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Abstract

While Computerised Tomography (CT) may have been the first imag-
ing tool to study human brain, it has not yet been implemented into
clinical decision making process for diagnosis of Alzheimers disease (AD).
On the other hand, with the nature of being prevalent, inexpensive and
non-invasive, CT does present diagnostic features of AD to a great ex-
tent. This study explores the significance and impact on the application
of the burgeoning deep learning techniques to the task of classification
of CT brain images, in particular utilising convolutional neural network
(CNN), aiming at providing supplementary information for the early di-
agnosis of Alzheimers disease. Towards this end, three categories of CT
images (N=285) are clustered into three groups, which are AD, Lesion
(e.g. tumour) and Normal ageing. In addition, considering the character-
istics of this collection with larger thickness along the direction of depth
(z) (∼3-5mm), an advanced CNN architecture is established integrating
both 2D and 3D CNN networks. The fusion of the two CNN networks is
subsequently coordinated based on the average of Softmax scores obtained
from both networks consolidating 2D images along spatial axial directions
and 3D segmented blocks respectively. As a result, the classification ac-
curacy rates rendered by this elaborated CNN architecture are 85.2%,
80% and 95.3% for classes of AD, Lesion and Normal respectively with an
average of 87.6%. Additionally, this improved CNN network appears to
outperform the others when in comparison with 2D version only of CNN
network as well as a number of state of the art hand-crafted approaches.
As a result, these approaches deliver accuracy rates in percentage of 86.3,
85.6±1.10, 86.3±1.04, 85.2±1.60, 83.1±0.35 for 2D CNN, 2D SIFT, 2D
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KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions
of the paper constitute a new 3-D approach while applying deep learning
technique to extract signature information rooted in both 2D slices and
3D blocks of CT images and an elaborated hand-crated approach of 3D
KAZE.

Keywords Deep learning, convolutional neural network, Classification, CT
brain images, 3D CNN, SIFT, KAZE.

1 INTRODUCTION

1.1 CT Brain Images

Today, in the UK, 800,000 people have been formally diagnosed with the condi-
tion of dementia [1]. In reality, it is estimated that 60% of people who are living
with the condition go undiagnosed [2]. This is because the determination of
dementia remains a convoluted process as symptoms come and go. As a result,
more comprehensive data remain in need to provide complementary informa-
tion. Due to its prevalent, non-invasive and inexpensive nature, Computerised
Tomography (CT) is in service in nearly every hospital while presenting good
quality of visual information of human organs. In addition, CT remains proba-
bly the first imaging tool that was introduced into the study of human brain and
has since been widely applied as the first choice to eliminate other possibilities
when it comes to the diagnosis of Alzheimers’ disease (AD).

Although most patients have undertaken this scanning as a prelude to imag-
ing inspection, mainly for the purpose of ruling out the other alternatives (e.g.,
tumour, stroke, etc.), CT data have not been implemented into the clinical
diagnosis of AD due to their relatively low resolution and variations among
manual measurement of certain features, such as medial temporal lobe that is
associated with AD. Moreover, with regard to CT brain images, specified brain
atrophy is associated with not only AD but also normal ageing and cerebral vas-
cular diseases. For example, the medial temporal lobe atrophy (MTA) together
with Cerebrospinal Fluid (CSF) biomarkers has been demonstrated as the most
important diagnostic markers for AD, which however may not be specific. In
addition, the atrophy of hippocampus (in particular, left hippocampus) that
has been found in AD also emerges in healthy ageing adults [3]. But in spite of
these concerns, recently, it has been found that CT data can contribute signif-
icantly to the diagnosis of AD with 90.2% accuracy rate [3] through accurate
measurement of atrophy factors between temporal horn ratio and suprasellar
cistern ratio. Therefore, CT linear measurements can be of great value in the
work-up processes of AD patients to a large extent.

