
Noname manuscript No.
(will be inserted by the editor)

Algorithmic iteration for computational intelligence

Giuseppe Primiero

Received: date / Accepted: date

Abstract Machine awareness is a disputed research topic, in some circles considered
a crucial step in realising Artificial General Intelligence. Understanding what that is,
under which conditions such feature could arise and how it can be controlled is still
a matter of speculation. A more concrete object of theoretical analysis is algorithmic
iteration for computational intelligence, intended as the theoretical and practical ability
of algorithms to design other algorithms for actions aimed at solving well-specified
tasks. We know this ability is already shown by current AIs, and understanding its
limits is an essential step in qualifying claims about machine awareness and Super-
AI. We propose a formal translation of algorithmic iteration in a fragment of modal
logic, formulate principles of transparency and faithfulness across human and machine
intelligence, and consider the relevance to theoretical research on (Super)-AI as well as
the practical import of our results.

1 Introduction

The notion of Artificial General Intelligence (AGI) is a hard one to pin down. Since
the mid 1950s, several different and not always compatible definitions of artificial in-
telligence have been offered in the literature: from passing the Turing Test to showing
common-sense knowledge in diverse situations. Each definition is often qualified in
view of an appropriate method, discipline or objective. Today, the scientific research
involved by this task spans over a combination of disciplines: logic, probability theory,
machine learning, pattern recognition, vision, to name a few. In recent years, a number
of academic and industrial areas have progressed in designing and programming ma-
chines that are significantly improving at accomplishing tasks that were previously the

G. Primiero
Department of Computer Science
Middlesex University
the Borroughs NW4 4BT
London
E-mail: G.Primiero@mdx.ac.uk



2 Giuseppe Primiero

domain of humans, and doing so much better than us.1 Nonetheless, the main principle
of true AGI, intended as the creation of

“[. . . ] AI systems that possess a reasonable degree of self-understanding and
autonomous self-control, and have the ability to solve a variety of complex
problems in a variety of contexts, and to learn to solve new problems that they
did not know about at the time of their creation” 2

is a progressing but still far away objective, despite the always returning hype. Several
different approaches can be subsumed under the task of obtaining AGI:3 symbolic-
processing, bio-computational, simulations, hybrid. For all of these, a reductionist def-
inition assumes that resolved individual technical problems (e.g. in natural language
processing, vision or path search) constitute the building blocks to be assembled in a
complete solution, one whose external interpretation can be qualified as ‘intelligent’.
On this basis, let us start offering the following definition:

Definition 1 (Reductionist AGI) The epistemological and technological status of
machines able to successfully perform any (composed) task feasible to humans.

This definition formulates intelligence in terms of observable behaviour and it does
not specify any physical or otherwise qualified property that is essential to machines
to perform the intended tasks. Nonetheless, this definition cannot be exhaustive. In
particular, it does not account for the aspects related to self-understanding in terms
of awareness and control of internal states highlighted in the quotation above and by
many considered essential elements to qualify a truly intelligent mechanical behaviour.
These aspects remain the most elusive ones: the machine not only needs to be able to
manifest a behaviour that can be qualified as intelligent from the outside, it also needs
to be aware of it.4 Both believers in the possibility of Artificial (Super-)Intelligence
and their detractors refer to consciousness as a cut-off point for real intelligence.

Believers in super-intelligence maintain that, given the current status of AI research
and the foreseeable progress in both theory and applied technology, it cannot be ex-
cluded – and it is in fact likely – that the creation of a machine “able to surpass all the
intellectual activities of any man however clever” will happen. As a consequence, “an
ultraintelligent machine could design even better machines”, with the result of an in-
telligence explosion.5 Since its original account, super-intelligence is formulated on the
explicit condition that, in order to improve, the machine must have some understanding
of itself. In recent, more technically nuanced analyses, the qualification of an artificial
agent which attains super-intelligence through a series of self-improvements is identified
with the ability to compare itself with previous systems equipped with progressively
higher levels of intelligence, e.g. in terms of backwards induction (by computing its

1 For a recent list of technical breakthroughs in AI see http://futureoflife.org/2015/12/
29/the-top-a-i-breakthroughs-of-2015/. For a philosophical comment on how these repre-
sent more task solving successes than real progress in the mechanical definition of intelligence,
see [27].

