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Abstract

In this paper we discuss the question of how to decide when a general chemical
reaction system is incapable of admitting multiple equilibria, regardless of param-
eter values such as reaction rate constants, and regardless of the type of chemical
kinetics, such as mass-action kinetics, Michaelis-Menten kinetics, etc. Our results
relate previously described linear algebraic and graph-theoretic conditions for in-
jectivity of chemical reaction systems. After developing a translation between the
two formalisms, we show that a graph-theoretic test developed earlier in the con-
text of systems with mass action kinetics, can be applied to reaction systems with
arbitrary kinetics. The test, which is easy to implement algorithmically, and can
often be decided without the need for any computation, rules out the possibility of
multiple equilibria for the systems in question.
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1 Introductory material

There is increasing interest in methodologies for drawing conclusions about
the dynamics of a chemical reaction network based only on the network struc-
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ture, i.e., with limited or absent knowledge of the kinetics. Early work in this
direction is exemplified by [13,10,12,11], with more recent strands including
discussions of monotonicity [14,9,1], and discussions of injectivity [5,7,3]. Al-
though the reaction systems discussed in examples are often assumed to have
mass action kinetics, an important feature of [9,1,3] was that they described
criteria which applied for more general chemical kinetics. The aim of this paper
is to extend graph-theoretic results, which were developed in [7] in the context
of mass action kinetics, to the case of general chemical kinetics. These graph-
theoretic criteria are more restrictive than the matrix-theoretic results in [3],
but are more intuitive, and give rise to conditions which are less expensive
computationally, and are often easy to check by hand.

Dynamical systems derived from chemical reaction networks. A chem-
ical reaction system in which n reactants participate in m reactions has dy-
namics governed by the ordinary differential equation

ẋ = Sv(x), (1)

where x = [x1, . . . , xn]T is the nonnegative n-vector of reactant concentra-
tions, v = [v1, . . . , vm]T is the m-vector of reaction rates and S is the n × m
stoichiometric matrix. Arbitrary orderings can be chosen on the sets of sub-
strates and reactions. Further, S is only defined up to an arbitrary re-signing
of its columns, equivalent to a switching of the left and right hand sides of a
reaction. It is trivial that all results here are independent of the orders chosen
on substrates and reactions. We will also confirm below that they are indepen-
dent of the signing of columns of S. System (1) defines a dynamical system on
the nonnegative orthant in R

n. With the additional assumption that all sub-
stances may have some inflow (which is allowed to be zero) and some outflow
which increases with concentration, we obtain the related system

ẋ = K + Sv(x) − Q(x). (2)

Here K is a nonnegative vector representing the inflows and the diagonal
function Q(x) = [Q1(x1), . . . , Qn(xn)]T represents the outflows, and is assumed
to satisfy ∂Qi

∂xi
> 0 for each i. The system has Jacobian J = SV (x) − D(x)

where the m × n matrix V (x) is defined by Vij(x) ≡ ∂vi

∂xj
, and the diagonal

matrix D(x) is defined by Dii(x) ≡ ∂Qi

∂xi
. It is notationally convenient to omit

the explicit dependence on x, and write J = SV − D.

Previous results on injectivity and the main result of this paper. In [3]
and [1] a reaction system was termed “nonautocatalytic” (NAC for short) if S
and V T have opposite sign structures in the following sense: SijVji ≤ 0 for all i
and j, and Sij = 0 ⇒ Vji = 0. These conditions are naturally fulfilled provided
that no substrate occurs on both sides of a reaction (either with the same or
with a changed stoichiometry). Here we refer to systems where the above two
conditions are fulfilled, as N1C reaction systems, in order to emphasise that
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the conditions only rule out one-step catalysis. Note that the N1C condition
is not very restrictive for realistic biochemical reaction networks: for example,
all the enzymatic reactions considered in [8] satisfy this condition.

A square matrix M is sign nonsingular if all matrices with the same sign pat-
tern as M are nonsingular [4]. In [3] it was shown that System (2) is injective,
and hence incapable of multiple equilibria, provided that the stoichiometric
matrix S is strongly sign determined (SSD), i.e., all square submatrices
of S are either sign nonsingular or singular. This led to a characterization of
injectivity based entirely on a computation on the stoichiometric matrix. On
the other hand, following theory developed in [5], a signed, labelled, bipartite
multigraph termed the Species-Reaction graph or SR graph was constructed
in [7] and used to make claims about the nonexistence of multiple equilibria
in systems of chemical reactions with mass-action kinetics. This time, rather
than a matrix computation, a certain graph-theoretic condition, sometimes
checkable by observation alone without the need for any computation, was
shown to be sufficient to guarantee the absence of multiple equilibria. Here we
will combine these ideas, and in fact show that the graph-theoretic condition
in [7] suffices to guarantee the absence of multiple equilibria for N1C systems
with arbitrary kinetics.

We will define an SR graph for an arbitrary N1C reaction system solely via
the stoichiometric matrix S of the system. We will then present a condition
on this graph which will be termed Condition (∗). Our main result is the
following:

Theorem 1 Consider the SR graph G of an N1C reaction system with stoi-
chiometric matrix S. Assume that Condition (∗) is fulfilled. Then S is an SSD
matrix.

As a consequence, if Condition (∗) holds for the SR graph associated with
an N1C reaction system, then System (2), i.e. the system with outflows, is
injective, and hence incapable of multiple equilibria. Along the way to proving
Theorem 1 we will prove several auxiliary results relating computations on
matrices to computations on graphs. Of these, Corollary 13 is of independent
interest.

2 The SR graph

The SR graph, introduced in [7], is a bipartite graph with n substrate vertices
or S-vertices, m reaction vertices or R-vertices, and an edge between S-
vertex i and R-vertex j iff substrate i participates in reaction j. For an N1C
reaction system there is a one-to-one correspondence between edges in the SR
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graph and nonzero entries in the stoichiometric matrix S: clearly Sij 6= 0 im-
plies that substrate i participates in reaction j, and given the N1C condition
it can participate on one side of the reaction only, giving one edge between
S-vertex i and R-vertex j (in the general case multiple edges are allowed).
On the other hand, given the N1C condition Sij = 0 implies that substrate i
does not participate in reaction j, and hence that there is no edge connecting
S-vertex i and R-vertex j.