To alleviate the considerable variations [4] that may incur during manual
measurements, this study is to investigate a non-supervised automatic process
employing the state of the art of convolutional neural network (CNN) to the
classification of CT data between AD, healthy (normal) ageing and lesion brain
data.
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1.2 Convolutional Neural Network (CNN)

Deep learning models refer to a class of computing machines that can learn a
hierarchy of features by building high-level attributes from low-level ones [5,6],
thereby automating the process of feature construction. One of these models
is the well-known convolutional neural network (CNN) [6]. Consisted of a set
of algorithms in machine learning, CNN comprises several (deep) layers of pro-
cessing involving learnable operators (both linear and non-linear), and hence
has the ability to learn and build high-level information from low-level features
in an automatic fashion [7]. Stemming from biological vision processes, a CNN
applies a feed-forward artificial neural network to simulate variations of multi-
layer perceptrons whereby the individual neurons are tiled in such a way that
they respond to overlapping regions in the visual field [8]. As a direct result,
these networks are widely applied to image and video recognition. Specifically,
CNNs have demonstrated as an effective class of models for understanding image
content, proffering state of the art results on image recognition, segmentation,
detection and retrieval. In other words, when trained with appropriate regu-
larization, CNNs can achieve superior performance on visual object recognition
tasks without relying on any hand-crafted features, e.g. SIFT, SURF. In ad-
dition, CNNs have shown to be relatively insensitive to certain variations on
the inputs [9]. Significantly, recent advances of computer hardware technology
(e.g., Graphics Processing Unit (GPU)) have propitiated the implementation of
CNNs in representing images.

Theoretically, CNN can be expressed in the following formulas. For example,
for a set of training data (x(i), y(i)), where image x(i) is in three-dimension
(inclusive of RGB channel as the 3rd dimension) and y(i) the indicator vector
of affiliated class of x(i), the feature maps of an image, namely, w1,. . . ,wL will
be learnt based on CNN by solving Eq. (1).

argminw1,...,wL

1

n

n∑
i=1

`f(xi;w1, ..., wLL) (1)

Where ` refers to a suitable loss function (e.g. the hinge or log loss) and f
the selected classifier.

To obtain these feature maps computationally, in a 2D CNN, the operator
of convolution is conducted at each convolutional layer to extract features from
local neighbourhood on the feature maps acquired in the previous layer. Then
an additive bias is applied and the result is passed through a sigmoid function
as formulated in Eq. (2) mathematically in order to obtain a newly calculated
feature value vxyij at position (x,y) on the jth feature map in the ith layer.

vxyij = tanh

(
bij +

∑
m

Pi∑
p=0

Qi∑
q=0

wpq
ijmv

(x+p)(y+q)
(i−1)m

)
(2)

where the notations of those parameters in Eq. (2) are explained in Table 1.
As a result, CNN architecture can be constructed by stacking multiple layers

of convolution and subsampling in an alternating fashion. The parameters of
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Table 1: Notations of parameters in Eq. (2).

Parameter Notation
tanh(.) hyperbolic tangent function

m index over the set of feature maps in the (i-1)th layer
bij bias for the feature map f in Eq. (1)
wpq

ijk value at the position (p, q) of the kernel connected to the kth feature map

(p,q) 2D position of a kernel
Pi, Qi height and width of the kernel

CNN, such as the bias bij and the kernel weight wpq
ijk are trained using unsu-

pervised approaches [10,11].
In the same way, the 3D convolution is achieved by convolving a 3D kernel

to a block or box along both x-y (2D) and z directions where Eq. (2) is extended
into Eq. (3) to calculate the value at position (x,y,z) on the jth feature map in
the ith layer.

vxyzij = tanh

(
bij +

∑
m

Pi∑
p=0

Qi∑
q=0

Ri∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)
(3)

where Ri indicates the size of the 3D kernel along the z dimension, wpqr
ijm is

the (p, q, r)th the value of the kernel connected to the mth feature map in the
previous layer.

While CNNs have lent themselves well to the computer vision field and
achieved state-of-the-art results, they are built mainly for 2D images. Although
several papers report the work on 2D videos [12, 13] considering time as the
3rd dimension, working on 3D still images is quite a different task to a certain
extent [14]. In this study, both 2D and 3D forms of CNN are elaborated in
details for the application of classification of CT brain images with detailed
implementation presented in Section 2.

This paper is structured in the followings. Section 2 entails the methodolo-
gies that are employed in this study completed with detailed implementation
of CNN. In addition, Section 3 puts forward the results as well as comparisons
with a number of hand-crafted techniques whereas the conclusion and future
recommendations are summarised in Section 4.

2 METHODOLOGY

2.1 Data pre-processing and averaging 3D CT images

Conformed to the patient informed consent, a total of 285 datasets of 3D are
collected from Navy General Hospital, China, which compose 57, 115 and 113
data respectively in the category of Alzheimers (AD), lesion and normal. In this
collection, CT data vary in resolution in both depth between 16 to 33 slices and
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a

(a) Alzheimer’s

b

(b) Lesion

c

(c) Normal

Figure 1: The montage view of the middle 18 slices of CT images from sub-
jects with Alzheimers disease (top), Lesion (middle), and of Normal (bottom)
respectively.

dimension with either 512×512 or 912×912 pixels. Figure 1 depicts the montage
of three datasets associated with Alzheimers (top), Lesion (middle) and Normal
(bottom) respectively.

