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Abstract   We describe a novel interface and development platform for an interac-
tive Genetic Algorithm (iGA) that uses Electroencephalograph (EEG) signals as 
an indication of fitness for selection for successive generations. A gaming headset 
was used to generate EEG readings corresponding to attention and meditation 
states from a single electrode. These were communicated via Bluetooth to an em-
bedded iGA implemented on the Arduino platform. The readings were taken to 
measure subjects’  responses to predetermined short sequences of synthesised 
sound, although the technique could be applied any appropriate problem domain. 
The prototype provided sufficient evidence to indicate that use of the technology 
in this context is viable. However, the approach taken was limited by the technical 
characteristics of the equipment used and only provides proof of concept at this 
stage. We discuss some of the limitations of using biofeedback systems and sug-
gest possible improvements that might be made with more sophisticated EEG sen-
sors and other biofeedback mechanisms. 

 1 Introduction 

Genetic Algorithms (GAs) are a well-established evolutionary computing ap-
proach to problem-solving, whereby a set of candidate solutions is generated, in-
dividually evaluated for fitness (proximity to a desired outcome) by an evaluation 
function and then used to generate a new set of potential solutions using tech-
niques analogous to natural genetics, this process being repeated until a candidate 
meets the desired criteria.  Interactive Genetic Algorithms (iGAs) are a variation 
of this, in which the evaluation function is replaced by the conscious decisions of 
a human user. We have developed this concept further, using biofeedback in the 
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form of EEG signals to make these human decisions subconscious. The chosen 
domain for initial proof of concept was that of music synthesis, where the evalua-
tion of short sequences of notes where the parameters of the sound used was gen-
erated by the iGA over successive generations, with rating of the sounds carried 
out by taking E E G measurements from subjects. T he aim was to identify if the 
sounds generated converged on sounds that were “liked” by the subjects. Using an 
E E G approach to rate responses could be used in other domains such as image 
synthesis.  

2 Background and related work  

2.1 Genetic Algorithms 

Genetic algorithms [1] are a category of evolutionary algorithm used in optimisa-
tion and search strategies, which loosely parallel Darwinian evolutionary theory. 
The GA process begins with an initial population of solutions, each of which is 
represented by the values of a given set of variables. In a traditional GA, a fitness 
function is then used to rate each individual on a scale according to the closeness 
of its characteristics to those of the desired outcome. In an iGA [2] the fitness 
function is the user, who similarly rates the individual solutions on the appropriate 
scale. In both the GA and the iGA, this rating is proportional to the probability of 
the individual being chosen as a parent for the next generation. Pairs of parents 
contribute variables (genes) to the new population, using a crossover. A mutation 
factor may be used to introduce some further random changes into the new popu-
lation. This process is repeated until it converges to a solution that, in the opinion 
of the user, represents a desirable final state. Naturally, the number of individuals 
in a given generation for an iGA will be lower than that for a GA, as a human 
evaluator will be subject to such factors as the time it takes to observe or listen to 
the stimuli and also to fatigue, which are not an issue for the GA evaluation func-
tion. 

It may be argued that, unless the solution space of an iGA is appropriately 
mapped to the cognitive space, users are not effectively supported by the system in 
terms of making good choices [3]. It is also difficult to measure the usefulness and 
usability of iGAs as tools without evaluating them on the basis of whether they 
reach a defined goal. It is possible to have fuzzy goals, where the user explores the 
solution space until they find a candidate that they find acceptable. This is an ap-
proach often taken in evaluating iGAs, but it is less rigorous than a goal-based ap-
proach [4] Furthermore, as Bauerly [5] points out, there is an assumption that us-
ers are consistent in their assignation of ratings across multiple generations, but 



we cannot be sure of the impact of user concentration changes and fatigue on the 
consistency of their judgement.  

T hese possible inconsistencies in the behaviour of human evaluators seem to be 
a disadvantage of iGA s when compared to the traditional GA. However, there are 
some problems for which it is difficult to formalise the evaluation process. T hese 
might include evaluating the artistic merit of machine-generated images or sounds 
[7, 8, 9], the quality of music [10] or the stylishness of a machine-generated dress 
or suit design. Such evaluations require the judgement of a human being. Of 
course, these judgements are always going to be subjective to some degree, and to 
design a dress that will appeal to a large section of the population, it might be nec-
essary to combine the opinions of a number of human individuals in generating 
each rating. T his approach has been taken by B iles with ‘ GenJam Populi’ . [11] 
T he point is that, as long as the judgements are accurate enough to facilitate the 
required convergence, absolute precision is not required.  