In this paper, for convenience, we make slight modifications to the labelling
of the SR graph in [7]. An edge eij (where i ∈ {1, . . . , n} and j ∈ {1, . . . , m})
will be taken to mean an edge between the ith S-vertex and the jth R-vertex.
Such an edge exists if and only if Sij 6= 0. Rather than labelling edge eij with
the complex label associated with substrate i and reaction j as done in [7],
we simply give it a sign, so that sign(eij) = sign(Sij). Since S is only defined
upto an arbitrary signing its columns, the signing of edges in the SR graph
is not unique. However, as we will show in Lemma 2 after developing some
further ideas, all results here are independent of the choice of signing. Whether
labelled with the complex labels or signed, the important thing is that the SR
graph contains information on whether substrates occur on the same side of
a reaction or on opposite sides of a reaction.

Given the one-to-one correspondence

Sij ⇔ eij

when Sij 6= 0 it is convenient to allow a slight abuse of notation and refer to
Sij as an edge in G. Two edges Si1j1 and Si2j2 share an S-vertex when i1 = i2,
and they share an R-vertex when j1 = j2.

Remark. As a consequence of our formal redefinition, rather than being asso-
ciated directly with chemical reaction networks, SR graphs are now associated
directly with real matrices.

Example. An example of a matrix and its corresponding SR graph is shown
in Figure 1.

M =















−a b 0 c

−d 0 e −f

0 −g h j















S1

R1

R2

S2

S3

R3

R4

b

d

g

e

a h

f

c j

Fig. 1. Left. A matrix M . Assume that a, b, c, d, e, f, g, h, j > 0. Right. The corre-
sponding SR graph. S-vertices have been labelled S1, S2, S3 while R-vertices have
been labelled R1, R2, R3, R4. Positive edges are bold lines while negative edges are
dashed lines. These conventions will be followed in drawings of SR graphs.
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Terminology and definitions. Given a graph G, we will say that some ver-
tex/edge lies in G meaning that it lies in the vertex/edge-set of G. We will
generally define subgraphs by their edge-sets, i.e., writing E = {e1, . . . , ek}
where ei are edges in G, will mean that E is the subgraph of G containing
exactly edges e1, . . . , ek and the vertices on which they are incident. The terms
path and cycle will be taken to mean open/closed simple walks in G respec-
tively and are particular examples of subgraphs of G. In the usual way, the
size of a subgraph E is the number of edges in E, written |E|. When E is a
cycle or a path this will also be called the length of E. Because of the bipartite
nature of SR graphs, all cycles are of even length including alternate S- and
R-vertices. If two paths or cycles are edge-disjoint they may still share some
vertices. When they share no vertices they will be termed vertex-disjoint. A
path between an S-vertex and an R-vertex is called an S-to-R path. Note
that S-to-R paths are of odd length.

Cycles in an SR graph have a natural parity – they are either odd or even.
We use a definition equivalent to that in [7], but using the labelling defined
above.

Consider a matrix S and the corresponding SR graph G. Let E be any sub-
graph of G. The sign of an edge e in G has already been defined above, from
which we can define the sign of E to be

sign(E) =
∏

e∈E

sign (e) .

When |E| is even, we define the parity of E to be

P (E) = (−1)|E|/2sign(E).

Since cycles are always of even length, the parity of a cycle is always defined. A
cycle C will be termed an e-cycle if P (C) = 1 and an o-cycle if P (C) = −1.
Note that by these definitions, for an e-cycle C we have

sign(C) = (−1)|C|/2,

and similarly for an o-cycle C we have

sign(C) = (−1)|C|/2−1.

We define the value of edge eij to be val(eij) = |Sij|, and for a subgraph E,

val(E) =
∏

e∈E

val(e)

When C is a cycle containing edges e1, e2, . . . , e2r such that ei and ei+1 mod 2r
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are adjacent for each i = 1, . . . , 2r, we can define

stoich(C) =

∣

∣

∣

∣

∣

r
∏

i=1

val(e2i−1) −
r
∏

i=1

val(e2i)

∣

∣

∣

∣

∣

.

Note that this definition is independent of the starting point chosen on the
cycle. A cycle with stoich(C) = 0 is termed an s-cycle. This definition is
equivalent to the definition in [7].

The intersection of two cycles in an SR graph can be divided into a set of
vertex-disjoint paths. We say that two cycles have S-to-R intersection, if
each component of their intersection is an S-to-R path, i.e. a path between an
S-vertex and an R-vertex.

We finish this section with a lemma confirming that re-signing the columns of
the stoichiometric matrix does not alter the nature of cycles in an SR graph.

Lemma 2 Consider a matrix S and the associated SR graph G. Now consider
any re-signed version of S, say S

′

with corresponding SR graph G
′

. Cycles in
G are in one-to-one correspondence with those in G

′

. e-cycles (o-cycles) in G
correspond to e-cycles (o-cycles) in G

′

. s-cycles in G correspond to s-cycles in
G

′

.

PROOF. Ignoring the signs on edges, clearly G and G
′

are identical graphs,
so cycles in G and G

′

are in one-to-one correspondence. Consider some cycle
C ∈ G and the corresponding cycle C

′

∈ G
′

. Re-signing column j of S means
re-signing all edges incident on R-vertex j in G

′

. But clearly C, and hence C
′

,
contains either 2 or 0 edges incident on R-vertex j. So the re-signing causes
no change in sign(C), i.e., sign(C) = sign(C

′

), so that e-cycles and o-cycles
are preserved. Finally, re-signing a column does not alter any of the values of
edges, leaving stoich(C) unchanged. Thus the re-signing does not affect the
property of a cycle being an s-cycle. 2

As a final note, it is obvious that S-to-R paths remain so after a re-signing of
the graph.

3 Determinants, permutations and cycles

Consider some n × m matrix S and the associated SR graph G.