2 See [37], p. VI.
3 For a complete overview, including a historical presentation, see e.g. [58].
4 See for example [72].
5 Citations are from [38], considered the first speculation on machine super-intelligence.

See [14] for the most up-to-date and complete analysis currently available for the problems,
strategies and forecasts related to the possibility of an artificial super-intelligence.



Algorithmic iteration for computational intelligence 3

actions in the future, and if so already at the initial stage) or by expected utility
maximization [24].

Deniers of the super-intelligence trend similarly appeal to awareness, or conscious-
ness, to debate the epistemological and technological credibility of any foreseeable
true super-AI instantiation. A more technically challenging set of arguments against
super-intelligence relies on computational complexity reasons to argue that the upper
bound to human-level intelligence computable functions in the Arithmetical Hierarchy
includes a class of problems whose complexity grows faster even than exponentially
growing computable functions. It follows that there is no such (computable) function
to express (and solve) these problems (not even by a super-intelligence) [74].

Awareness is therefore clearly crucial in the context of AGI. While the intuitive
notion of intelligence undoubtedly appeals to a complex semantics of methods and
abilities, a shift in focus can be offered by considering only knowledge states that can
be already ascribed to both machines and humans. To refer to such kind of epistemic
ability, we use the term computational intelligence:

Definition 2 (Computational Intelligence) The epistemological and technological
status of entities able to successfully perform any (composed) algorithmically definable
task.

This definition is based on the notion of algorithm and it is neutral with respect to the
nature of the entities executing them.

The ontological and epistemological characterization of algorithms is crucial to
Computer Science, and it has been object of recent formal and philosophical debates,
[56,39,43]. Even from a purely technical perspective, the precise definition of the com-
putational schema allowed by the notion of algorithm have been seeing a shift in un-
derstanding. Most notably, new forms of computation not strictly admitted by the
historically qualified notion of mechanical computation by a Turing Machine reflect
advancements in the required formal engineering: this is the case, for example, of in-
teractive computing, where Turing Machines have been extended to work with infinite
data streams [52]; reactive computing, where interaction in Turing Machines is mod-
elled after concurrency theory [5]; distributed computing, where consistency, availabil-
ity and partition-tolerance over data are exclusive properties [35,62]. To be able to
offer a general argument on algorithms that does not exclude explicitly any of these
forms, we will stick to the most abstract definition of the term: we intend an algorithm
as a mechanically executable, ordered (possibly non-terminating) list of (multiple, in-
teracting) steps for the application of computable functions on a well-defined domain
of input values (be these simple or streams of infinite and complex nature). In this
way, we try to capture the various forms of algorithms at work in modern computing,
including e.g. interactive ones.

As we look at entities performing algorithmic actions, we are interested in the
implementation of algorithms. Implementation in Computer Science is in itself a notion
loaded with philosophical meaning, see [64,65]. The notion of computer program can
be considered in at least four different ways:6

1. a technological object,
2. a mathematical object of finite capacity,
3. a mathematical object of infinite size, or

6 See [21], Preface.
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4. a model of the real world, which is not a logico-mathematical construction.

In what follows we will understand the term program as referring to the implementation
of one such algorithm in a machine-readable language. By extension, a program can
have a modular or distributed structure, including several algorithms.

