Non-parametric lower bounds and unbiased estimators

S.Y.Novak

MDX University London, SST, The Burroughs NW44BT, UK

June 2016

Abstract

We introduce the notion of the *information index* and present a non-parametric generalisation of the Rao–Cramér inequality.

We show that unbiased estimators do not exist if the information index is larger than two.

For a typical non-parametric class \mathcal{P} of distributions **neither** estimator is asymptotically normal with the optimal rate *uniformly* over \mathcal{P} .

Key words: non-parametric lower bounds, information index, information function, uniform convergence.

1 Introduction

Typical estimation problem: given a sample $X_1, ..., X_n$ of i.i.d. observations from an unknown distribution $P \in \mathcal{P}$, estimate a **quantity of interest** a_P . Hellinger distance: d_{H}^{2} , χ^{2} distances: d_{χ}^{2} . A typical regularity condition:

$$d_{H}^{2}(P_{\theta};P_{\theta+h}) \sim \|h\|^{2} I_{\theta}/8 \text{ or } d_{\chi}^{2}(P_{\theta};P_{\theta+h}) \sim \|h\|^{2} I_{\theta} \quad (1)$$

as $h \to 0$ for every $\theta \in \Theta, \theta + h \in \Theta$, where I_{θ} is "Fisher's information".

If (1) holds and estimator $\hat{\theta}_n$ is unbiased, then

$$\sup_{\theta \in \Theta} I_{\theta} \mathbb{E}_{\theta} \| \hat{\theta}_n - \theta \|^2 \ge 1/n.$$
(2)

This is the celebrated Fréchet–Rao–Cramér inequality.

If unbiased estimators with a finite second moments exist, then the optimal unbiased estimator is the one that turns a lower bound into equality.

Barankin [1]: a parametric estimation problem where **NO** unbiased estimator with $\mathbb{E}_{\theta} \|\hat{\theta}_n - \theta\|^2 < \infty$.

We argue: in typical *non-parametric situations* – **NO** unbiased estimators with a finite 2nd moment.

2 Information index

We extend the notion of regularity of a parametric family $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ of distributions.

Definition. Parametric family \mathcal{P} obeys the regularity condition $(R_{\rm H})$ if there exists number $\nu > 0$ and function $I_{\cdot,H} > 0$ such that as $h \to 0$, $d_{H}^{2}(P_{t}; P_{t+h}) \sim I_{t,H} \|h\|^{\nu} \quad (t \in \Theta, t+h \in \Theta).$ (R_{H}) Similarly we define (R_{χ}) -regular parametric family.

We call ν the "information" index. We call $I_{,H}$ the "information" function.

Information index ν indicates how "rich" or "poor" the class \mathcal{P} is.

Regular parametric family of distributions: $\nu = 2$.

 $(R_{\!_{\!H}})$ -**regular** parametric families: $\nu < 2$.

Non–parametric classes: (R_{H}) with $\nu > 2$.

Example 1. Let $P_t = \mathbf{U}[0;t], \ \mathcal{P} = \{P_t, t > 0\}$. Then $d_H^2(P_{t+h}; P_t) \sim h/2t \quad (t \ge h \searrow 0).$

Family \mathcal{P} is not regular in the traditional sense (cf. (1)). Yet $(R_{_{\!H}})$ holds with

$$\nu = 1, \ I_{t,H} = 1/2t.$$

Non-uniform lower bound: for any estimator \hat{t}_n

$$\sup_{t>0} t^{-1} \mathbb{E}_t^{1/2} (\hat{t}_n - t)^2 \ge 0.8/(n - 1.6)$$
(3)

as $n \geq 2$, while the *uniform* bound is

$$\sup_{t} \mathbb{E}_t^{1/2} (\hat{t}_n - t)^2 = \infty.$$

The optimal estimator $t_n^* = \max\{X_1, ..., X_n\}(n+1)/n$ is unbiased;

$$\mathbb{E}_t (t_n^* - t)^2 = t^2 / n(n+2).$$

Lower bound indicates: the accuracy of estimation is determined by the *information index* and the *information function*.

Any *unbiased estimators* with finite second moment if $(R_{_{\!H}})$ holds with $\nu > 2$?

We say set Θ obeys property (A_{ε}) if for every $t \in \Theta$ there exists $t' \in \Theta$ such that $||t'-t|| = \varepsilon$. Property (A)holds if (A_{ε}) is in force for all small enough $\varepsilon > 0$.