Notation. S(γ|δ) will refer to the submatrix of S with rows from some set
γ ⊂ {1, . . . , n} and columns from some set δ ⊂ {1, . . . , m}. If S(γ|δ) is square,
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then its determinant will be written S[γ|δ]. Each submatrix S(γ|δ) corresponds
to a subgraph of G which we will term G(γ|δ).

Determinant expansions and term subgraphs. Consider any sets γ =
{γ1, γ2, . . . , γk} ⊂ {1, . . . , n} and δ = {δ1, δ2, . . . , δk} ⊂ {1, . . . , m}, choosing
γ1 < γ2 < . . . < γk and δ1 < δ2 < . . . < δk, so that both sets have a natural
ordering. Consider the square submatrix S(γ|δ) of S. Any permutation α of δ
gives a term in the expansion of S[γ|δ] of the form Tα = P (α)Sγ1α1 · · ·Sγkαk

,
where P (α) = −1 if α is an odd permutation, and P (α) = 1 otherwise. Note
that Tα is simply a real number. Thus terms in the determinant expansion of
S(γ|δ) are in one-to-one correspondence with permutations of δ.

If Tα 6= 0, then α can also be identified with a subgraph of G(γ|δ),

Eα = {Sγ1α1 , . . . , Sγkαk
}.

Each S-vertex chosen from γ and each R-vertex from δ occurs in exactly one
edge in Eα. This follows since each member of {γ1, . . . , γk} occurs exactly
once as a first subscript in Sγ1α1 , . . . , Sγkαk

and similarly each of {δ1, . . . , δk}
occurs exactly once as a second subscript in this expression. As a result no
two edges in Eα share a vertex, and Eα can contain no cycles. We will refer to
a subgraph of G(γ|δ) with these properties as a term subgraph of G(γ|δ).
Clearly term subgraphs are in one-to-one correspondence with nonzero terms
in the expansion of S[γ|δ].

Permutations of a fixed set δ form a group, and so it makes sense to talk
about the operations of composition and inversion. Given permutations α, β
we will often be interested in the permutation β ◦ α−1, which takes α to β.
Permutations can be written as products of disjoint cycles. A nontrivial cycle
will refer to a cycle of length greater than 1. Below we will show that there
is a close relationship between cycles in the decomposition of a permutation,
and cycles in the SR graph. Throughout this paper, the word “cycle” has
two distinct meanings: either a special kind of subgraph in an SR graph, or
a special kind of permutation. In general the meaning will be clear from the
context.

Several key constructions in this paper rely on taking two term subgraphs
corresponding to two distinct permutations of δ, say α and β, and looking
at the structure of their union Eα ∪ Eβ . Consider this union: the S-vertex γi

occurs in exactly one edge in Eα ∪ Eβ if αi = βi, and exactly two edges in
Eα∪Eβ otherwise. On the other hand, assume δj = αi = βk: if i = k, then the
R-vertex δj occurs in exactly one edge in Eα ∪Eβ while if i 6= k then it occurs
in exactly two edges in Eα∪Eβ . Thus Eα∪Eβ consists of a set of components,
each of which is either i) an isolated edge corresponding to a trivial cycle in
β◦α−1, or ii) a cycle corresponding to a nontrivial cycle in β◦α−1. The explicit
construction is carried out in Lemma 3 below. Any given vertex in Eα ∪ Eβ
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has exactly one edge from Eα ∪Eβ incident on it if it corresponds to a trivial
cycle in β ◦ α−1, and exactly two edges incident on it if it corresponds to a
nontrivial cycle. In a similar way, given a set of k permutations α1, . . . , αk,
each vertex in ∪k

i=1Eαi
has between 1 and k edges from ∪k

i=1Eαi
incident on

it.

Notation. Given a set γ = {γ1, γ2, . . . , γk}, we write γ = [γ1, γ2, . . . , γk],
when it is important to stress that γ is an ordered set. When a permutation is
written as a product of cycles, we use round brackets to denote these cycles.
These may include or exclude trivial cycles.

Example. Let

δ = [δ1, δ2, δ3, δ4], α = [δ1, δ3, δ4, δ2], β = [δ2, δ4, δ3, δ1].

Written as products of disjoint cycles, α = (δ1)(δ2, δ3, δ4), β = (δ3)(δ1, δ2, δ4)
and β ◦ α−1 = (δ1, δ2)(δ3, δ4). Finally P (α) = P (β) = +1 and P (β ◦ α−1) =
P (β)P (α) = +1.

Notation. Given that cycles are the fundamental objects in the theory being
developed in this paper, when we have an index k which is known to belong to
a set {1, . . . , r}, counting is always done on a circle of size r, so that k+p means
(k + p − 1 mod r) + 1. Adopting this convention avoids lengthy subscripts.

The next lemma illustrates the relationship between cycles in permutations
and cycles in SR graphs, and also begins the process of linking statements
about SR graphs and stoichiometric matrices.

Lemma 3 Consider a matrix S and the associated SR graph G. Assume that
there is some square submatrix S(γ|δ) and permutations α and β of δ such that
Tα and Tβ are nonzero terms in S[γ|δ]. Then corresponding to each nontrivial
cycle in the decomposition β ◦ α−1 there is a cycle in G. In particular G
contains at least one cycle.

PROOF. The two nonzero terms can be written explicitly as:

Tα = P (α)Sγ1α1 · · ·Sγkαk
, Tβ = P (β)Sγ1β1 · · ·Sγkβk

.

Write β ◦ α−1 as the product of disjoint cycles. Since β 6= α this product
contains at least one nontrivial cycle. Consider such a cycle of length r (2 ≤
r ≤ k), (δb(1), . . . , δb(r)). For each j ∈ {1, . . . , r} define the index a(j) by
αa(j) = δb(j). (Note that since α is a permutation, j1 6= j2 ⇔ a(j1) 6= a(j2).)
The existence of the cycle means that for each j ∈ {1, . . . , r}, Sγa(j)δb(j)

∈ Eα

and Sγa(j)δb(j+1)
∈ Eβ. Writing these as

{Sγa(1)δb(1)
, Sγa(1)δb(2)

, Sγa(2)δb(2)
, . . . , Sγa(r)δb(r)

, Sγa(r)δb(1)
}
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makes it clear that they form a cycle of length 2r in G. 2

The construction in Lemma 3 will be used frequently – i.e., given two different
permutations α and β of a set δ, cycles in β ◦ α−1 will be used to infer the
existence of index sets {a(j)} and {b(j)} and corresponding cycles in the SR
graph. When using the construction, for notational brevity we will write a1

for γa(1) and b1 for δb(1).