Hence, on the one hand we look at algorithms as mathematical objects charac-
terised by infinite size (i.e. without memory limitations); on the other hand, programs
are considered implementations of algorithms in any language, executable in principle,
i.e. mathematical objects of finite capacity. Fixing their characterization as mathemat-
ical objects, below we will make the explicit reference to program that can be proven
formally correct with respect to their given specifications. In fact, we will restrict our
analysis to specifications which can be proven to have a valid program. The actual
execution of such a program, i.e. its actual transformation in syntactically correct con-
structs of a specific version of a given programming language and its actual running on
a given hardware, refers to properties eluding the formal correctness we assume, and
therefore they denote a different object than what considered in our analysis, namely
a technological object. Accordingly, a machine is here intended as the abstract mathe-
matical counterpart of a technological object. Design and execution of algorithms by a
machine, exposed below, should be understood as appropriate mathematical idealiza-
tions of their concrete instantiations.7

Computational intelligence under the above definition and characterization of terms
is clearly a much weaker object of analysis than GAI, but it has the advantage of offer-
ing a solid starting point. Any form of intelligent behaviour that can be produced by
executing well-defined algorithms (however complex) is in the range of computational
intelligence. This includes by definition everything that machines as technological ob-
jects (and not just as mathematical abstractions) are already capable of doing, e.g.
driving a car, diagnosing medical conditions and proposing an appropriate cure. It ex-
cludes everything that is not (yet) fully algorithmically definable, like taking a moral
decision. Some will object to the starting point of this discussion: following a rule
requires no intelligence. Firstly, the notion of computational intelligence is described
in terms of rules; as such, no claim is made below concerning abilities like intuition,
creative inspiration or value ascription unless they can be reduced to an algorithmic
counterpart. Our only claim is that these do not fall under machine definable behaviour.
Secondly, the given definition of computational intelligence is not constrained to rule
following, but it includes rule design as well. As explained below, we focus on higher-
order algorithmic knowledge in terms of the ability to design and perform algorithms.
Designing and executing complex rules that include discerning among huge amount
of data in real time, branching over decision trees and performing probabilistic infer-
ences does certainly lead to behaviour that one can describe as intelligent, and hence
computational intelligence can at least satisfy the reductionist notion of AGI.

This type of higher-order intelligence is crucially based on the entity’s ability to
represent knowledge states. Knowledge states are collected in bases (like databases of
a machine, or some propositionally encoded version of a human being’s experience)
equipped with relations and operations to combine and access them in some logical
and operationally useful way. The ability of an entity to access its internal states does
not necessarily need to be identified with consciousness, although it has been in much
philosophical literature. We consider this an avoidable and harmful anthropomorphic

7 For the historical roots of the analogy between ‘programming language’ and ‘mathematical
machine’, see [20].
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approach to AI, rejected in most part of current technical work. In line with our min-
imalistic take on intelligence, we shall interpret higher-order intelligence only as the
entity’s ability to design procedures for the satisfaction of tasks, or the obtaining of
state of affairs. Accordingly, we will avoid talking about consciousness, and will just
refer to iteration of algorithmic knowledge, or algorithmic iteration in short. With
this term we refer to the logical principle underlying large areas of current research
in theoretical computer science, usually referred to as automatic algorithm design (or
automatic programming), and recently boosted by the creation of genetic and evolu-
tionary algorithms and the application of machine learning techniques. In this sense, it
is essential to stress that we are not referring simply to the design of algorithms that
include an iteration or recursion principle. Algorithmic iteration represents instead an
essential principle of computational intelligence: while rule execution might be identi-
fied as trivial, rule design is certainly not. Algorithmic iteration allows to distinguish
between execution (of possibly highly complex algorithms) and their design. For the
present purposes, the combination of design and execution of algorithms shall suffice to
qualify computational intelligence. To represent such reflexive knowledge we will make
use of the machinery of modal logic.

