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Abstract. Node overlap removal is a necessary step in many scenarios
including laying out a graph, or visualizing a tag cloud. Our contribution
is a new overlap removal algorithm that iteratively builds a Minimum
Spanning Tree on a Delaunay triangulation of the node centers and re-
moves the node overlaps by ”growing” the tree. The algorithm is simple
to implement yet produces high quality layouts. According to our ex-
periments it runs several times faster than the current state-of-the-art
methods.

1 Introduction

Removing node overlap after laying out a graph is a common task in network
visualization. Most graph layout algorithms [23] consider nodes as points that do
not occupy any geometrical space. In practice, nodes often have shapes, labels,
and so on. These shapes and labels may overlap in the visualization and affect
the visual readability. To remove such overlaps a specialized algorithm is usually
applied.

The main contribution of this paper is a new node overlap removal algorithm
that we call Growing Tree, or GTree further on. The basic idea is to first capture
most of the overlap and the local structure with a specific spanning tree on top
of a proximity graph, and then resolve the overlap by letting the tree ”grow”.

We compare GTree with PRISM [6], which is widely used for the same pur-
pose. Needing more area than PRISM, our method preserves the original layout
well and is up to eight times faster than PRISM. To compare the two algo-
rithms we implemented GTree in the open source graph visualization software
Graphviz !, where PRISM is the default overlap removal algorithm. On the other
side, GTree is the default in MSAGL?, where we also have an implementation
of PRISM. We ran comparisons by using both tools.

! http://www.graphviz.org/
2 https://github.com/Microsoft /automatic-graph-layout
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2 Related Work

There is vast research on node overlap removal. Some methods, including hierar-
chical layouts [4], incorporate the overlap removal with the layout step. Likewise,
force-directed methods [5] have been extended to take the node sizes into ac-
count [17, 16, 24], but it is difficult to guarantee overlap-free layouts without
increasing the repulsive forces extensively. Dwyer et al. [2] show how to avoid
node overlaps with Stress Majorization [7]. The method can remove node over-
laps during the layout step, but it needs an initial state that is overlap free;
sometimes such a state is not given.

Another approach, which we also choose, is to use a post-processing step. In
Cluster Busting [18, 8] the nodes are iteratively moved towards the centers of
their Voronoi cells. The process has the disadvantage of distributing the nodes
uniformly in a given bounding box.

Imamichi et al. [15] approximate the node shapes by circles and minimize a
function penalizing the circle overlaps.

Starting from the center of a node, RWorldle [22] removes the overlaps by
discovering the free space around a node by using a spiral curve and then utilizing
this space. The approach requires a large number of intersection queries that are
time consuming. This idea is extended by Strobelt et al. [21] to discover available
space by scanning the plane with a line or a circle.

Another set of node overlap removal algorithms focus on the idea of defining
pairwise node constraints and translating the nodes to satisfy the constraints [20,
11, 19, 13]. These methods consider horizontal and vertical problems separately,
which often leads to a distorted aspect ratio [6]. A Force-transfer-algorithm is
introduced by Huang et al. [14]; horizontal and vertical scans of overlapped nodes
create forces moving nodes vertically and horizontally; the algorithm takes O(n?)
steps, where n is the number of the nodes. Gomez et al. [9] develop Mixed Integer
Optimization for Layout Arrangement to remove overlaps in a set of rectangles.
The paper discusses the quality of the layout, which seems to be high, but not
the effectiveness of the method, which relies on a mixed integer problem solver.
Dwyer et al. [3] reduce the overlap removal to a quadratic problem and solve it
efficiently in O(nlogn) steps. According to Gansner and Hu [6], the quality and
the speed of the method of Dwyer et al. [3] is very similar to the ones of PRISM.

The ProjSnippet method [10] generates good quality layouts. The method
requires O(n?) amount of memory, at least if applied directly as described in the
paper, and the usage of a nonlinear problem solver.