Example. Let

γ = [γ1, γ2, γ3, γ4]

δ = [δ1, δ2, δ3, δ4]

α = [δ1, δ3, δ4, δ2]

β = [δ2, δ4, δ3, δ1]

Let S(γ|δ) be a submatrix of a matrix S and G(γ|δ) the associated subgraph.
α and β define the term subgraphs of G(γ|δ): Eα = {Sγ1δ1 , Sγ2δ3 , Sγ3δ4 , Sγ4δ2}
and Eβ = {Sγ1δ2 , Sγ2δ4 , Sγ3δ3 , Sγ4δ1}. From the previous example, β ◦ α−1 =
(δ1, δ2)(δ3, δ4), so there are two cycles C1 and C2 in Eα ∪ Eβ. Written out
explicitly, these cycles are

C1 = {Sγ1δ1 , Sγ1δ2 , Sγ4δ2 , Sγ4δ1} and C2 = {Sγ2δ3 , Sγ2δ4 , Sγ3δ4 , Sγ3δ3}.

So far we have focussed on constructing cycles in an SR graph from pairs
of nonzero terms in a determinant. However the reverse is also important
– inferring the existence of pairs of nonzero terms in a determinant from
structures in a graph. The basic operation which allows us to do this is a
particular splitting of a cycle. Any cycle

C = {Sa1b1 , Sa1b2 , Sa2b2 , . . . , Sarbr
, Sarb1}

can be uniquely partitioned into two vertex-disjoint subgraphs of equal size:

C = {Sa1b1 , Sa2b2 , . . . , Sarbr
} ∪ {Sa1b2 , Sa2b3 , . . . , Sarb1}. (3)

We will call this a disconnecting partition of C. With this notion, confirm-
ing if a cycle C is an s-cycle now involves:

(1) Constructing a disconnecting partition of C into {C1, C2},
(2) Confirming that val(C1) = val(C2).

9



4 Preliminary lemmas

With the machinery set up above, we are ready to prove some lemmas. The
idea of these lemmas is that each of them is quite brief and reusable, so that
the proofs of the main results in this paper become simpler.

The first lemma gives us a basic way of checking whether a permutation,
written as a product of cycles, is even or odd.

Lemma 4 Consider a permutation α written as a product of cycles from some
set C. Let θ = ∪c∈Cc. Then

P (α) = (−1)(|θ|−|C|)

i.e., α is an even or odd permutation according to whether the total number
of elements in cycles, minus the number of cycles is even or odd.

PROOF. This follows by writing any permutation as the product of disjoint
cycles and noting the elementary result that a k-cycle is an even permutation
if k is odd and vice versa. 2

In the following lemmas we will pass without comment between talking about
terms or sets of terms in submatrices of a matrix, and subgraphs or cycles
in the corresponding SR graph. The next formula gives us a way of deciding
whether two terms in a determinant expansion have the same sign.

Lemma 5 Consider any square submatrix S(γ|δ) of a matrix S. Consider
any two nonzero terms Tα and Tβ in the determinant expansion of S[γ|δ]
corresponding to permutations α and β of δ. Then

sign(TαTβ) = (−1)|Ce| (4)

where |Ce| is the number of e-cycles in Eα ∪ Eβ.

PROOF. Let k = |γ| = |δ|. By definition

TαTβ = P (α)P (β)
k
∏

i=1

Sγiαi
Sγiβi

.

Let θ be the set of indices for which αi 6= βi. We can write

TαTβ = P (α)P (β)
∏

i∈{1,...,k}\θ

Sγiαi
Sγiβi

∏

i∈θ

Sγiαi
Sγiβi

.
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When i ∈ {1, . . . , k}\θ, Sγiαi
Sγiβi

= S2
γiαi

> 0. So

sign(TαTβ) = P (α)P (β) sign





∏

i∈θ

Sγiαi
Sγiβi



 .

Write β ◦ α−1 as a product of disjoint nontrivial cycles, and identify each of
these with a cycle in G(γ|δ). Let the set of o-cycles in this set be Co and the
set of e-cycles be Ce, with C = Co∪Ce. Associate with each cycle c ∈ Co∪Ce the
corresponding index set c̃, i.e., i ∈ c̃ ⇔ Sγiαi

, Sγiβi
∈ c. Thus corresponding to

the sets Co and Ce are the sets of index sets C̃o and C̃e. Since any two cycles
are edge-disjoint, C̃o ∪ C̃e is a partition of θ, and we can define

θo ≡
⋃

c̃∈C̃o

c̃, θe ≡
⋃

c̃∈C̃e

c̃ with |θo| =
∑

c̃∈C̃o

|c̃|, |θe| =
∑

c̃∈C̃e

|c̃| .

Clearly θ = θo ∪ θe. We can write

∏

i∈θ

Sγiαi
Sγiβi

=





∏

i∈θo

Sγiαi
Sγiβi









∏

i∈θe

Sγiαi
Sγiβi





=





∏

c̃∈C̃o

∏

i∈c̃

Sγiαi
Sγiβi









∏

c̃∈C̃e

∏

i∈c̃

Sγiαi
Sγiβi



 .

So

sign(TαTβ) =P (α)P (β)





∏

c̃∈C̃o

sign

(

∏

i∈c̃

Sγiαi
Sγiβi

)









∏

c̃∈C̃e

sign

(

∏

i∈c̃

Sγiαi
Sγiβi

)





=P (α)P (β)





∏

c∈Co

(−1)|c|−1









∏

c∈Ce

(−1)|c|





=P (α)P (β)(−1)|θo|+|θe|−|Co|

=P (α)P (β)(−1)|θ|−|Co| .

Applying Lemma 4 to β ◦ α−1 gives us that

P (α)P (β) = P (β ◦ α−1) = (−1)|θ|−|C| ,

so that

sign(TαTβ) = (−1)|θ|−|C|(−1)|θ|−|Co| = (−1)2|θ|−|C|−|Co| = (−1)|C|+|Co| = (−1)|Ce| .

