∈0..m(oi, {a, oi}).

The attacker a is a reader for any owner oi, i.e., can see data of all owners. The
following observation holds for this attacker and for any other choice of an at-
tacker, since we have chosen Obs to be the least upper bound of the label lattice.

Lemma 1.

Att � Obs

Lemma 2.

s0 ∼Obs t0 ⇒ s0 ∼Att t0

Definition 2 (Security (Noninterference)). Program P is secure for at-

tacker a with viewpoint Att iff s0 ∼Att s1 and s0 → s�0 implies s1 →∗ s�1 and

s�0 ∼Att s
�
1 for some s�1.

Lemma 3. The relations ∼α and ‘P refactors to Q’ are equivalence relations,

i.e., are reflexive, transitive, and symmetric.

2 We should consider differently named bijective sets of variables for P and Q since
renaming is also a refactoring but for the sake of simplicity we omit it here.

Lemma 4. Security and refactoring are defined for the one step transition s0 →
s�0 but they naturally extend to the reflexive transitive closure s0 →∗ s�0.

1. Let P be secure for α. If s0 ∼α s1 and s0 →∗ s�0, then there exists s�1 such

that s1 →∗ s�1 and s�0 ∼α s�1.
2. Let P refactors to Q. If s0 ∼Obs t0 and s0 →∗ s�0, then there exists t�0 such

that t0 →∗ t�0 and s�0 ∼Obs t�0.

Lemma 5. Let Q be a refactoring of P . For any state s0 in Q, there is a state

t0 in P with s0 ∼Obs t0.

Theorem 1 (Refactoring is secure). Let Q be a refactoring of P and let P

be secure for a. Then Q is also secure for a.

Proof. Let P be a program that refactors to Q for Obs and let P be secure for
attacker a, i.e., the observation point Att. We need to show that for any s0, s1

in Q with s0 ∼Att s1, if s0 → s�0 (see arrow (1) in Figure 1) then s1 →∗ s�1 for
some s�1 (see arrow (4) in Figure 1) such that s�0 ∼Att s�1 (d). Lemma 5 shows

s1

t1

s0

t0

s�1

t�1

s�0

t�0∼Obs

∼Obs

∼Att

∼Att

(c)

(d)

(a)

(b)
(2)

(3)

(1)

(4)

Fig. 1. Proof structure for Theorem 1

that, because P refactors to Q, we have t0 and t1 in P such that s0 ∼Obs t0 (i)
and s1 ∼Obs t1 (ii). Lemma 2 immediately implies that then also these states
are indistinguishable from the observation point of attacker a, i.e., s0 ∼Att t0

and s1 ∼Att t1. (see the left of Figure 1). Since indistinguishability is symmetric
and transitive according to Lemma 3, we can deduce that t0 ∼Att t1 (iii).

Since s0 ∼Obs t0 and s0 → s�0, there exists t�0 such that t0 →∗ t�0 in P and
t�0 ∼Obs s�0 because P refactors to Q ((1), (2) and (a) in Figure 1).

Since P is secure according to assumption and t0 ∼Att t1 (iii), we obtain a
t�1 with Lemma 4.1 such that t1 →∗ t�1 and t�0 ∼Att t

�
1 ((2), (3), and (b) in Figure

1).
Since P refactors to Q and we have that t1 ∼Obs s1 (symmetry of ∼Obs and

(i)) we obtain a s�1 such that s1 →∗ s�1 (iv) and t�1 ∼Obs s�1 ((3), (4), and (c) in
Figure 1).

Summarizing we get s�0 ∼Obs t�0, t
�
0 ∼Att t

�
1, and t�1 ∼Obs s�1 ((a), (b), and (c)

in Figure 1), hence with Lemmas 2 and 3, we get s�0 ∼Att s�1 ((d) in Figure 1)
and s1 →∗ s�1 (iv) which finishes the proof.

4 Example

We can show now with our framework that a major refactoring pattern, the “Ex-
tract method” refactoring is secure. We first motivate and explain this refactoring
and the resulting labeling on an example. With this preparation, we show that
the labeling we propose for the refactoring is bisimilar hence secure.

The example is depicted in Figure 2 showing how Refactoring extracts shared
code and puts it into a new method. The labels in the example indicate that

pub l i c c l a s s secure node {
List<<byte>> {B, {A,B}} skey
pub l i c I n t eg e r {B, {A,B}}

send (In t eg e r m; R r) :
{B, {A,B}}{

k = skey . subLi s t (0 , 4) ;
s = kˆm;
skey = skey . subLi s t (0 , 4) . c l e a r () ;

r . put (s) ;
}
pub l i c I n t eg e r {B, {A,B}}

r e c e i v e (In t eg e r c) :
{B, {A,B}}{

k = skey . subLi s t (0 , 4) ;
s = kˆc ;
skey = skey . subLi s t (0 , 4) . c l e a r () ;

return s ;
}

}

pub l i c c l a s s secure node {
List<<byte>> {B, {A,B}} skey
pub l i c I n t eg e r {B,{A,B}}

send (In t eg e r m; R r) :
{B,{A,B}}{

s = crypt (m) ;

r . put (s) ;
}
pub l i c I n t eg e r {B, {A,B}}

r e c e i v e (In t eg e r c) :
{B, {A,B}}{

s = crypt (c) ;

return s ;
}

pub l i c I n t eg e r {B, {A,B}}
crypt (In t eg e r t) :