The main aim in analysing algorithmic iteration is to reconsider the defining con-
ditions for AGI. In particular, defining a common epistemic state between humans and
machines, we wish to investigate whether computational intelligence as displayed by
the latter can significantly deviate from the one shown by the former. A logical anal-
ysis of this relation allows to critically assess the theoretical possibility of an artificial
intelligence so superior to human intelligence to escape its comprehension and control.
A further qualification on the validity of our formal results should be stressed: the
notion of AGI of relevance to this analysis is confined to the development of program-
ming techniques, i.e. our algorithmic view does not offer a vantage point to consider
other approaches such as brain-emulation or mind-emergence from networks, unless
the latter can be reduced to a programmable system.

The paper is structured as follows. In section 2 we offer an overview of some sig-
nificant philosophical and formal literature related to the notion of introspection con-
sidered in this paper. In section 3 we consider the philosophical principle relevant to
the distinction between first order knowledge interpreted as algorithm execution and
higher-order knowledge interpreted as algorithm design. In section 4 we introduce the
basic formalism needed for our analysis and consider its informal interpretation. In
section 5 and 6 we explore, respectively, the positive and negative versions of human
and machine algorithmic iteration. In section 7 we consider some limits of our ideal-
ization. In section 8 we consider the problem of the implementation of computational
intelligence and link our argument to existing literature on computing mechanisms and
the philosophy of computer science. We conclude in section 9 with some observations
and further directions of this research.

2 Iteration for Humans and Machines

Self-knowledge, self-awareness or introspection are among the most discussed notions
in philosophy.8 The closely related and philosophically well-known paradoxical coun-
terpart is the notion of self-reference.9 Since the Liar paradox, this notion has played

8 For an introductory overview, see [34].
9 For an introductory overview, see [13].
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a huge role in the philosophical tradition and its intersection with formal logic and
languages is well known, from the Gödel’s sentence to Tarski’s theorem. A full review
of this large literature exceeds the scope of the present contribution. Nonetheless, our
understanding of algorithmic iteration can be qualified in view of some positions on in-
trospection that have been defended both in the philosophical and technical literature.

Several varieties of theories of introspection are present in philosophy of mind and
epistemology. Each includes a number of essential and specific conditions to define
introspection.10 The well-known hard problem of consciousness from [17] characterizes
the philosophical holistic approach to understanding the feeling of awareness of sensory
information at any time, as opposed to the easy problem of explaining the cognitive
experience related to individual experiences, such as object discrimination. In terms of
the reductionist approach underlying Definition 1, the philosophical position of interest
for our analysis of iteration in AI can be constrained to a version of the easy problem:

Definition 3 (Easy Problem of Consciousness (Algorithmic version) ) How
it is possible to explain higher-order knowledge of algorithmically definable knowledge
states (or equivalently, of algorithmically definable procedures for the obtaining of
states of affairs)?

Under such a perspective, a major player in this debate has been the inner-sense theory,
which maintains that knowledge of one’s mental life resembles perception, although
not being directed towards the current environment or bodily state [4]. This position
has been rejected [75], weakened by logical conditions [67], by including perceptual
activities [23] and by the use of transparent rules [16]. The latter approach supports
the algorithmic version of Definition 3 above and can be briefly recounted as follows:

– there is a fact of the world or property p that is the content of a knowledge state
K(p);

– there is an explicit epistemic rule r, embedded in our cognitive abilities and hence
to which we have privileged access, that allows iterative knowledge in the presence
of a knowledge state;

– r(K(p)), hence K(K(p)).

This amounts formally to the fragment KT4 or S4 of modal logic, which we will make
use of in the following of this paper: distribution by K axiom is just a property of the
implication relation; by the T axiom, objects of knowledge are objects of reality (or
truths); and by axiom 4 introspective beliefs follows deductively from already possessed
knowledge. This fragment validates also the Necessitation Rule, by which any valid
statement in the system of reference is known.11

Theories of consciousness from the philosophical debate, asking how is it possible
that information processing generates consciousness, have progressively migrated to
computational theories on machine consciousness, where the question is to determine
which properties of a silicon-based entitiy can generate consciousness.12 This large and
much criticised field has grown in the last twenty years, and recently four different
research areas have been identified that associate consciousness to distinct elements
[32] :

10 See [66] for a comprehensive overview.
11 The relevance of axiom 5 for negative introspection will be considered in Section 6.
12 See e.g. [2] for an overview.
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– External behaviour;
– Cognitive characteristics;
– Architecture.
– Phenomena.