This proves the result. 2
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A corollary of the previous lemma is that when the intersection of two term
subgraphs contains only o-cycles then the two corresponding terms have the
same sign.

Lemma 6 Consider any square submatrix S(γ|δ) of a matrix S. Let α and β
be permutations of δ such that Tα and Tβ are nonzero terms in the determinant
expansion of S[γ|δ]. If all cycles in Eα ∪ Eβ are o-cycles, then sign(Tα) =
sign(Tβ).

PROOF. Since in this case, there are no e-cycles in Eα∪Eβ , applying Eq. (4)
immediately gives

sign(TαTβ) = (−1)|Ce| = (−1)0 = 1 .

Thus sign(Tα) = sign(Tβ). 2

Example. Consider the matrix and corresponding SR graph shown in Fig-
ure 2. Observation of the SR graph tells us that the determinant expansion
of the matrix contains two terms, and these are of the same sign. Details are
provided in this figure legend.

M =















a b 0

−c 0 d

0 −e f















S1

R1

R2

S2

S3

R3

b

c

e

d

a f

Fig. 2. Left. A matrix M . Assume that a, b, c, d, e, f > 0. Right. The corresponding
SR graph. Identifying edges in the graph with their labels, the graph contains two
term subgraphs, E1 = {a, d, e} and E2 = {b, c, f}. As E1 ∪ E2 contains a single
o-cycle [a, b, e, f, d, c], we can infer from Lemma 6 that the corresponding terms T1

and T2 in the expansion of det(M) satisfy sign(T1) = sign(T2). Indeed it is easy to
confirm that det(M) = T1 + T2 where T1 = ade and T2 = bcf .

The next lemma shows that having cycles which are both e-cycles and s-cycles
in a graph means that some terms in a determinant expansion sum to zero.

Lemma 7 Consider any square submatrix S(γ|δ) of a matrix S. Let α and β
be permutations of δ such that Tα and Tβ are nonzero terms in the determinant
expansion of S[γ|δ]. Assume that Eα ∪ Eβ contains exactly one cycle C, and
this cycle is both an e-cycle and an s-cycle. Then Tα + Tβ = 0.
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PROOF. Let |γ| = |δ| = k. By definition

Tα + Tβ = P (α)
k
∏

i=1

Sγiαi
+ P (β)

k
∏

i=1

Sγiβi

As usual, let θ be the set of indices for which αi 6= βi so that by assumption,
Sγiαi

, Sγiβi
∈ C iff i ∈ θ. Defining C1 = {Sγiαi

}i∈θ and C2 = {Sγiβi
}i∈θ gives us

a disconnecting partition of C. We can write

Tα + Tβ =





∏

i∈{1,...,k}\θ

Sγiαi







P (α)
∏

i∈θ

Sγiαi
+ P (β)

∏

i∈θ

Sγiβi





=P (α)





∏

i∈{1,...,k}\θ

Sγiαi









∏

i∈θ

Sγiαi
+ P (β ◦ α−1)

∏

i∈θ

Sγiβi





=P (α)





∏

i∈{1,...,k}\θ

Sγiαi





(

sign(C1)val(C1) + P (β ◦ α−1)sign(C2)val(C2)
)

.

β ◦ α−1 can be written as a single cycle of length |θ|, and so from Lemma 4,
P (β ◦ α−1) = (−1)|θ|−1. I.e.,

Tα+Tβ = P (α)





∏

i∈{1,...,k}\θ

Sγiαi





(

sign(C1)val(C1) + (−1)|θ|−1sign(C2)val(C2)
)

Since C is an e-cycle we have

sign(C2)/sign(C1) = sign(C1)sign(C2) = sign(C) = (−1)|θ|.

Substituting into the expression for Tα + Tβ , we get:

Tα + Tβ = P (α)





∏

i∈{1,...,k}\θ

Sγiαi



 sign(C1) (val(C1) − val(C2)) .

However since C is an s-cycle, val(C1)− val(C2) = 0, giving Tα + Tβ = 0. 2

Example. Consider the matrix and corresponding SR graph shown in Fig-
ure 3. Observation of the SR graph tells us that the matrix is singular. Details
are in the figure legend.

The next lemma is a consequence of the fact that if a matrix is nonsingular,
then not all terms can be paired off in the way carried out in Lemma 7.

Lemma 8 Consider any nonsingular square submatrix S(γ|δ) of a matrix S.
Let α and β be permutations of δ such that Tα and Tβ are nonzero terms in
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M =















−a b 0

−c 0 b

0 −c a















S1

R1

R2

S2

S3

R3

b

c

c

b

a a

Fig. 3. Left. A matrix M . Assume that a, b, c > 0. Right. The corresponding
SR graph. There are two term subgraphs E1 = {S1−R2, S3−R3, S2−R1} and
E2 = {S1−R1, S3−R2, S2−R3}. As E1 ∪ E2 contains a single e-cycle which can
be computed to be an s-cycle, Lemma 7 implies that that the corresponding terms
T1 and T2 in the expansion of det(M) satisfy T1 + T2 = 0, and hence that M is
singular. Indeed it is easy to confirm that det(M) = T1 + T2 where T1 = abc and
T2 = −abc.

the determinant expansion of S[γ|δ]. Assume that Eα ∪ Eβ contains exactly
one cycle C, which is both an e-cycle and an s-cycle. Define C1 = C ∩Eα and
C2 = C ∩ Eβ so that {C1, C2} is a disconnecting partition of C. Then S[γ|δ]
must contain a term Tσ such that C1 6⊂ Eσ and C2 6⊂ Eσ.

