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Abstract

We introduce the notion of the information index and
present a non-parametric generalisation of the Rao—Cramér
inequality:.

We show that unbiased estimators do not exist if the in-
formation index is larger than two.

For a typical non—parametric class P of distributions nei-
ther estimator is asymptotically normal with the optimal
rate uniformly over P.
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1 Introduction

Typical estimation problem: given a sample Xj,..., X,
of 1.1.d. observations from an unknown distribution P &
P, estimate a ap .
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Hellinger distance: dfl, v? distances: d)?.
A typical regularity condition:

d (Py;Pyin) ~ ||h||*Ip/8 or di(Py:Pon) ~|IR||* Ty (1)

as h—0 forevery 6€0,0+hecO, where Iy is “Fisher’s
information”. A
If (1) holds and estimator 6,, is unbiased, then

sup IpIEy||0, — 0]> > 1/n. (2)
0cO

This is the celebrated Fréchet—Rao—Cramér inequality.

[f unbiased estimators with a finite second moments
exist, then the optimal unbiased estimator is the one that
turns a lower bound into equality:.

Barankin [1]: a parametric estimation problem where
NO unbiased estimator with Eg||6, — 0||? < oo .

We argue: in typical non-parametric situations —
NO unbiased estimators with a finite 2nd moment.

2 Information index

We extend the notion of regularity of a parametric family
P ={Fy, 00} of distributions.

Definition. Parametric family P obeys the reg-
ularity condition (R,) if there exists number v >0



S.Y.Novak. Non-parametric Lower Bounds 3

and function I g>0 such that as h—0,
d((Py; Pop) ~ I gllh|)” (t€O©,t+h€0). (R,

Similarly we define (R )-regular parametric family.

We call v the “information” inder.
We call I. g the “information” function.

Information index v indicates how “rich” or “poor”
the class P is.

Regular parametric family of distributions: vr=2.
(R,)- parametric families: v <2.

Non—parametric classes: (R,) with v>2.

Example 1. Let P, =U|0;¢t], P ={P,t>0}. Then
A’ (Pp; B) ~ h/2t (& > h\0).

Family P is not regular in the traditional sense (cf. (1)).
Yet (R, ) holds with

v=1, L, g=1/2t.
Non-uniform lower bound: for any estimator £,

supt E/ (£, — ) > 0.8/(n—1.6) (3)

>0
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as n > 2, while the uniform bound is
Sup ]E%/Z(fn —t)* = oo0.
t

The optimal estimator ¢ = max{Xy, ..., X;;}(n+1)/n
is unbiased;

E(t: —t)* = t*/n(n+2).

Lower bound indicates: the accuracy of estimation is
determined by the information index and the informa-
tion function.

Any unbiased estimators with finite second moment
if (R,) holds with v>27

We say set © obeys property (A.) if for every t €6
there exists ¢’ € © such that [[t'—t|| = €. Property (A)
holds if (A.) is in force for all small enough e > 0.

Estimator 6 has “regular” bias if for every t€© there
exists ¢; >0 such that

|Eif =Bl ~clnll  (h—=0).  (4)
We write a, > b, if a, > b,(1+0(1)) as n — oo.

Theorem 1 Assume (R,) and (A), and suppose that
estimator t, has “reqular” bias [obeys (4)].
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If v€(0;2), then

sup LB )%/ = n=2/y2 (e —1)  (5)

as n— 00, where y, is the positive root of the equation

vy =2(1—e™Y).
If v>2, then [E,||t,[|> = 00 (3t€O).

Thus, if v€(0;2), then the accuracy of estimation for
regular—bias estimators is n~4v.

Example 2. Parametric family P with densities

folz) = p(x=0)/2 + p(z+0)/2,
where ¢ is the standard normal density; ap, = 0,
d,(Py; Py) ~ h* /4.
Thus, (R,) holds with
v=4, I, g =1/16;

the accuracy of estimation cannot be better than n=1/4.

General problem: estimate a quantity of interest ap .

Corollary 2 If (R,) or (R ) holds with v>2 and
sup [Ep||a,—apl|]? < oo, then estimator a, is biased.
pPep
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3 Continuity moduli

Let ap be an element of a metric space (X, d). For any
e > 0 we denote by

Py(Pe) ={Q € P:d,(P:Q) < ¢}
the neighborhood of P € P. We call

w,(Pe) = sup d(ap;ag)/2,
QEPH(P,E)
w,(e) = Elé]%wH(P, e)

the moduli of continuity of {ap: P € P}.
Similarly we define P, (P, €), P (P, ), w(-), wy,(-).
Continuity moduli describe how the “closeness” of ag
to ap reflects the “closeness” of () to P.
The “richer” class P, the poorer the accuracy of esti-

mation.

Lemma 3 Assume that for any c > 0 there exists
C € (0;00) such that w.(ce) < Cw.(e). For any esti-
mator a, and every Py € P,
sup P(d(an; ap) >w, (P, €)) > (1-)"/4,  (6)
PePr(Py,e)

sup P(d(an; ap)>w (Po,€)) = [14(1+)"?] 7,
PGPX(PQ,E)

For example, (6) and Chebyshev’s inequality yield

sup B, d(a,; ap) > w, (Py,e)(1—e*)Y2.  (7)
PEPH(P(),E)
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Maximize w,(P,e)(1—&*)" in e.
If for some JHJJ > ()

w, (P, e) > JH7P527’ (P € P) (8)

then the rate of estimation cannot be better than n™" .

If (R,) holds for a parametric subfamily of P, then
20, (P ) ~ (/)" )
If (R, ) holds, then
2w (P, e) ~ (€2/1,. )V
Thus, (R,) and/or (R,) yield (8) with
r=1/v;

the accuracy of estimation cannot be better than n=" .

[ (8) holds for all small enough & and J,, is uniformly
continuous on P, then

s JAEL (G ap)? = (rfe)'n ™" /2. (10)
Dy

Calculating continuity moduli is not easy:.

Example 3. Let P = {P,t € R}, where P, =
N(t;1), and let ap =t and d(t;s) = |t — s|. Then

w, (P, e) = In(1—£2)"2 > 2¢
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for every t. Hence (8) and (10) hold with J, , = V2
and r = 1/2.

4 Uniform convergence

The rate of the accuracy of estimation cannot be better
than w, (P,1/y/n). If ap is linear and class P of dis-
tributions is convex, then there exists an estimator a,
attaining this rate [2].
In typical non-parametric situations estima-
tor converges locally uniformly with the optimal rate.
More information: [2, 3, 4].

Let P’ be a subclass of P. Estimator a, converges
weakly to ap with the rate v, uniformlyin P’ if there
exists a non—degenerate distribution F, such that

lim sup |P((a,—ap)/va€A) — Ry(A)| =0 (11)
PcP’

for every measurable set A C X with FPy(0A) = 0.

Theorem 4 Assume that X = 1R, and let P € P.
If w,(P,e)~J, e where r <1/2, and

H,pP

sup \Jup,/Jap—1 —0
P.eP,,(P,1/\/n)

as n— oo, then estimator converges to ap
with the rate n™" uniformly in P, (P,1/y/n).
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