2.2  Biofeedback  

The idea of using Electroencephalograph (EEG) data as a means of interfacing to 
a computer system is not a new one. Applications have included gaming, enabling 
technologies, and emotional response to valence and cognitive workload recogni-
tion. Brain Computer Interfaces (BCIs) are often problematic in practice. For ex-
ample, in an application where a BCI is used by a subject to actively control a sys-
tem, it can be difficult to identify when a signal is supposed to be associated with 
the system under control, and when it has been generated by some unrelated men-
tal activity of the user. There is therefore a requirement for the users themselves to 
learn how to use such systems properly. Evidence suggests that not all users can 
be trained [12].    

Bradley et al [13] exposed subjects to images for six seconds while gathering 
data using a range of biofeedback readings such as skin resistance and Electromy-
ographic measurement. Similar work by Franzidis et al [14] only allowed a 1 sec-
ond exposure, with 1.5 second breaks between images, while collecting EEG read-
ings.  Clearly, exposure times and choice of reading technique are parameters that 
must be optimised by experimentation. Franzidis’s work [14] also explores the 
day-to-day variation in neurophysiological responses to the same stimulus and 
considers neurophysiological profiles. 

There has been a substantial amount of work exploring more general bio-
feedback approaches for managing stress and relaxation, although these will not 
be explored here. There has also been a significant amount of work on the use of 
neural networks to identify emotions from EEG signals, when giving subjects spe-
cific stimuli. For example, Murragapen et al [15] took this approach and found a 
10.01% improvement with an audiovisual stimulus over a visual stimulus alone.  

One of the difficulties with more complex EEG systems is setting them up, as 
they may have in excess of 100 electrodes. However, simpler EEG systems can 



still be effective. For example, Lee and Tan [16] claimed a 93.1% accuracy in dis-
tinguishing between which of two tasks were being carried out, using a relatively 
low cost E E G setup.  

T here has been an increased use of E E G signals from gaming headsets [17] in 
the research community. T hese are often easy to configure and almost all of the 
signal processing is carried out onboard using proprietary Integrated Circuits, in 
the case of the Neurosky MindWave Mobile it is a T hink Gear A SIC Module. 
T his is responsible for noise filtering (in particular from muscular and skeletal 
movement signals and power cable interference). T hese headsets are often sup-
plied with development kits that facilitate using the E E G data in custom applica-
tions or research [18]. T he associated games are often limited to simple activities 
that rely on the user being able to focus or relax. One research application of such 
technologies is the measurement of cognitive workload and attention [19, 20]. 
Cernea et al [21] and Moseley [22] used gaming headsets to measure emotional 
states/facial expressions and to induce specific user target states (i.e. meditative) 
respectively. We chose to use such a device to measure users’  subconscious reac-
tions in response to sound sequences, mapping these to quantified evaluations of 
the candidate solutions in an iGA. T his represents a kind of ‘ halfway house’  be-
tween a pure GA and an iGA; there is user interaction, but it is not consciously 
carried out. 

3 Methodology 

The Eugene system, described in [3] and shown in Fig.1, is an Arduino based 
hardware controller with MIDI output, allowing the preview and rating of six in-
dividual candidate solutions in any given generation of an iGA using slider poten-
tiometers set by the user.  



 
Fig. 1.  T he original E ugene interface with 6 sliders for rating [3] 

T he system has been adapted so that the data previously taken from the conver-
sion of the potentiometers’  voltage output is now taken from an E E G reading. T he 
MIDI  output (31250 baud) now utilises the Software Serial library and pin 11 of 
the Arduino, which is necessary because the B luetooth board uses the transmit and 
receive pins. One advantage of this is that when updating code, the MIDI  adaptor 
does not have to be disconnected. T he six button switches in the original E ugene 
are also no longer required, as the sounds are played automatically after a success-
ful E E G reading, rather than under user control. A  design decision was made to 
keep the population to six individuals, as too many individuals might lead to user 
fatigue. T he hardware used included a Neurosky MindW ave mobile [17] E E G 
headset, with a single dry electrode. T he on-board processing circuit outputs val-
ues over a B luetooth data stream (57,600 baud). A  B lueSmirf Gold [23] B luetooth 
transceiver board was used to receive the signal from the Mindwave. T he 
B lueSmirf uses the R X  pin on the Arduino Uno. T he signals that can be obtained 
from the Mindwave include an attention and meditation signal, which are parsed 
by the Arduino. 