PROOF. Assume the contrary. Take any term Tσ in S[γ|δ]. If Eσ contains all
the edges from C1, then we can construct a new term subgraph Eτ = (Eσ\C1)∪
C2 and a corresponding term Tτ in S[γ|δ]. Alternatively if Eσ contains all the
edges from C2, define Eτ = (Eσ\C2) ∪ C1 with corresponding term Tτ . By
construction, Eσ ∪ Eτ contains only one cycle which is an e-cycle and an s-
cycle and so, by Lemma 7, Tσ +Tτ = 0. Thus all terms in S[γ|δ] fall into pairs
which sum to zero and S(γ|δ) is singular. 2

The next lemma tells us a fact which is geometrically obvious about how a
term subgraph can intersect a cycle: either it contains all members in one half
of a disconnecting partition of the cycle, or it contains an edge not in the cycle
but incident on a vertex in the cycle.

Lemma 9 Consider a square matrix S and the associated SR graph G. As-
sume that G contains a cycle C. Let {C1, C2} be a disconnecting partition of
C, and E be any term subgraph in G. If C1 6⊂ E and C2 6⊂ E, then E contains
an edge incident on an S-vertex in C but not itself in C.

PROOF. Let |C| = 2k. Since E is a term subgraph in G, it has an edge
incident on each vertex in C. Either some of these are not in C, or E contains
k edges in C. In the latter case, either they are all in C1, or they are all in
C2, or two of them share a vertex. The first two possibilities are ruled out
by assumption, and since E is a term subgraph, the third situation is not
possible. So E must contain an edge e incident on a vertex in C, but not itself
lying in C. If this is an S-vertex we are done. If it is an R-vertex, but e is also
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incident on another vertex in C, then this second vertex must be an S-vertex,
and again we are done. Otherwise e is incident on an R-vertex in C and some
vertex outside C, in which case E\{e} contains edges incident on k S-vertices
and k−1 R-vertices in C. There must hence be some edge e′ ∈ E\{e} incident
on an S-vertex in C but not itself in C. 2

Note that in the statement and proof of the above lemma we could exchange
“S-vertex” and “R-vertex”.

Our final preliminary lemma tells us that if an S-to-R path “slices” an e-cycle
in a particular way, this implies the existence of two e-cycles with S-to-R
intersection.

Lemma 10 Consider a matrix S and the associated SR graph G. Assume
that G contains an e-cycle C. Assume that there is a path D in G joining an
S-vertex in C to an R-vertex in C, but such that D and C are edge-disjoint.
Then G contains two e-cycles with S-to-R intersection.

PROOF. Let C be of length 2r with C = {Sa1b1 , Sa1b2 , Sa2b2 , . . . , Sarbr
, Sarb1},

and let D join S-vertex aj to R-vertex bk. Decompose C into the two edge-
disjoint paths C = C1 ∪ C2 where

C1 = {Sajbj
, Saj+1bj

, . . . , Sakbk
}, C2 = {Sak+1bk

, Sak+1bk+1
, . . . , Sajbj−1

} .

Note that |C1| and |C2| are both odd since C1 and C2 are S-to-R paths. The
situation is illustrated in Figure 4.

aj

bj

bk

aj−1

ak+1

bk−1

bj−1

aj+1
ak

bk+1

1C

2C

D

Fig. 4. A schematic representation of the situation in Figure 10. C1 and C2 are
S-to-R paths which partition C. D joins an S-vertex to an R-vertex in C but is
edge-disjoint from C. (Note that in this figure, bold lines indicate edges of arbitrary
sign, while dashed lines indicate paths of arbitrary length.)

There are two cycles D1 ≡ D ∪ C1 and D2 ≡ D ∪C2 such that D1 ∩D2 = D,
D1 ∩ C = C1 and D2 ∩ C = C2. We will show that D1 and D2 have opposite
parity and hence one of them must be an e-cycle. Note that |C1| + |C2| = 2r,
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|D1| = |D| + |C1| and |D2| = |D| + |C2|. Subtracting the last two expressions
gives |D2| − |D1| = |C2| − |C1| = 2(r − |C1|).

The fact that C is an e-cycle means that either

(1) r is odd and sign(C) = −1, or
(2) r is even and sign(C) = +1.

Case 1. Since sign(C) = sign(C1) sign(C2) = −1:

sign(C1) = −sign(C2)

Now r and |C1| are odd, so r − |C1| is even, so |D2| − |D1| = 2(r − |C1|) is a
multiple of 4, i.e., (−1)|D2|/2 = (−1)|D1|/2. Then

P (D1) = (−1)|D1|/2sign(C1)sign(D) = (−1)|D2|/2[−sign(C2)]sign(D) = −P (D2).

So P (D2) = −P (D1) and one of D1 or D2 must be an e-cycle.

Case 2. This time sign(C) = sign(C1) sign(C2) = 1 so

sign(C1) = sign(C2)

Now r is even and |C1| is odd, so r − |C1| is odd. As a result |D2| − |D1| =
2(r − |C1|) is not a multiple of 4, and (−1)|D2|/2 = (−1)|D1|/2+1. Again we get
P (D2) = −P (D1) and one of D1 or D2 must be an e-cycle.

In each case, one of D1 or D2 is an e-cycle. Moreover both D1 and D2 intersect
C along an S-to-R path (either C1 or C2). As this is the unique component of
their intersection, they have S-to-R intersection. 2

5 Relationship between sign nonsingularity and o-cycles

There is a very simple and elegant relationship between properties of square
submatrices of a matrix and the non-existence of e-cycles in the corresponding
SR graph. The results we prove in this section are weaker than our main result
in the next section, but have a certain generality to them. At an abstract level,
the results simply describe an interesting relationship between a matrix and
an associated bipartite graph. Comments in Chapter 3 of [4] suggest that
these results may be known or suspected, but we have not found a proof in
the literature. In any case they are an easy corollary of the previous lemmas.
First, analogous to the definition of sign-nonsingularity, we define a square
matrix S to be sign singular, if all matrices with the same sign pattern as
S are singular.
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Theorem 11 Consider a matrix S and the associated SR graph G. If all
cycles in G are o-cycles, then all square submatrices of S are either sign non-
singular or sign singular.

PROOF. Consider any square submatrix S(γ|δ) of S with rows and columns
indexed in the usual way by ordered sets γ and δ respectively, where |γ| =
|δ| = k. Consider permutations of δ and the corresponding terms in S[γ|δ]:

1) If all such terms are zero then the S(γ|δ) is sign singular.