Below we will defend an approach to computable functions as deductively accessi-
ble, and in turn to algorithmic knowledge. An entity capable of instantiating the logical
principle of iteration for (computationally defined) beliefs is capable of computational
intelligence, as per Definition 2. This approach is not entirely new in the more technical
literature.

In the formal logic literature, self-knowledge is usually identified as knowledge about
beliefs, intentions and desires. Formalization of self-knowledge in first-order logic is
known to lead to trivialising inconsistencies [10,11] as self-referential sentences become
expressible. This results either in the design of formal models of first-order logic corre-
sponding to introspective agents with limited deductive power, see e.g. [51], or in the
choice of translating the formal apparatus to a modal setting. Modal languages and
specific fragments thereof allow to formalise tasks and problems concerning machine
intelligence in epistemic, temporal or otherwise defined setting. This, in turn, can be
directed towards stratification of knowledge operators, quantification over them (e.g.
in first-order modal logic), or dynamic operations with such modalities, e.g. to express
how knowledge states change in view of new information becoming available (typical
of the dynamic epistemic logic approach with public announcement operators), use-
ful for planning agents [12]. Other areas of applied computational research in which
introspection is playing an important role are: collection of incomplete information
in databases [33], multi-strategy learning [18], index refining [29], intelligence analysis
[36], meta-cognition for augmented data-analysis [68], interaction of automated agents
with tacit knowledge [22] and several more.

The bridge from formal logic to applications in computer science concerning itera-
tion of algorithmic constructions is formulated in terms of automatic algorithm design
and automatic programming. This area can be traced back to compiler development for
high-level languages in the ′50s, although proper research started only in the ′80s. The
initial research was adamant about the need to extract essential principles of human
design involved in algorithm specification and implementation: problem understanding,
solution planning and refining, algorithm execution, limits and opportunities identifi-
cation, solution verification and evaluation, see e.g. [47], [48], [1]. In this early research,
algorithm design was defined as the process of producing a computationally feasible
(i.e. computable in polynomial time), relatively complete and consistent sketch of the
task to be accomplished from a given specification. Program synthesis is the associated
process of choosing data structures and functions to transform the algorithm in code.
Notice that the ability to acquire in a partially automatic way the high-level specifi-
cation to be compiled are essential even at this early stage, see e.g. [6]. In the ′80s,
automation work left to the machine was variable, depending on the level of natural
language involved, the amount of informality allowed and the distinction between being
able to tell the machine what to do, rather than how to do it. Formal methods were in-
volved in this process by helping synthesizing programs from formal specifications and
from examples, [9]. In parallel, the aspects related to building knowledge domains were
gaining relevance [8]. The rise of new computational models over the ′90s and 2000s,
e.g. networks, distributed algorithms, web search and link analysis, and later the de-
velopment of randomized and evolutionary algorithms, have brought algorithm design
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problems to a whole new level.13 Today, automatic programming is for a large part a
process of optimization with a large number of design choices, parameters, non-linear
interactions for both exact and approximate algorithms. It requires the application of
search techniques, heavy computational power to explore design spaces and it involves
stochastic aspects in exploring instances of the problem observed, while learning pro-
cesses are essential to solve unseen instances of the same problem. The requirements
written in a formal specification are usually transformed sequentially into low-level im-
plementations, a process automatized by genetic programs that evolve the candidate
for transformation [3].