Estimator $\hat{\theta}$ has "regular" bias if for every $t \in \Theta$ there exists $c_t > 0$ such that

$$\|\mathbb{E}_{t+h}\hat{\theta} - \mathbb{E}_t\hat{\theta}\| \sim c_t \|h\| \qquad (h \to 0).$$
(4)

We write $a_n \gtrsim b_n$ if $a_n \ge b_n(1+o(1))$ as $n \to \infty$.

Theorem 1 Assume (R_{χ}) and (A), and suppose that estimator \hat{t}_n has "regular" bias [obeys (4)].

If
$$\nu \in (0; 2)$$
, then

$$\sup_{t \in \Theta} I_{t,\chi}^{2/\nu} \mathbb{E}_t \| \hat{t}_n - t \|^2 / c_t^2 \gtrsim n^{-2/\nu} y_{\nu}^{2/\nu} / (e^{y_{\nu}} - 1)$$
(5)

as $n \to \infty$, where y_{ν} is the positive root of the equation $\nu y = 2(1 - e^{-y})$.

If $\nu > 2$, then $\mathbb{E}_t \|\hat{t}_n\|^2 = \infty \ (\exists t \in \Theta)$.

Thus, if $\nu \in (0; 2)$, then the accuracy of estimation for regular-bias estimators is $n^{-1/\nu}$.

Example 2. Parametric family \mathcal{P} with densities

$$f_{\theta}(x) = \varphi(x-\theta)/2 + \varphi(x+\theta)/2,$$

where φ is the standard normal density; $a_{P_{\theta}} = \theta$,

$$d_{H}(P_{0};P_{h}) \sim h^{2}/4$$
.

Thus, (R_{H}) holds with

$$\nu = 4, I_{t,H} = 1/16;$$

the accuracy of estimation cannot be better than $n^{-1/4}$.

General problem: estimate a quantity of interest a_P .

Corollary 2 If (R_{H}) or (R_{χ}) holds with $\nu > 2$ and $\sup_{P \in \mathcal{P}} \mathbb{E}_{P} \|\hat{a}_{n} - a_{P}\|^{2} < \infty$, then estimator \hat{a}_{n} is biased.

3 Continuity moduli

Let a_P be an element of a metric space (\mathcal{X}, d) . For any $\varepsilon > 0$ we denote by

$$\mathcal{P}_{H}(P,\varepsilon) = \{ Q \in \mathcal{P} \colon d_{H}(P;Q) \le \varepsilon \}$$

the *neighborhood* of $P \in \mathcal{P}$. We call

$$w_{H}(P,\varepsilon) = \sup_{\substack{Q \in \mathcal{P}_{H}(P,\varepsilon) \\ P \in \mathcal{P}}} d(a_{P};a_{Q})/2,$$

$$w_{H}(\varepsilon) = \sup_{\substack{P \in \mathcal{P}}} w_{H}(P,\varepsilon)$$

the moduli of continuity of $\{a_P : P \in \mathcal{P}\}$.

Similarly we define $\mathcal{P}_{\chi}(P,\varepsilon), \mathcal{P}_{TV}(P,\varepsilon), w_{\chi}(\cdot), w_{TV}(\cdot)$.

Continuity moduli describe how the "closeness" of a_Q to a_P reflects the "closeness" of Q to P.

The "richer" class \mathcal{P} , the poorer the accuracy of estimation.

Lemma 3 Assume that for any c > 0 there exists $C \in (0; \infty)$ such that $w.(c\varepsilon) \leq Cw.(\varepsilon)$. For any estimator \hat{a}_n and every $P_0 \in \mathcal{P}$,

$$\sup_{P \in \mathcal{P}_{H}(P_{0},\varepsilon)} P(d(\hat{a}_{n};a_{P}) \geq w_{H}(P_{0},\varepsilon)) \geq (1-\varepsilon^{2})^{2n}/4, \quad (6)$$

$$\sup_{P \in \mathcal{P}_{H}(P_{0},\varepsilon)} P(d(\hat{a}_{n};a_{P}) \geq w_{\chi}(P_{0},\varepsilon)) \geq [1+(1+\varepsilon^{2})^{n/2}]^{-2}.$$
For example, (6) and Chebyshev's inequality yield
$$\sup_{P \in \mathcal{P}_{H}(P_{0},\varepsilon)} \mathbb{E}_{P}d(\hat{a}_{n};a_{P}) \geq w_{H}(P_{0},\varepsilon)(1-\varepsilon^{2})^{n}/2. \quad (7)$$

S.Y.Novak. Non-parametric Lower Bounds

Maximize
$$w_{H}(P,\varepsilon)(1-\varepsilon^{2})^{n}$$
 in ε .
If for some $J_{H,P} > 0$
 $w_{H}(P,\varepsilon) \gtrsim J_{H,P}\varepsilon^{2r} \quad (\exists P \in \mathcal{P})$
(8)

then the rate of estimation cannot be better than n^{-r} .

