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Abstract

We introduce the notion of the information index and

present a non-parametric generalisation of the Rao–Cramér

inequality.

We show that unbiased estimators do not exist if the in-

formation index is larger than two.

For a typical non–parametric class P of distributions nei-

ther estimator is asymptotically normal with the optimal

rate uniformly over P .

Key words: non-parametric lower bounds, information index, infor-

mation function, uniform convergence.

1 Introduction

Typical estimation problem: given a sample X1, ..., Xn

of i.i.d. observations from an unknown distribution P ∈
P , estimate a quantity of interest aP .
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Hellinger distance: d2
H
, χ2 distances: d2

χ
.

A typical regularity condition:

d2
H
(Pθ;Pθ+h)∼∥h∥2Iθ/8 or d2χ(Pθ;Pθ+h)∼∥h∥2Iθ (1)

as h→0 for every θ∈Θ, θ+h∈Θ, where Iθ is “Fisher’s
information”.
If (1) holds and estimator θ̂n is unbiased, then

sup
θ∈Θ

IθIEθ∥θ̂n − θ∥2 ≥ 1/n. (2)

This is the celebrated Fréchet–Rao–Cramér inequality.
If unbiased estimators with a finite second moments

exist, then the optimal unbiased estimator is the one that
turns a lower bound into equality.
Barankin [1]: a parametric estimation problem where

NO unbiased estimator with IEθ∥θ̂n − θ∥2 < ∞ .
We argue: in typical non-parametric situations –

NO unbiased estimators with a finite 2nd moment.

2 Information index

We extend the notion of regularity of a parametric family
P = {Pθ, θ∈Θ} of distributions.

Definition. Parametric family P obeys the reg-
ularity condition (R

H
) if there exists number ν > 0
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and function I·,H>0 such that as h→0,

d2
H
(Pt;Pt+h)∼It,H∥h∥ν (t∈Θ, t+h∈Θ). (R

H
)

Similarly we define (Rχ)–regular parametric family.

We call ν the “information” index.
We call I·,H the “information” function.

Information index ν indicates how “rich” or “poor”
the class P is.

Regular parametric family of distributions: ν=2 .

(R
H
)–regular parametric families: ν<2 .

Non–parametric classes: (R
H
) with ν>2 .

Example 1. Let Pt = U[0; t], P = {Pt, t>0}. Then
d2
H
(Pt+h;Pt) ∼ h/2t (t ≥ h↘0).

Family P is not regular in the traditional sense (cf. (1)).
Yet (R

H
) holds with

ν = 1 , It,H = 1/2t.

Non–uniform lower bound: for any estimator t̂n

sup
t>0

t−1IE
1/2
t (t̂n − t)2 ≥ 0.8/(n−1.6) (3)
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as n ≥ 2, while the uniform bound is

sup
t
IE

1/2
t (t̂n − t)2 = ∞.

The optimal estimator t∗n = max{X1, ..., Xn}(n+1)/n
is unbiased;

IEt(t
∗
n − t)2 = t2/n(n+2).

Lower bound indicates: the accuracy of estimation is
determined by the information index and the informa-
tion function.

Any unbiased estimators with finite second moment
if (R

H
) holds with ν>2?

We say set Θ obeys property (Aε) if for every t∈Θ
there exists t′∈Θ such that ∥t′−t∥ = ε. Property (A)
holds if (Aε) is in force for all small enough ε> 0.

Estimator θ̂ has “regular” bias if for every t∈Θ there
exists ct>0 such that

∥IEt+hθ̂ − IEtθ̂∥ ∼ ct∥h∥ (h → 0). (4)

We write an >∼ bn if an ≥ bn(1+o(1)) as n → ∞.

Theorem 1 Assume (Rχ) and (A), and suppose that

estimator t̂n has “regular” bias [obeys (4)].
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If ν∈ (0; 2), then

sup
t∈Θ

I
2/ν
t,χ IEt∥t̂n−t∥2/c2t >∼ n−2/νy2/νν /(eyν−1) (5)

as n→∞, where yν is the positive root of the equation
νy = 2(1−e−y).
If ν>2, then IEt∥t̂n∥2 = ∞ (∃t∈Θ).

Thus, if ν∈ (0; 2), then the accuracy of estimation for
regular–bias estimators is n−1/ν .