2) If there is a single α for which Tα is nonzero then S[γ|δ] = Tα so clearly
S(γ|δ) is sign nonsingular.

3) Consider any pair of nonzero terms in S[γ|δ] corresponding to permutations
α and β of δ. Since all cycles are odd, Lemma 6 gives us that sign(Tα) =
sign(Tβ). Since α and β were arbitrary, this means that all nonzero terms in
S[γ|δ] have the same sign. 2

The previous theorem has a converse:

Theorem 12 Consider a matrix S and the associated SR graph G. If all
square submatrices of S are either sign nonsingular or sign singular, then all
cycles in G are o-cycles.

PROOF. Assume that G has an e-cycle C of length 2r including S-vertices
from a set γ = {γ1, γ2, . . . , γr} and R-vertices from a set δ = {δ1, δ2, . . . , δr}.
There is some permutation α of δ such that C consists of the edges

⋃

i∈{1,...,r}

{Sγiαi
, Sγiαi+1

}.

Setting βi = αi+1 defines a permutation β of δ. Clearly S(γ|δ) is not sign
singular since

Tα = P (α)
r
∏

i=1

Sγiαi
and Tβ = P (β)

r
∏

i=1

Sγiβi

are nonzero terms in S[γ|δ]. Since Eα ∪Eβ = C, and C is an e-cycle, applying
Eq. (4) gives:

sign(TαTβ) = (−1)1 = −1 .

As Tα and Tβ have opposite signs, S(γ|δ) fails to be sign nonsingular. 2
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Note that in the terminology of [4] a matrix which is either sign nonsingular
or sign singular is a matrix with signed determinant. We can state the
previous two theorems as a single result:

Corollary 13 Consider a matrix S and the associated SR graph G. The fol-
lowing two statements are equivalent:

(1) All square submatrices of S have signed determinant.
(2) All cycles in G are o-cycles.

PROOF. This follows immediately from Theorems 11 and 12. 2

Remark. Corollary 13 is a general statement about matrices and the corre-
sponding bipartite graphs. Note that insisting that all square submatrices of a
matrix have signed determinant is considerably more restrictive than insisting
that they are all either sign nonsingular or singular (i.e. that the matrix is
SSD). This is because it is a frequent occurrence for a square matrix to be
singular while failing to be sign singular.

6 A graph-theoretic condition ensuring injectivity

Define the following condition on any SR graph:

Condition (∗): all e-cycles in the SR graph are s-cycles, and no two e-cycles
have S-to-R intersection.

In [7] it was shown that Condition (∗) on the SR graph of a reaction system
with mass-action kinetics and with outflows is sufficient to ensure injectivity
of the system. For N1C reaction systems this means, by results in [3], that
Condition (∗) is sufficient to ensure that the stoichiometric matrix S of the
system is “weakly sign determined” (WSD), a less restrictive condition on S
than the requirement that it should be SSD. However results in [7] and [3] left
open the question of whether Condition (∗) implies that the stoichiometric
matrix is SSD giving injectivity for essentially arbitrary kinetics. Below we
show that this is indeed the case – Condition (∗) implies that the stoichio-
metric matrix is SSD. Since SSD implies WSD, as a corollary we reproduce
the result that can be inferred from [7] and [3]. We also show by example that
Condition (∗) is not a necessary condition for a matrix to be SSD.
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6.1 Condition (∗) ensures that a matrix is SSD

Theorem 1 is the main result of this paper: that an N1C reaction system
whose SR graph fulfils Condition (∗) has stoichiometric matrix which is SSD,
and is hence, with the outflow conditions detailed at the beginning, incapable
of multiple equilibria.

PROOF of Theorem 1. Assume that S is not SSD, i.e., there exists some
square submatrix S(γ|δ) of S which is neither sign nonsingular nor singular.
Since 1 × 1 matrices are trivially sign nonsingular or singular, |γ| = |δ| ≥ 2.
The proof will proceed by showing that the corresponding subgraph G(γ|δ)
either contains an e-cycle which fails to be an s-cycle or contains two e-cycles
which have S-to-R intersection.

Firstly, it is immediate from Theorem 11 that G(γ|δ) contains an e-cycle.
If |γ| = 2, then there are exactly two terms in S[γ|δ], i.e., Sγ1δ1Sγ2δ2 and
−Sγ1δ2Sγ2δ1 . Since S(γ|δ) is not sign nonsingular,

sign(Sγ1δ1Sγ2δ2) = sign(Sγ1δ2Sγ2δ1) .

Since S(γ|δ) is not singular, S[γ|δ] = Sγ1δ1Sγ2δ2 − Sγ1δ2Sγ2δ1 6= 0. Hence,
by the definition of an s-cycle, the e-cycle in G(γ|δ) consisting of the edges
{Sγ1δ1 , Sγ1δ2 , Sγ2δ2 , Sγ2δ1} is not an s-cycle and Condition (∗) is violated.

So now assume |γ| ≥ 3. Consider two terms Tα and Tη of opposite sign in S[γ|δ]
corresponding to subgraphs Eα and Eη in G. By Lemma 6, Eα∪Eη contains an
e-cycle. Take an e-cycle C ⊂ (Eα∪Eη) and construct a disconnecting partition
of C into C1 = C ∩Eα and C2 = C ∩Eη according to Eq. (3). Let |C| = 2k for
some 2 ≤ k ≤ |γ| so that |C1| = |C2| = k. Define Eβ = (Eα\C1) ∪ C2. Eβ has
been constructed so Eα ∪Eβ contains only one cycle (i.e., C). Corresponding
to Eα and Eβ are nonzero terms Tα and Tβ in S[γ|δ]. Bearing in mind that
there is only one cycle in Eα ∪ Eβ and this is even, Eq. (4) gives:

sign(TαTβ) = (−1)1 = −1.

There are now two cases to consider. If Tα + Tβ 6= 0, then val(Eα) 6= val(Eβ).
I.e., val((Eα\C)∪ (Eα ∩C)) 6= val((Eβ\C)∪ (Eβ ∩C)). Since Eα\C = Eβ\C,
we get val(Eα ∩ C) 6= val(Eβ ∩ C). Since Eα ∩ C and Eβ ∩ C together make
up a disconnecting partition of C, this means that C is not an s-cycle and we
are done.