In PRISM [6, 12], a Delaunay triangulation on the node centers is used as the
starting point of an iterative step. Then a stress model for node overlap removal
is built on the edges of the triangulation and the stress function of the model
is minimized. GTree also starts with building this Delaunay triangulation, but
then the algorithms diverge.



3 GTree Algorithm

An input to GTree is a set of nodes V, where each node i € V is represented
by an axis-aligned rectangle B; with the center p;. We assume that for different
i,7 € V the centers p;,p; are different too. If this is not the case, we randomly
shift the nodes by tiny offsets. We denote by D a Delaunay triangulation of the
set {p; : 1 € V}}, and let E be the set of edges of D.

On a high level, our method proceeds as follows. First we calculate the tri-
angulation D, then we define a cost function on E and build a minimum cost
spanning tree on D for this cost function. Finally, we let the tree “grow”. The
steps are repeated until there are no more overlaps. The last several steps are
slightly modified. Now we explain the algorithm in more detail.

We define the cost function ¢ on E in such a way that the larger the overlap
on an edge becomes, the smaller the cost of this edge comes to be. Let (i,5) € E.
If the rectangles B; and B; do not overlap then c(i,j) = dist(B;, B;), that is
the distance between B; and B;. Otherwise, for a real number ¢ let us denote by
B, (t) a rectangle with the same dimensions as B; and with the same orientation,
but with the center at p; +¢(p; —p;). We find ¢;; > 1 such that the rectangles B;
and B, (t;;) touch each other. Let s = ||p; — p;||, where ||| denotes the Euclidean

norm. We set ¢(Z,j) = —(t;; — 1)s. See Figure 1 for an illustration.
B;
D d
so // d=tijs L dist(B;, B;)
Di < Cij =S — d B; Cij = dist(Bi, Bj)
overlapping nodes non overlapping nodes

Fig. 1: Cost function c;; for edges of the Delaunay triangulation. For overlapping
nodes —c;; is equal to the minimal distance that is necessary to shift the boxes
along the edge direction so they touch each other.

Having the cost function ready, we compute a minimum spanning tree T on
D. Remember that it is a tree with the set of vertices V' for which the cost,
> ecr c(e), is minimal, where £’ is the set of edges of the tree. We use Prim’s
algorithm to find 7.

The algorithm proceeds by growing 7', similar to the growth of a tree in
nature. It starts from the root of T'. For each child of the root overlapping with
the root, it extends the edge connecting the root and the child to remove the
overlap. To achieve this, it keeps the root fixed but translates the sub-tree of the
child. The edges between the root and other children remain unchanged. The
algorithm recursively processes the children of the root in the same manner. This
process is described in Algorithm 1.

The number ¢;; in line 5 of Algorithm 1 is the same as in the definition of
the cost of the edge (¢,7) when B; and B; overlap, and is 1 otherwise.



Algorithm 1: Growing T

Input: Current center positions p and root r
Output: New center positions p’

1 p;" = Pr

2 GrowAtNode (r)

3 function GrowAtNode (i)

4 foreach j € Children(i) do

L p; = pi +tij(p; — pi)

[

GrowAtNode (j);

The algorithm does not update all positions for the child sub-tree nodes
immediately, but updates only the root of the sub-tree. Using the initial positions
of a parent and a child, and the new position of the parent, the algorithm obtains
the new position of the child in line 5. In total, Algorithm 1 works in O(|V])
steps. The choice of the root of the tree does not matter. Different roots produce
the same results modulo a translation of the plane by a vector. Indeed it can be

&

(f) final overlap free graph
(d) iteration 4 (e) iteration 5 with original shapes

Fig. 2: Overlap removal process with the minimum spanning tree on the proxim-
ity graph, where the latter here is a Delaunay triangulation on rectangle centers.
The blue edges form a tree; there are four different trees in the figure. The tree
edges connecting overlapped nodes are thick and solid. In each iteration the
thick edges are elongated and the dashed tree edges shift accordingly. Overlap
is completely resolved in four iterations.



shown that after applying the algorithm, for any 7, j € V' the vector p; — pj is
defined uniquely by the path from 7 to j in T

While an overlap along any edge of the triangulation exists, we iterate, start-
ing from finding a Delaunay triangulation, then building a minimum spanning
tree on it, and finally running Algorithm 1. See Figure 2 for an example.