In 2D form, all slices are cropped and normalised into 200 × 200 pixels to
exclude information tags on each slice. For normal and AD data, the middle 20
slices are employed for the processing, whereas for lesion data, only slices that
contain visual lesion features (e.g. tumour) are employed. As a result, although
lesion datasets amount to the largest (N=115) among three classes, the overall
numbers of slices are similar to the other two.

In parallel, in 3D form, firstly each dataset undergoes processes of registra-
tion, segmentation and normalisation to arrive at a resolution of 200×200×20
pixels. Then, because of their relatively thickness in-between CT slices (∼3-5
mm) in comparison with their counterparts of MR images ( 0.5 mm), spatial
normalisation is performed to align all 3D CT images into the same space and
opts for the approach of rigid body geometric transformation [14].

After normalisation, each 3D dataset is divided into 40× 40×10 boxes. Sim-
ilar to 2D form, for both AD and normal data, all the boxes/blocks are applied
to train the CNN network whereas for lesion data, only blocks that contain
lesion contents are employed.

2.2 Implementation of 2D and 3D CNNs

In this study, the implementation of 2D convolutional deep learning neural net-
work (CNN) takes shape of MatConvNet [11] written in Matlab software, along
the axial direction of the brain. Figure 2 schematically illustrates the deep
learning network architecture employed in this study integrating both 2D and
3D CNNs networks. Each network consists of seven layers whereas each layer
embodies a number operators (liner or nonlinear), mainly Convolution and Sub-
sampling. The Conv operator usually computes the output of neurons to be
re-connected to local regions in the input, by producing a dot product between
their weights and a small region they are supposed to link to in the input volume.
For example, the input size of 11×11×96 in layer 1 (i.e. Conv-1) at Figure 2
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Figure 2: The fusion of both 2D and 3D CNNs for CT images.

top graph, indicates the neighbourhoond filter (F) size, i.e. weight, being 11×11
whereas 96 bank of filters are chosen to apply. In the subsampling as illustrated
in Figure 2, the resolution of the feature maps is reduced by pooling over local
neighbourhood on the feature maps in the previous layer, thereby increasing
invariance to distortions on the inputs. The down size rate is controlled by
pooling stride (P-S) and is set to be 2 at layer 1, i.e. the data size has been
halved after pooling stage.

y = f(x) = fL(..., f2(f1(x,w1), w2), ...), wL) (4)

Specifically, in each layer, to learn jointly, both forward and backward pro-
cessing are staged composed of several operators in an end-to-end manner. As
such, a forward neural network tends to be the composition of a number of
functions as formulated in Eq. (4) [11].

Each function fl takes a datum xl as input that has a size of M×N pixels×K
channels (default K being 3 representing R, G, and B colour channels) and a
parameter vector wl, then produces an output datum x(l+1). The very first
input of x = x1 indicates a CT image that is to be processed whereas the rest of
xl (l¿1) are intermediate feature maps. For each convolutional layer, the initial
input filter bank of wi is randomly generated but with pre-defined filter sizes.
For example, in Figure 2 top graph, for Conv-1, the filter size is set as 11×11×3
, generating 96 filter banks. The output of the convolution with this bank of
filters, y, is assessed in Eq. (4).

yi′j′k′ = sumijk(wijkk′xi+i′,j+j′,k) (5)

where k′ = 96, k = 3, i′ = 11, and j′ = 11 for the first Conv layer. In
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other words, each convolutional operator generates K dimensional map of y by
Eq. (5). For example, for block 1, If x0=(200,200,3) with the original image
size, then feature map has a size of x1=(48,48,96) after layer-1 convolutional
operator. The calculation of the size of feature maps follow the rule that is set
out in Eq. (6).

xsizei+1 = (
xsizei − Fi + 2× Pad

Stride
+ 1) (6)

For example, in Figure 2 top graph layer 1, the parameters are set to be F0=
(11×11) along both x any y directions, Pad = 0, Stride = 4, leading to the size
of x1 being 48×48×96 (i.e., 48 = (200−11)/4+1). Since the images are in grey
level, the 3rd channel representing RGB colours is ignored at this paper.