T he initial experiments were based on simple observation of the E E G signals 
captured when the users were listening to music that they “liked”. A  pilot study 
then explored how the development platform behaved and if the output of the iGA  
was converging. Finally a smaller experiment was carried out to identify if the 
output converged on sounds that were “liked” by the subjects in the context of the 
given musical sequence. 

We recorded at the attention and meditation signals of 20 subjects listening to 
music they “liked”. 



 
Fig. 2.  The equipment used, Arduino, Bluesmirf and Mindwave. 

 
Fig. 3.  The iGA process in the context of this work 



We found that for 19 of them, the levels of both of these signals increased and 
the levels of both fell when the subjects listened to music they did not like. T he 
sum of these two signals was then chosen to rate the sounds. Alternative possible 
strategies are considered in the discussion below, but these require further evalua-
tion. 

T he initial population of sounds is generated randomly and selection of the par-
ent sounds in each generation is by means of a roulette approach based on the sum 
of the two E E G ratings as stated above. In the original E ugene controller elitism 
was used to keep the best sounds for the next generation, this has not been adopted 
here. 

For each sound, 27 MIDI  Continuous Controller (CC) values (genes) are as-
signed to the values of parameters that control a simple two-oscillator software 
synthesiser built in SynthE dit [24]. T hese parameters included attack, sustain, de-
cay and release for two envelope generators, filter parameters of cut-off frequency 
and resonance, choice of oscillator waveforms and modulation parameters. T he 
CC numbers used were from 5 to 28. SynthE dit is flexible in the mapping of CC 
values to the synthesiser parameters and also in the range of each parameter.  

 

 
Fig. 4.  The software synthesiser used 

4 Pilot Study 

A pilot study was conducted with two subjects, in which an 8 note sequence (C2, 
D#2, F2, G3, A#2, C3, D3) was repeated 4 times and the EEG data was read at the 
end of the sequence. It was possible to monitor the EEG data from the headset us-



ing the Arduino Serial Monitor. Although care had to be taken to ensure that the 
Serial Monitor was running at the start of the process as launching it caused the 
iGA process to start from the beginning.  

 
A number of issues were identified: 

• T he sequence should only be repeated once or twice to reduce the time between 
generations and the effect of user fatigue, as the entire process of reviewing 
each generation was taking too long (over 30 seconds). 

• T he MindWave headset and headphones (for listening to the sounds) were not 
very comfortable to wear together, but in-ear headphones were not considered 
suitable to be shared by users. 

• A warning needed to be generated when the signal quality was low, which hap-
pened occasionally (especially when headphones were adjusted) and interfered 
with the results.   

• When a sound was very quiet or indeed inaudible, the E E G readings were no 
longer related to the sound, but were still used by the iGA in rating, this led to 
poor convergence. 

• Some of the initial populations sounded similar and users did not think after-
wards that there was much to choose between them. 

 
T he pilot study did not produce data about generating sound the user might like, 
but did identify a number of issues with the setup of the experiment. 

5 Exper iment 

Following the pilot study, the following changes were made: 

• The sequence was only repeated twice before an EEG reading was taken. 
• Smaller headphones were used that provided more comfort when the two head-

sets were used together. 
• An LED indicator was programmed to respond to any loss of signal quality. 

Tests ascertained that the Bluetooth connection was very reliable and that any 
loss of signal was normally the result of movement of the electrode. Dampen-
ing (not wetting) of the forehead with water increased the reliability of the 
headset. 

• The mutation rate was set in software to 2%, which is high, but seemed to al-
low better exploration of the solution space. 

• The MIDI CC values could be restricted in their ranges, but this would increase 
the setup time and require uploading of the sketch (program) to the Arduino, 
every time there was a change. Using SynthEdit, it was possible to adjust the 
range of the parameters and mapping to CC values and this allowed many of 



those parameter interactions that produced no, or very low level audio output to 
be removed from the solution space. T he remapped parameters were: 

– Amplifier Attack 
– Amplifier Sustain 
– Filter Attack 
– Filter Sustain 
– Filter Cutoff Frequency  
– Keyboard Filter Tracking 

 
 

The experiment looked to identify if there was any convergence to a sound that 
was “ liked”  by the subject, in the context of the musical sequence of notes.  