Example 2. Parametric family P with densities

fθ(x) = φ(x−θ)/2 + φ(x+θ)/2 ,

where φ is the standard normal density; aPθ = θ,

d
H
(P0;Ph) ∼ h2/4 .

Thus, (R
H
) holds with

ν = 4, It,H = 1/16;

the accuracy of estimation cannot be better than n−1/4 .

General problem: estimate a quantity of interest aP .

Corollary 2 If (R
H
) or (Rχ) holds with ν > 2 and

sup
P∈P

IEP∥ân−aP∥2 < ∞, then estimator ân is biased.
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3 Continuity moduli

Let aP be an element of a metric space (X , d). For any
ε > 0 we denote by

P
H
(P, ε) = {Q ∈ P : d

H
(P ;Q) ≤ ε}

the neighborhood of P ∈ P . We call

w
H
(P, ε) = sup

Q∈PH(P,ε)
d(aP ; aQ)/2,

w
H
(ε) = sup

P∈P
w

H
(P, ε)

the moduli of continuity of {aP : P ∈ P}.
Similarly we define Pχ(P, ε), PTV

(P, ε), wχ(·), wTV
(·) .

Continuity moduli describe how the “closeness” of aQ
to aP reflects the “closeness” of Q to P.
The “richer” class P , the poorer the accuracy of esti-

mation.

Lemma 3 Assume that for any c > 0 there exists
C ∈ (0;∞) such that w·(cε)≤ Cw·(ε). For any esti-
mator ân and every P0 ∈ P ,

sup
P∈PH(P0,ε)

P (d(ân; aP )≥w
H
(P0, ε))≥ (1−ε2)2n/4, (6)

sup
P∈Pχ(P0,ε)

P (d(ân; aP )≥wχ(P0, ε)) ≥ [1+(1+ε2)n/2]−2.

For example, (6) and Chebyshev’s inequality yield

sup
P∈PH(P0,ε)

IE
P
d(ân; aP ) ≥ w

H
(P0, ε)(1−ε2)n/2 . (7)
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Maximize w
H
(P, ε)(1−ε2)n in ε.

If for some J
H,P

> 0

w
H
(P, ε) >∼ J

H,P
ε2r (∃P ∈ P) (8)

then the rate of estimation cannot be better than n−r .

If (R
H
) holds for a parametric subfamily of P , then

2w
H
(Pt, ε) ∼ (ε2/It,H)

1/ν (9)

If (Rχ) holds, then

2wχ(Pt, ε) ∼ (ε2/It,χ)
1/ν.

Thus, (R
H
) and/or (Rχ) yield (8) with

r = 1/ν;

the accuracy of estimation cannot be better than n−1/ν .

If (8) holds for all small enough ε and J
H,· is uniformly

continuous on P , then

sup
P∈P

J−1
H,P

IE
1/2
P d(ân; aP )

2 >∼ (r/e)rn−r/2 . (10)

Calculating continuity moduli is not easy.

Example 3. Let P = {Pt, t ∈ IR}, where Pt =
N (t; 1), and let aPt = t and d(t; s) = |t− s|. Then

w
H
(Pt, ε) =

√
ln(1−ε2)−2 ≥

√
2 ε
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for every t . Hence (8) and (10) hold with J
H,P

=
√
2

and r = 1/2.

4 Uniform convergence

The rate of the accuracy of estimation cannot be better
than w

H
(P, 1/

√
n ). If aP is linear and class P of dis-

tributions is convex, then there exists an estimator ân
attaining this rate [2].
In typical non–parametric situations neither estima-

tor converges locally uniformly with the optimal rate.
More information: [2, 3, 4].

Let P ′ be a subclass of P . Estimator ân converges
weakly to aP with the rate vn uniformly in P ′ if there
exists a non–degenerate distribution P0 such that

lim
n→∞ sup

P∈P ′
|P ((ân−aP )/vn∈A)− P0(A)| = 0 (11)

for every measurable set A ⊂ X with P0(∂A) = 0.

Theorem 4 Assume that X = IR, and let P ∈ P.
If w

H
(P, ε) ∼ J

H,P
ε2r , where r < 1/2, and

sup
P∗∈PH (P,1/

√
n)
|JH,P∗/JH,P − 1| → 0

as n→∞, then neither estimator converges to aP
with the rate n−r uniformly in P

H
(P, 1/

√
n ).
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