Additionally, each component or pixel of a feature map is subject to a non-
linear gating process to legitimize the processed data. In doing so, the simplest
approach of rectified linear unit (ReLU) is applied as conveyed in Eq. (7) that
thresholds the data with zero.

yijk = max(0, xijk) (7)

This operator however does not change the size of each feature map.
To down size the feature map, pooling is employed to coalesce nearby feature

values into one downsided samplings and reduce the influence of noise while
operating on each individual feature channel. The most commonly used choice
of pooling remains to be max-pooling to select the largest component within a
neighborhood as manifested in Eq. (8).

yijk = max{yi′j′k : i ≤ i′ < i+ p, j ≤ j′ < j + q} (8)

Whereas the downsize rate is controlled by pooling stride (P-S). As a result,
the output size of Layer 1 in Figure 2 top graph, has a dimension of (24,24,96)
where 24= 48

Pool Stride
that is computed using Eq. (6) and where Pool Stride =

2.
Another important operator is Dropout to deal with overfitting in the CNN

networks. As such, randomly dropout units (along with their connections)
from the neural network during training stage are selected and discarded. The
dropout rate in this study is set to be 0.5, i.e. half of the data units.

Once each layer of forward processing is completed, backward process pro-
ceeds to ensure that the parameters of feature maps of w = (w1, . . . , wL) are
learned in such a way that the overall function of z = f(x,w) sustains a mini-
mum loss, `(z, ẑ), where z = (z1, . . . , zi, . . . ) corresponds with the output value
of xi and ẑi the ground truth of xi in the training datasets. Therefore the loss
function can be determined in Eq. (9).

L(w) =
1

n

n∑
i=1

`(zi, f(xi, w)) (9)
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There exists a number of algorithms to minimise L. In this research, the
approach of gradient descent is employed which quantifies the gradient of L at
a current solution wt and then updates the latter along the direction of fastest
descent of L as revealed in Eq. (10).

wt+1 = wt − ηt
∂f

∂w
(wt) (10)

where ηt refers to the learning rate that is usually pre-defined and is within
the range of (0,1). In this way, parameters of w can be solved using training
datasets.

Most importantly, while filter sizes can be of any size within the limit of data
sizes, they are chosen manually in advance. In addition, the dimension of the
output layer at the end of CNN architecture must be 1× 1 ×3, which reduces
the full input image into a single vector of class scores (in our case, class number
is 3), arranged along the depth dimension and can be computed using Eq. (??)
together with the values of pooling stride. For example, the output sizes of all
7 Layers of 2D CNN laid out in Figure 2 entail sizes of (24,24,96), (6,6,256),
(6,6,384), (6,6,256), (1,1,192), (1,1,96) and (1,1,3) respectively when the input
sizes are (200,200).

In 3D CNN, the implementation of each block contains two operators of
convolution and pooling respectively as depicted in Figure 2 bottom graph.
Analogous to 2D CNN, 3D max-pooling operator is implemented by taking a
block with k × m × n dimension as an input and yielding a single value that
holds the maximum of the block. Similarly, given the input size of (40,40,10),
the output sizes of the seven layers are of (9,9,9,96), (7,7,8,256), (5,5,7,384),
(6,6,7,256), (4,4,5,1024), (1,1,2,4096), and (1,1,1,3) respectively.

2.3 Classification and Fusion

In 2D form, image slices are applied to train the 2D CNN model, whereas in 3D
form, small cubes (40 × 40 × 10) are utilised. The classification at each network
is performed using Softmax classifier [15] that determines a score of normalized
class probabilities. Eq. (11) defines mathematically the Softmax function.

fi(z) =
ezj∑
k e

zk
(11)

where the function takes a vector of arbitrary real-valued scores (in z) and
compresses it to a vector of values between zero and one that sum to one. The
obtaining of the class scores f involves the calculation of cross-entropy loss that
is formulated in Eq. (12).

Li = −fyi
+ log

∑
j

efj (12)

where the notation fj refers to the jth element of the vector of class scoresf
[15].
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Figure 3: The flowchart of classification of CT images applying 3D SIFT fea-
tures.

After the establishment of class scores at each of 2D and 3D networks indi-
vidually, the fusion takes place linearly. For the category of Normal subject, a
datum is classified as Normal only if more than 95% of the slices of its dataset
are labelled as Normal as well as all cubes (or boxes) have to be labelled as
Normal , whereas for classes of AD and Lesion, the majority voting ascertain
the final classification scores.