If (R_{H}) holds for a parametric subfamily of \mathcal{P} , then

$$2w_{H}(P_{t},\varepsilon) \sim (\varepsilon^{2}/I_{t,H})^{1/\nu}$$
(9)

If (R_{χ}) holds, then

$$2w_{\chi}(P_t,\varepsilon) \sim (\varepsilon^2/I_{t,\chi})^{1/\nu}.$$

Thus, (R_{H}) and/or (R_{χ}) yield (8) with

$$r = 1/\nu;$$

the accuracy of estimation cannot be better than $n^{-1/\nu}$.

If (8) holds for all small enough ε and $J_{H,\cdot}$ is uniformly continuous on \mathcal{P} , then

$$\sup_{P \in \mathcal{P}} J_{H,P}^{-1} \mathbb{E}_P^{1/2} d(\hat{a}_n; a_P)^2 \gtrsim (r/e)^r n^{-r}/2.$$
(10)

Calculating *continuity moduli* is not easy.

Example 3. Let $\mathcal{P} = \{P_t, t \in \mathbb{R}\}$, where $P_t = \mathcal{N}(t; 1)$, and let $a_{P_t} = t$ and d(t; s) = |t - s|. Then

$$w_{\!_{H}}(P_t,\varepsilon) = \sqrt{\ln(1-\varepsilon^2)^{-2}} \ge \sqrt{2}\varepsilon$$

for every t. Hence (8) and (10) hold with $J_{H,P} = \sqrt{2}$ and r = 1/2.

4 Uniform convergence

The rate of the accuracy of estimation cannot be better than $w_{H}(P, 1/\sqrt{n})$. If a_{P} is linear and class \mathcal{P} of distributions is convex, then there exists an estimator \hat{a}_{n} attaining this rate [2].

In typical non-parametric situations **neither** estimator converges *locally uniformly* with the optimal rate.

More information: [2, 3, 4].

Let \mathcal{P}' be a subclass of \mathcal{P} . Estimator \hat{a}_n converges weakly to a_P with the rate v_n uniformly in \mathcal{P}' if there exists a non-degenerate distribution P_0 such that

 $\lim_{n \to \infty} \sup_{P \in \mathcal{P}'} |P((\hat{a}_n - a_P)/v_n \in A) - P_0(A)| = 0 \quad (11)$

for every measurable set $A \subset \mathcal{X}$ with $P_0(\partial A) = 0$.

Theorem 4 Assume that $\mathcal{X} = \mathbb{R}$, and let $P \in \mathcal{P}$. If $w_{H}(P,\varepsilon) \sim J_{H,P}\varepsilon^{2r}$, where r < 1/2, and

$$\sup_{P_* \in \mathcal{P}_H(P, 1/\sqrt{n})} |J_{H, P_*}/J_{H, P} - 1| \to 0$$

as $n \to \infty$, then **neither** estimator converges to a_P with the rate n^{-r} uniformly in $\mathcal{P}_H(P, 1/\sqrt{n})$.

References

- Barankin E. W. (1949) Locally best unbiased estimates. Ann. Math. Statist., v. 20, 477–501.
- [2] Donoho D.L. & Liu R.C. (1991) Geometrizing rates of convergence II, III. — Ann. Statist., v. 19, No 2, 633–667, 668–701.
- [3] Novak S.Y. (2011). Extreme value methods with applications to finance. London: CRC. ISBN: 978-1-43983-574-6.
- [4] Pfanzagl J. (2000) On local uniformity for estimators and confidence limits. — J. Statist. Plann. Inference, v. 84, 27–53.
- [5] Pfanzagl J. (2001) A nonparametric asymptotic version of the Cramér-Rao bound. State of the art in probability and statistics (Leiden, 1999), 499–517, IMS Lecture Notes Monogr. Ser., v. 36, Inst. Math. Statist., Beachwood, OH.