So assume that Tα + Tβ = 0. Now by Lemma 8 we can find a permutation σ
of δ, and corresponding term Tσ in S[γ|δ] such that C1 6⊂ Eσ and C2 6⊂ Eσ.
As a result, by Lemma 9, Eσ contains some edge incident on an S-vertex in
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C, but not itself in C. In other words, there is an index q such that edges
Sγqαq

, Sγqβq
∈ C, but σq 6= αq and σq 6= βq so that Sγqσq

6∈ C.

Consider σ ◦ α−1 as the product of disjoint cycles. Since σq 6= αq, a nontrivial
cycle involves σq. Further, since σq 6= βq, the corresponding cycle in G is
distinct from C but intersects C at S-vertex γq. Let this cycle be termed Cασ

(to remind us that it is composed of edges from Eα and Eσ) and have length
2r (2 ≤ r ≤ |γ|). In the usual way, we can follow Cασ: there are distinct indices
a1, . . . , ar ∈ γ and b1, . . . , br ∈ δ such that the edges Sajbj

occur in Eα and
Sajbj+1

occur in Eσ. Assume (without loss of generality, i.e., by reordering the
sets ai and bi if necessary) that a1 = γq and b2 = σq, so that Sa1b2 is the edge
incident on an S-vertex in C, but not itself lying in C.

Follow the cycle Cασ starting at Sa1b2 ∈ Tσ i.e.,

Sa1b2 ∈ Tσ, Sa2b2 ∈ Tα, Sa2b3 ∈ Tσ, . . .

Since this is a cycle, eventually some vertex from the sequence of alternating
R- and S-vertices indexed by (b2, a2, b3, . . .) must be a vertex in C. But this
cannot first happen at an S-vertex. Suppose the contrary and S-vertex aj is in
C, while R-vertex bj is not. Since edge Sajbj

is in Tα, but not in C, this implies
that S-vertex aj has three edges from Tα ∪ Tβ incident on it – the two edges
in C along with the edge Sajbj

. But this is impossible from the discussion
in Section 3. This means that from the vertex sequence (b2, a2, b3, . . .) the
first vertex to lie in C must be an R-vertex. Let this vertex be bj (j = 2 is
possible). Define the path D ≡ {Sa1b2 , Sa2b2 , Sa2b3 , . . . , Saj−1bj

}. D is an S-to-R
path starting and terminating at vertices in C but edge-disjoint from C.

Now applying Lemma 10 shows that there are two e-cycles in G (one of which
is C and one of which is made up of D and some part of C) which have S-
to-R intersection. Thus if the stoichiometric matrix S is not SSD, then the
associated graph G necessarily fails Condition (∗). The result is proved. 2

6.2 Condition (∗) is not necessary for SSD (or WSD)

We present an example to illustrate that Condition (∗) on the SR graph is not
necessary to give a system with an SSD matrix. Consider the system of three
reactions

D ⇋ A + B + C, E ⇋ A + B + C, F ⇋ A + B. (5)
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This system has stoichiometric matrix

S =



































1 1 1

1 1 1

1 1 0

−1 0 0

0 −1 0

0 0 −1



































which can quickly be computed to be SSD, implying that the system with
inflows and outflows forbids multiple equilibria. The SR graph for the system
is shown in Figure 5. Although all e-cycles are s-cycles, there are e-cycles with
S-to-R intersection, and thus the graph fails Condition (∗).

F R3 D R1 C R2 E

B

A

Fig. 5. The SR graph of reaction system (5). Edge labels are all 1 and have been
omitted. As a consequence all cycles are s-cycles. However, there are a number
of e-cycles with S-to-R intersection, for example the cycles A−R2 −B−R3 and
A−R2−C−R1 intersect along the S-to-R path A−R2.

Thus Condition (∗) is not necessary for injectivity in the case of a general sys-
tem of N1C reactions. Since the condition that S is SSD is stronger than the
condition that S is WSD, clearly Condition (∗) is not necessary for injectivity
in the case of a system of mass action reactions.

7 Conclusions

We have described several new results for the class of N1C reaction systems
with arbitrary chemical kinetics. The key has been to associate with any real
matrix S, a signed, labelled, bipartite graph termed an SR graph. Given any
matrix S and associated graph G we have shown that:

(1) All cycles in G are o-cycles iff all square submatrices of S have signed
determinant (Corollary 13).
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(2) Condition (∗) on G is sufficient, but not necessary, to guarantee that S
is SSD (Theorem 1, and the counterexample in Section 6.2).

If S is the stoichiometric matrix of a chemical reaction network, and we assume
the outflow conditions in System (2), either graph-theoretic condition implies
immediately that multiple equilibria cannot exist [3]. Otherwise, they imply
that multiple positive nondegenerate equilibria cannot exist [6]. These results
apply to large classes of realistic biochemical reaction networks; for example,
they apply to the enzymatic reaction networks discussed in [8], without the
assumption of mass-action kinetics. There are natural further extensions of
this work to the situation where the N1C condition is dispensed with. These
topics are pursued in [2].

The identification of a condition on G which is equivalent to S being SSD
remains an open – and probably very difficult – problem. However, there are
certain ways in which G can fail Condition (∗) which ensure that S fails to be
SSD. These will be discussed in future work.

Finally, it should be mentioned that there are interesting relationships between
the results in this paper and approaches to injectivity involving so-called “in-
teraction graphs”. The approach taken in [15] is most similar to that taken
here, with the key difference that interaction graphs and SR graphs are for-
mally quite different objects. The details of how interaction graph approaches
and SR graph approaches are related to each other will be explored in future
work.
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[15] C. Soulé, Graphic requirements for multistationarity, Complexus 1 (2003) 123–
133.

23


	Introductory material
	The SR graph
	Determinants, permutations and cycles
	Preliminary lemmas
	Relationship between sign nonsingularity and o-cycles
	A graph-theoretic condition ensuring injectivity
	Condition (*) ensures that a matrix is SSD
	Condition (*) is not necessary for SSD (or WSD)

	Conclusions
	References