2.4 Classification based on hand-crafted features of 3D
SIFT

In this research, comparison with two hand-crafted approaches for feature detec-
tion is also conducted, including Scale Invariant Feature Transform (SIFT) [16]
and KAZE [17].

As demonstrated in Figure 3, the implementation of 3D SIFT engages in
the process of SIFT feature detection through the application of Difference of
Gaussian (DoG) operators and sparse coding [18, 19], codebook generation by
the employment of the paradigm of Bag of visual Words (BoW) [20, 21], image
representation using the created codebook and finally classification based on
support vector machines (SVM).

2.5 Implementation of 3D KAZE features for classifica-
tion

While SIFT can extract features that maintain scale invariant, it lacks sophisti-
cation in locating boundary and structural details, which is particularly impor-
tant for medical images where precise delineation of a region is in need most of
the time [22]. This has led to the investigation of another hand-crafted approach
of KAZE technique. By deciding to apply a nonlinear scale space through the
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Table 2: The data sets (in subject number) for both training and testing applied
in each network. The numbers in brackets are the total number of 2D slices and
3D blocks in that category.

Alzheimer’s Lesion Normal Total
Training 30 80 70 180

2D Frame 700 700 1300 2700
3D boxes 775 1160 1860 3795

Test 27 35 43 105
2D Frames 300 247 829 1376
3D boxes 675 840 1161 2676

Total 57 115 113 285
2D frames 850 947 2129 4076
3D boxes 1450 2000 3021 6471

consolidation of nonlinear diffusion filtering [23], KAZE circumvents the short-
comings that SIFT presents.

To extend this technique to 3D, in this study, the detection of KAZE features
engages in the processes of 3D Gaussian smoothness, calculation of conductivity,
creation of nonlinear scale spaces, extraction of features and finally coarse-to-
fine suppression. Consequently, the gradients of feature points can be detected
by the application of either Eq. (13) or Eq. (14) or both at two different levels.

g1(|∇(x, y, z)|) = exp (−(
| ∇(x, y, z) |

K
)2) (13)

g2(|∇(x, y, z)|) =
1

1 + ( |∇(x,y,z)|
K )2

(14)

where K indicates the contrast parameter to control the smooth level, which
can be determined automatically based on the intensity distribution levels of CT
images, ∇ the gradient operator and | . | the absolute value.

3 RESULTS

Based on the formulae entailed above, both experimental and evaluation results
are attained. Table 2 provides detailed numbers of images that are utilised in
each category in this evaluation. In total, there are 285 datasets in 3D form
consisted of 4076 2D slices. They are divided into 2 sub-groups while applying
CNN approach, which are training and testing respectively.

For training, 180 datasets are assigned and selected randomly containing
2700 in 2D and 3795 in 3D, whereas the remaining 105 datasets are reserved as
test sets. Consequently, the confusion matrix for the testing data is given in Ta-
ble 3 that presents the accuracy rates of classification for the three classes, which
gives 85.2%, 80.0%, and 95.3% for Alzheimers, Lesion, and Normal respectively,
with an average of 87.62%.
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Table 3: The confusion matrix of testing results of three clusters using improved
CNN networks.

Alzheimer’s Lesion Normal Accuracy rate (%)
Alzheimer’s 23 4 0 85.2

Lesion 3 28 4 80.0
Normal 2 0 41 95.3
Average 87.62

Table 4: The confusion matrix for 3D KAZE approach.

Alzheimer’s Lesion Normal Accuracy rate (%)
Alzheimer’s 44 5 8 77.2

Lesion 8 93 14 80.9
Normal 8 5 100 888.5
Average 83.15 ± 0.35

Evaluation with the two hand-crafted techniques of 3D KAZE and 3D SIFT
also takes place with confusion matrixes giving in Tables 4 and 5 respectively.
In summary, the average accuracy rate is 83.2% for 3D KAZE and 85.2% for 3D
SIFT. When applying these two approaches, one-verse-all strategy is appointed
during the training/testing stage due to the concern of small number of datasets.
In this way, one data set (N=1) is randomly selected as a test datum whereas
the rest (N=284) remains as training sets throughout the whole database. The
data obtained in both Tables ?? and 5 are the averaged results of 10 rounds of
training-test processes. Subsequently, the standard deviations of these 10 rounds
for KAZE and SIFT lie within the range of ±0.35% and ±1.60% respectively.