{B, {A,B}}{
k = skey . subLi s t (0 , 4) ;
s = kˆ t ;
skey =

skey . subLi s t (0 , 4) . c l e a r () ;
return s ;
}

}

Fig. 2. Symmetric key encrypted messages can be sent by methods send and receive
in the Java class secure node on the left. Symmetric key encryption and decryption
is implemented using exclusive or (^) on a code block of size Integer (4 Bytes). Used
key-bits are eliminated with clear(). The class can be used for instances to principals
Alice and Bob for shared key encryption. Labels are abbreviated for brevity in the
code by A for alice and B for bob. Refactoring allows to extract shared code block
(“xor”ing an integer and eliminating used key-bits) into new method crypt. Labels are
transferred consistently.

the symmetric key skey is owned by bob but can be read also by alice: {B, {A,
B}}. The entry and exit levels of the method send and receive are bounds for the
entry and exit level of the program counter (pc). A pc is a common technique in
information flow control originating in Fenton’s Data Mark Machine [3]. The pc

encodes the highest security level that has been reached in all possible control
flows leading to the current control state. The program counter pc is derived from

the labels of the state variables in the static analysis process. This derivation
depends on the static analysis rules of a concrete IFC language, like Jif [10].

Generalising from the example, we need to compare the traces of the program
P and the refactored program Q where a common code block has been extracted
as depicted in Figure 3. The markers in the figure show the program counters
(pc) at the exit and entry points between two parts of the original program
and the extracted code block. In the practical application of refactoring to Jif

PC1 PC2

PCR1 PCR2

PCE

PCR

…

…

Fig. 3. Refactored program Q with extracted method

programs [5] we provided the following rule for determining the correct labels for
refactoring a Jif program by extracting a common code block into a new method
illustrated in Figure 3. We chose the entry and exit level of the extracted method
such that the entry level is an upper bound to the entry levels of the origin and
the exit level is the lower bound of the extracted code [5].

PCE
def
= PC1 � PC2

PCR
def
= PCR1 � PCR2

The labels in the example in Figure 2 are trivially consistent with the above rule
since

{A, {A,B}} � {A, {A,B}} = {A, {A,B}} = {A, {A,B}} � {A, {A,B}}.

To justify the security of this rule now in the current framework, we compare
the traces of program P with those of the refactored program Q. Let tP be
a trace of P and sP be a state in that trace corresponding to the program
point before the code block to be extracted. Then there is a trace tQ of Q

with an indistinguishable state sQ before the call to the extracted method, i.e.,
sP ∼Obs sQ. Let, in tP the next state be s�P , i.e., tP = �. . . sP → s�P . . . �. The

entry level of the extracted code in Q is PCE = PC1 � PC2 and the pc in the
current state sQ of tQ is PCi � PCE for i ∈ 1, 2. Therefore, the execution of Q
can proceed and sQ →∗ s�Q with s�P ∼Obs s�Q (possibly more than one step is
necessary due to the method call of the extracted method). The important point
is that the choice of the entry levels permits the same execution paths in both
programs P and Q. A similar argument shows that the same execution paths are
permitted for P and Q at the exit point of the extracted method. Therefore, the
programs P and Q are bisimilar with the chosen definition of PCE and PCR,
i.e., according to Definition 1 they are a refactoring.

Using Theorem 1, we can thus immediately conclude that the program Q,
that is refactored from P by Extract method, is secure if P is.

5 Conclusions

Refactoring [4,9] is a technique of much practical value to software engineering
increasing the quality of program code while preserving properties. Therefore,
different techniques to improve the quality can be applied and good features
preserved.

Security is a difficult property to deal with. Information Flow Control with
DLM is a technique operating at the program code level that enables giving
precise specification of security. However, DLM is difficult to use for the common
programmer. We propose a process of security refactoring, in which program code
labelled according to a security policy by a team of programmers and security
experts can then subsequently be improved by common programmers without

changing the specified security properties.
In this paper, we have provided the theoretical foundation for this process.

References

1. G. Boudol and I. Castellani. Noninterference for concurrent programs. ICALP’01.
LNCS 2076 Springer, 2001.

2. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7), 1977.

3. J. S. Fenton. Information protection systems. PhD thesis, Univ. Cambridge, 1973.
4. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison Wesley,

2004.
5. S. Helke, F. Kammüller, and C. W. Probst. Secure refactoring with java informa-

tion flow. Data Privacy Management, DPM’15. LNCS 9481, Spinger 2015.
6. H. Mantel. On the composition of secure systems. Security and Privacy, 2002.
7. H. Mantel, D. Sands, and H. Sudbrock. Assumptions and guarantees for composi-

tional noninterference. IEEE CSF, 2011.
8. J. Mclean. A general theory of composition for trace sets closed under selective

interleaving functions. Security and Privacy, 1994.
9. T. Mens and T. Tourvé. A survey of software refactoring. IEEE Transactions on

Software Engineering, 30(2):126–139, 2004.
10. A. C. Myers and B. Liskov. A decentralized model for information flow control.

ACM symposium on Operating systems principles, SOSP ’97, 1997.