When there are no overlaps on the edges of the triangulation, as noticed
by Gansner and Hu [6], overlaps are still possible. We follow the same idea as
PRISM and modify the iteration step. In addition to calculating the Delaunay
triangulation we run a sweep-line algorithm to find all overlapping node pairs
and augment the Delaunay graph D with each such a pair. As a consequence,
the resulting minimum spanning tree contains non-Delaunay edges catching the
overlaps, and the rest of the overlaps are removed. This stage usually requires
much less time than the previous one.

It is possible to create an example where the algorithm will not remove all
overlaps. However, such examples are extremely rare and have not been seen yet
in practice of using MSAGL or in our experiments. MSAGL applies random tiny
changes to the initial layout which prevents GTree from cycling.

4 Comparing PRISM and GTree by Measuring Layout
Similarity, Quality, and Run Time

Our data includes the same set of graphs that was used by the authors of PRISM
to compare it with other algorithms [6]. The set is available in the Graphviz
open source package®. We also used a small collection of random graphs and
a collection of about 10,000 files residing here*. For the experiments we use a
modified version of Dot, where we can invoke either GTree or Prism for the over-
lap removal step, and we also used MSAGL, where we implemented PRISM and
GTree. MSAGL was used only to obtain the quality measures. We ran the ex-
periments on a PC with Linux, 64bit and an Intel Core i7-2600K CPUQ@3.40GHz
with 16GB RAM.

Some of resulting layouts can be seen in Figures 3, 5, 6.

One can try to resolve overlap by scaling the node centers of the original
layout. If there are no two coincident node centers this will work, but the resulting
layout may require a huge area if some centers are close to each other. We
consider the area of the final layout as one of the quality measures, and usually
PRISM produces a smaller area than GTree, see Table 1.

In addition to comparing the areas, we compare some other layout properties.
Following Gansner and Hu [6], we look at edge length dissimilarity, denoted as
Oedge- This measure reflects the relative change of the edge lengths of a Delaunay
Triangulation on the node centers of the original layout.

The other measure, which is denoted by 0g4isp, is the Procrustean similar-
ity [1]. It shows how close the transformation of the original graph is to a com-

3 http://www.graphviz.org
* https://www.dropbox.com/sh/4q0k89yrv4x3ae3/AA A3xyKFRhLyyHXcG9jpcgata?dl=0
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PRISM original layout GTree

Fig.3: Comparison between PRISM, original, and GTree layouts. In four top
rows the initial layouts were generated randomly. At the bottom are the draw-
ings of nodes of graph ”"root” which was initially laid out by the Multi Dimen-
sional Scaling algorithm of MSAGL. In our opinion, the initial structure is more
preserved in the right column, containing the results of GTree.



bination of a scale, a rotation, and a shift transformation. PRISM and GTree
performs similar in the last two measures as Table 1 shows.

To distinguish the methods further, we measure the change in the set of k
closest neighbors of the nodes. Namely, let pi,...,p, be the positions of the
node centers, and let k be an integer such that 0 < k < n. Let I = {1,...,n}
be the set of node indices. For each ¢ € I we define Ni(i) C I\ {i}, such
that |Nk(p,i)| = k, and for every j € I\ Ni(p,i) and for every j° € Ni(p,1)
holds |lp; — pill > |lpjs — pill. In other words, Ni(p,i) represents a set of k
closest neighbors of i, excluding i. Let pf,...,p!, be transformed node centers.
To see how much the layout is distorted nearby node 4, we intersect Ny (p,?)
and Ny (p',i). We measure the distortion as (k —m)?, where m is the number of
elements in the intersection. One can see that if the node preserves its k closest
neighbors then the distortion is zero.