While each CT dataset is of 3D form, the depth between every 2 slices along
the depth-direction is relatively large (∼ 3.0-5.0mm). Hence it is reasonable
to accept that CT images can also be considered on a 2D basis. Accordingly,
both 2D versions of SIFT and KAZE for feature detection are evaluated and
compared. Towards this end, Fisher vector [24] coupled with VLFeat library [25]
is applied to represent features. The final classification score for each subject is a
linear combination of scores of histograms for all the slices. As discussed above,
for the normal class, each subject is clustered as normal unless all but one slice
are labelled as Normal (i.e. req 95 %). Table 6 presents the comparison results

Table 5: The confusion matrix for 3D SIFT approach.

Alzheimer’s Lesion Normal Accuracy rate (%)
Alzheimer’s 36 6 15 63.2

Lesion 4 102 9 88.7
Normal 3 6 105 92.9
Average 85.26 ± 1.60
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Table 6: Comparison between CNN and hand-crafted approaches.

Methods Accuracy rate (%)
2D SIFT 85.61 ± 1.10
2D KAZE 86.31 ± 1.04
3D SIFT 85.26 ± 1.60
3D KAZE 83.15 ± 0.35
2D CNN 86.32
3D CNN 87.62

and indicates that the 2D forms of hand-crafted approaches of both SIFT and
KAZE appear to outperform their 3D counterparts, especially for KAZE with
a margin of 3% differences, which could be explained away by the fact that
this group of CT data do have substantial low depth resolution. In addition,
the proposed synergy of 2D/3D CNN approach appears to have achieved the
best result so far with 87.6% accuracy whereas both 2D CNN and 2D KAZE
deliver similar performance standing in second place. Considering the fact that
CNN is renowned for performing better with larger datasets whereas this study
has a small disposal of samples (N=285), the good performance that CNN
based approaches have confirmed the potential that deep learning techniques
possess for classification of CT images. It is envisaged that more datasets will
be collected in the future to take the findings forward in order to benefit a wider
communities, including patients, clinicians and academia.

4 CONCLUTION AND DISCUSSION

This research concerns with the classification of CT images into three categories
of Alzheimers, Lesion, and Normal through the application and elaboration of a
deep learning neural network, CNN. Although the category of Lesion comprises
the largest number of the dataset (N=115), not every 2D slice or 3D block
contains lesion signature information, e.g. tumour. As a result, the lesion group
has the smallest number of images with 947 slices, whilst AD and Normal groups
holding 1000 and 2129 images respectively in 2D form. Although the differences
in number may not be significant, in particular between AD and Lesion groups,
the classification results appear to be in line with the number of data that
each group has. For example, the normal subject group that dominates the
datasets with a total of 2129 image slices produces the highest accuracy rate of
95.3%. Similar trend also appears in the application of 3D KAZE and 3D SIFT
approaches. Therefore the direct conclusion remains that more data will achieve
better classification results. In addition, the results given by KAZE tends to
be more robust with less variations than by SIFT, especially 3D KAZE that
sustains only ±0.35% standard deviations.

In addition, while CT brain data are in three dimensional, the larger thick-
ness (∼ 3-5mm) between slices in this collection has led to the classification
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results in 3D form worse than in 2D form. The fusion therefore takes place to
take the advantage of assimilation of both 2D and 3D networks while preserving
differentiating characteristics of CT images in both forms. Similarly, it appears
that the 3D version of both hand-crafted approaches of SIFT and KAZE are
relegated from their 2D form with worse performance. In the future, this phe-
nomenon will be further explored with a collection of more CT data and higher
spatial resolutions.

At present, although nearly every patient with suspected AD undertakes
CT scan, mainly for ruling out the other explanations, CT data have not been
included in the diagnosis process yet. With the encouragement of classifica-
tion results obtained from deep learning techniques, it is anticipated that in
the future, a learnable expert system will be in the pipeline to assist clinicians
to corroborate Alzheimers disease while integrating all the available data (e.g.
memory test, lab test, CT images, etc.), leading to the improvement of current
diagnosis rate of AD (∼ 33%). Although CT images present a number of di-
agnostic features of AD as detailed in [26], for example, the neuro-pathologic
changes in the temporal lobe, including focal atrophy of the subiculum and
entorhinal cortex, manual quantification of these key measurements does intro-
duce considerable errors, which can lead to decisions being problematic [4]. This
research intends to shed light on the significant contribution that unsupervised
deep learning techniques can make towards classification of CT data, which in
the next stage will be followed by the measurement of those AD diagnostic fea-
tures precisely using CNN, allowing CT images to measure up to their potentials
and benefit patients, caregivers and society as a whole.
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