The algorithmic approach to the easy problem of consciousness identifies in (possi-
bly automatic) algorithm design the mechanical ability of accessing rules for mechanical
execution. We shall offer a reading that is neutral with respect to the entities of rel-
evance through a modal logic translation. The use of modal logic, beyond modeling
several forms of human rationality, is a well-established technique to reason about pro-
grams as well since the ′70s [61,25], codified by Hoare Logic [45] and more recently by
Dynamic Logic [41]. In the setting of the latter system, the modal formula [α]p says that
after execution of program α, p holds. Iteration is used to analyse execution of sequen-
tial programs, including those which loop on their own execution: [α;α]p→ [α][α]p says
that if after execution of program α which loops on itself, p holds, then after execution
of α one reaches a state where after execution of α, p holds. The general interpretation
of the iteration axiom schema of modal logic for both humans and machines suggested
in the present work is possible under the so called proofs as programs isomorphism, also
known as Curry-Howard-de Bruijn isomorphism [19,46,15,69]: extensionally, given a
proposition A provable by proof a, there is a program p that satisfies the specification
S corresponding to A

a :A↔ p :S

This principle states that for every algorithmically executable process to prove a propo-
sition – and hence realizing the corresponding state of affairs – there is a correct pro-
gram that satisfies the same state of affairs. This principle expresses the conceptual
identity between effective computability and mechanical realizability. Once the itera-
tion principle is applied, it follows the conceptual identity between algorithm design
for machines and epistemic rule access for humans.

Our account of algorithmic iteration below is therefore based on an interpretation
of introspection through transparent rules introduced earlier, although we stress some
specific properties:

1. algorithm execution to the effect that there is an entity knowing that p is neutral
with respect to the nature (human or mechanical) of the subject executing the
algorithm, according to the above introduced proofs-as-programs isomorphism;

2. the iterative stepK(K(p)) is algorithm design, in line with automatic programming
and epistemic rule access.

This interpretation, detailed in the following section, relies on a de dicto/de re dis-
tinction on modalities, with several practical implications relevant to the design of
computational agents in AI.

13 See e.g. [49] for a modern overview of the discipline.
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3 Design and Execution

The interpretation of syntactic terms as algorithmic operators and their outputs in-
duces immediately a question concerning their scope. This recalls the old-standing
issue related to propositional attitudes and the famous de re/de dicto distinction. This
distinction has been considered in its syntactical, semantical and metaphysical inter-
pretation, see [53]. The distinction is famously embedded in the Barcan formula [7] in
quantified modal logic:

∀x�φx→ �∀xφx (1)

which is notoriously equivalent to

♦∃xφx→ ∃x♦φx (2)

An informal explanation of these formulas can be given by saying that by 2 nothing
comes into existence, by 1 nothing goes out of existence. The philosophical implica-
tions of these formulas are well known, especially with respect to the thesis known as
actualism and their relevance for the metaphysical justification of contingent objects.14

The obvious problematic aspect of 2 is that not everything that is plausible to assume
can exists has to actually exists.

In the present context we are interested in an interpretation of the de re/de dicto
distinction applying to algorithms. An attempt in this direction was already presented
in [55], [57], where a formalism is developed to account for the sense or intension
of an expression as an algorithm, and algorithm execution determining denotation.
In a similar vein, recent philosophical accounts of information processing for digital
computation use the notion of instructional information to account for the procedural
sense of the computation, as opposed to its denotation as output, see e.g. [30]. Our
main concern is the qualification of the formula in the scope of the modal operator
intended as an algorithm. In its first interpretation, where a non-modal formula is in
its scope, we propose a de re reading which amounts to algorithm execution:

Definition 4 (Algorithmically de re) An algorithmic evaluation is de re with re-
spect to an output specification S if and only if it directly points to the execution of
the algorithm or program p producing an output satisfying S.

This means that given a modal formula �A, where A is non-modal, its algorithmically
de re interpretation makes it correspond to a term formula p :S, with program p and
specification S such that the execution of p satisfies S, and S is the specification that
corresponds to A.