Our experiments for k£ from 8 to 12 show that under this measure GTree
produced a smaller error, showing less distortion, on 8 graphs from 14, and on
the rest PRISM produced a better result, see Table 2. GTree produced a smaller
error on all small random graphs from other collections®.

Table 1: Similarity to the initial layout (left) and number of iterations for dif-
ferent graph sizes and different initialization methods (right). PR stands for
PRISM

Oedge Odisp area init. layout: neato SFDP

Graph PR GTree PR GTree PR GTree Graph |V| |E| PR GTree PR GTree
dpd 0.34 0.28 0.37 0.36 0.82 0.84 dpd 36 108 4 7 3 6
unix 0.22 0.19  0.24 0.20 2.38 2.38 unix 41 49 3 4 12 5
rowe 0.29 0.26  0.23 0.24 0.68 0.73 rowe 43 68 5 4 13 7
size 0.39 0.37  0.24 0.26 1.09 1.28 size 47 55 7 3 9 5
ngkl0.4 0.30 0.30  0.27 0.30 0.00 0.00 ngkl04 50 100 6 3 14 7
NaN 0.56 0.44  0.73 0.51 4.03 4.34 NaN 76 121 8 3 24 6
b124 0.55 0.53  0.97 0.83 5.52 6.22 b124 79 281 14 4 30 12
b143 0.67 0.70  1.12 0.93 3.62 3.88 b143 135 366 21 6 37 12
mode  0.54 0.50  0.59 0.53 1.53 2.29 mode 213 269 37 8 1 6
b102 0.71 0.77  1.43 1.27 4.50 6.62 b102 302 611 60 24 113 19
XX 0.75 0.70  1.65 1.42 6.21 9.57 XX 302 611 83 18 50 19
root 1.09 1.19  2.89 2.45  34.5891.87 root 1054 1083 95 18 99 22
badvoro 0.88 0.92 227 2.42  25.6847.43 badvoro1235 1616 40 20 50 23
b100 0.84 0.98  3.083.14  20.6437.38 b100 1463 5806 80 24 136 28

We ran tests on the graphs from a subdirectory of the same site called
“dot_files”, let us call this set of graphs collection A. Each graph from A rep-
resents the control flow of a method from a version of the .NET framework. A
contains 10077 graphs. The graph sizes do not exceed several thousands. We
used the Multi Dimensional Scaling algorithms of MSAGL for the initial layout
in this test. The results of the run are summarized in Table 3.

® https://www.dropbox.com/sh/4q0k89yrv4x3ae3/AAA3xyKFRhLyyHXcG9jpcgata?dl=0
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Table 2: k closest neighbors error, the Multi Dimensional Scaling algorithm of
MSAGL was used for the initial layout. PR stands for PRISM.

k=38 k=9 k=10 k=11 k=12
Graph PR GTree PR GTree PR GTree PR GTree PR GTree
dpd 7.75 6.06 9.61 7.36 9.5 8 10.14 85 9.97 7.64

unix 8.56 7.05 10.51 8.8 10.9510.02 11.6610.54 13 11.41
rowe 6.28 8.09 7.09 9.95 7491049 9.12 114 11.0512.51
size 4.68 6.09 547 6.47 628 7.57 6.89 813  8.26 10.02
ngkl04 6.76 7.4 7.52 9.26 828 11.38 10.7213.74 11.9214.66
NaN 11.83 8.95 14.46 11.5 17.3213.88 19.8816.37 22.17 19.7
b124 11.0311.44 13.2213.56 14.7615.54 15.9117.32 18.2320.04
b143 13.4912.39 16.3114.99 19.4917.93 23.1121.04 26.5324.43
mode 16.9111.46 20.5813.95 24.6816.85 29.5419.92 34.4822.56
b102 15.9914.62 19.6118.78 23.3822.77 27.2826.77 32.1531.45
XX 15.6815.65 19.0119.45 23.0523.37 26.9827.35 31.2932.47
root 17.09 15.7 20.8919.36 25.48 23.3 30.4827.66 35.7432.83
badvoro 16.1815.15 20.1618.98 24.3723.28 29.1828.03 34.2933.29
b100 18 19.25 22.1123.65 26.7928.69 32.0334.46 37.44 40.5