Three subjects took part in the test and each ran the controller three times. The 
subjects had no identified hearing difficulties. The results converged differently 
for each subject, with two of the subjects converging on variations of white noise 
based sounds in one of their trials. Monitoring indicated that this sound was pro-
ducing a high meditation state reading from the subject, leading to a higher proba-
bility of selection. The subjects felt that the output after 5 to 7 generations had led 
to possibly viable solutions that they “ liked” , but not necessarily optimal ones. 
However, this was an improvement on the pilot study. Observation of the MIDI 
data and EEG readings showed that the iGA was working properly. Users also felt 
that this was a fairly time-consuming exercise, which was an interesting percep-
tion as the tests were only running for about 5 minutes for each.  

6 Discussion 

Interactive Genetic Algorithms traditionally ask the user to consciously rate each 
of the candidate solutions in each generation, and these ratings are used in the se-
lection of parents for the next generation. Our approach involves the measurement 
of a subconscious response, which does not require any active decision making by 
the subjects. However, the results may be affected by the impact of the environ-
ment on the user; this was found to be the case when very low levels of sound, or 
no sound, were produced by the synthesiser. It might be reasoned that, because the 
data from the user is subconscious, it is not subject to distortion by factors such as 
the user second-guessing what those conducting the experiment might be expect-
ing. However, the results can be manipulated by a user consciously choosing to re-
lax or focus or by the user being distracted. A good example is counting back-
wards; this type of activity will distort the results obtained. A possible way to 
reduce distractions would be to conduct the experiments in a darkened room. A 
user’s view on what may be a good output may change over time (even as the iGA 
is running) and possibly as they become aware of the solution space, we do not 
know the extent of this or its possible effect on the results.  



The choice of notes in the sequence and the tempo would also have an impact 
on the results and users’  choice of sounds. I t is possible to make these into varia-
bles as part of the gene sequence or even as a second gene, but this would have 
significantly added to the complexity of the evaluation. Given that with some ex-
isting research, using very short exposure to stimuli before taking E E G readings, it 
might be possible to only use a 4-note sequence played once, which would speed 
up the process and produce results more quickly. 

T he strategy of adding together the meditation and attention signals was based 
on limited observation and the results, whilst improving the sound by removing 
sounds that did not suit the sequence or were unmusical, did not always converge 
to values that the users considered to be optimal, although they did generally con-
verge to more desirable sounds. I t seems that better algorithms for ascertaining 
rating values might be required. I t is possible that some of the gaming headsets 
with more electrodes would perform better, as these have been used in other re-
search successfully. W hen using gaming headsets, we are dependent on trusting 
the manufacturers’  signal processing techniques and their software, but the loss of 
control over these things is offset by the gains in terms of portability, user accept-
ability and low project costs. 

One of the issues identified by many researchers in the iGA area is that of user 
fatigue. T he use of E E G and other biofeedback may provide some insights into 
this. More accurate rating systems will also allow us to explore the differences be-
tween conscious and subconscious rating, by capturing the E E G ranking and com-
paring it to conscious ratings using sliders. 

T he Arduino platform has limitations in terms of processing power, memory 
and speed, but these factors are not significant in this application. T he Arduino al-
so has the ability to connect to a wide range of low cost analogue and digital sen-
sors, thus allowing other biofeedback rating strategies to be evaluated.  

7 Conclusion 

We have presented a novel approach using EEG signals for rating candidate solu-
tions in an interactive Genetic Algorithm. This approach is highly appropriate for 
problem domains that are difficult to evaluate using a goal-based approach, due to 
the subjective nature of the evaluation. Our work so far has been with sound, but 
we have previously applied iGAs to visual media and the use of biofeedback data 
would be equally valid for this or indeed for any problem where the evaluation re-
lies on the users’  subjective satisfaction with the output. 

The platform was developed from our original Eugene hardware-based iGA 
system [3], augmented with the necessary hardware and software necessary to 
capture and process the relevant EEG signals. The experiments conducted with 
this platform have established proof-of-concept for this system. This will also en-
able further research and we have suggested possible future directions for that re-
search, including more sophisticated EEG capture and other biofeedback mecha-



nisms. Our choice of using the sum of meditative and attention E E G signals to 
drive our evaluation was justified above, but nevertheless, experiments with more 
robust and tested signal processing algorithms and richer E E G data might produce 
a more optimal system, notwithstanding the extra costs in time and money associ-
ated with more sophisticated E E G capture. While the research has many limita-
tions, it does enable us to explore the ways in which humans can interact with evo-
lutionary systems and will hopefully lead to further useful insights in this area.  
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