Table 3: Statistics on collection A. Here k-cn stands for k-closest neighbors, and
“iters” stands for the number of iterations. Each cell contains the number of
graphs for the measure on which the method performed better. We can see that
PRISM produced a layout of smaller area than the one of GTree on 8498 graph,
against 1579 graphs where GTree required less area. From the other side, GTree
gives better results on all other measures. The columns of k-cn and “iters” do
not sum to 10077, the number of graphs in A, because some of the results were
equal for PRISM and GTree.

Method  k-cn ceqge oaisp area iters time

PRISM 3237 4741 4114 8498 46 7
GTree 4088 5336 5963 1579 9986 10070

Runtime Comparison

Both methods remove the overlap iteratively using the proximity graph. How-
ever, while PRISM needs O(|V|-/]V]) time to solve the stress model, GTree
needs only O(|V]) time per iteration with the growing tree procedure. There-
fore, GTree is asymptotically faster in a single iteration. In addition, as Table 1
(right) shows, GTree usually needs fewer iterations than PRISM, especially on
larger graphs. The overall runtime can be seen in Figure 4. It shows that GTree
outperforms PRISM on larger graphs.

In Figure 5 we experiment with the way we expand the edges. Instead of the
formula p; = p}+t;;(p; —pi), which resolves the overlap between the nodes i and
j immediately, we use the update p; = p} + min(t;;, 1.5)(p; — p;). As a result,
the algorithm runs a little bit slower but produces layouts with smaller area.



Overlap Removal Method 4 PRISM « GTree

Graph IVl |E| PRISM GTree A
dpd 36 108 0.01 0.00
unix 41 49 0.00 0.00
rowe 43 68  0.01 0.01
size 47 55 0.00 0.01
ngkl0_4 50 100 0.00 0.00
NaN 76 121 0.01 0.00
b124 79 281 0.01 0.01
b143 135 366 0.03 0.00

1]
A
£ mode 213 269 008 002 =
g b102 302 611 019 007
= xx 302 611 027 005 A
root 1054 1083 119 021
badvoro 1235 1616 058  0.26
b100 1463 5806 146  0.37
4 . .
Fy 2 :
0- M4 b O
0 500 1000 1500
Graph size |V|
Fig. 4: Runtimes for PRISM and GTree.
-
e
=
e
E:
(a) initial layout (b) PRISM (c) GTree

Fig.5: root graph with 1054 nodes and 1083 edges. (a) initial layout with
NEATO, (b) applying PRISM, (c) applying GTree.

5 Conclusion & Future Work

We proposed a new overlap removal algorithm that uses the minimum spanning
tree. The algorithm is simple and easy to implement, and yet it preserves the
initial layout well and is efficient.

Although we introduced our approach in the context of graph visualization,
our method can also be used for any other purpose where overlap needs to be
resolved while maintaining the initial layout. Finding a measure of how well an
overlap removal algorithm preserves clusters of the initial layout seems to be an
interesting challenge.



cE original PRISM
GTree original PRISM

Fig. 6: Results for GTree and PRISM initialized with SFDP. From top to bottom
and left to right: b100, b102, b124, b143, badvoro, dpd, mode, - NaN, ngk10_4,
root, rowe, size, unix, and xx. To make the original drawings more readable
they have been changed; In most cases the nodes were diminished and the edges
removed. The drawings were scaled differently.
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