In its second interpretation, where a modal formula is in the scope of an operator
qualified as an algorithm, we propose a de dicto reading which amounts to algorithm
design:

Definition 5 (Algorithmically de dicto) An algorithmic evaluation is de dicto
with respect to an output specification S if and only if it indirectly points to S, i.e. by
pointing at the algorithmic design of the algorithm or program p producing an output
satisfying S.

14 For an overview of this debate, see [54].
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This means that given a modal formula �(�A), where A is non-modal, the algorithmi-
cally de dicto interpretation of the outermost � makes it correspond to a term formula
p′ : (p :S), with program p′ such that its execution satisfies the design of a program p

whose execution satisfies S.
In view of the above de re/de dicto distinction concerning algorithms, in the follow-

ing we denote a modal expression in the range of a modal operator as algorithm design,
and a non-modal formula in the scope of a modal operator as algorithm execution.

4 Formal Preliminaries

We use an alphabet of atomic propositions to denote the encoding of elements of a
knowledge base. Such elements can be thought of as states of affairs, actions, objects
of desires or of beliefs. Atoms can be used to construct more complex formulas. In line
with our algorithmic view, we restrict here ourselves to a fragment of first order logic
including modalities which is a reduction class in the sense that a computable function
for the satisfiability of formulas exists. Informally, this means we restrict to formulas
expressing some specification for an algorithmically executable process (program), i.e.
we assume that computable functions can be given for all valid formulas or tautologies.
The language

L := {φ | ¬A | A→ B | �iA}

with φ in the set of atoms and A,B metavariables ranging over formulas, is some
decidable fragment including at least propositional modal logic. The index on modal
formulas is explained below. We can further extend the language with additional con-
nectives, but this is not required for our purposes.

We read A simply as ‘A is the case’. Based on the distinction of modal operators
introduced in the previous section, we read the necessitation formula �A as ‘an al-
gorithm is executed to the effect that A is the case’. This reading reflects the de re
interpretation of the modal operator: it is a necessary feature of the computational
ontology of our world that executing a given algorithm produces a certain output A.
This relies further on the assumption that the logical structure of the algorithm, its im-
plementation and execution are correct. Hence a boxed formula refers to a specification
satisfied by an algorithm.

We further characterise our modal formulas introducing subscripts with the follow-
ing meanings:

�HA: ‘an algorithm is executed by a human to the effect that A is the case’;

�MA: ‘an algorithm is executed by a machine to the effect that A is the case’.

The meaning of the standard T axiom from modal logic is then given in the following
two versions:

(TH) �HA→ A: ‘If an algorithm is executed by a human to the effect that
A, then A is the case’;

(TM ) �MA → A: ‘If an algorithm is executed by a machine to the effect
that A, then A is the case’.
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The former expresses algorithm execution by humans and it can be understood as an
informal counterpart to Church’s notion of effective computability. The latter expresses
algorithm execution by machines and it can be understood as an informal counterpart
to Turing’s notion of mechanical realizability. Admitting this axiom makes our algo-
rithmic interpretation stronger than the typical provability interpretation for modal
logic, e.g. in the system GL where neither axiom T nor axiom D are admissible as
the reference system might be unsound or inconsistent. In the present algorithmic
interpretation, the intended meaning of the modal operator is the existence of a fea-
sible, executable procedure satisfying a given output. We exclude non well-defined,
non-terminating algorithms from our analysis, restricting ourselves to programs whose
formal correctness with respect to the specification can be proven in principle (and
therefore to decidable formulas).

We moreover admit counterparts to the K axiom for distribution of � over impli-
cation. Our analysis in the following shall focus on the meaning of so-called iteration
axioms (Axiom 4) for modal logic. As anticipated in the previous section, when a boxed
formula is in the scope of another modal operator and the iterative step takes place,
we assign a different reading to it so as to reflect its different range (which is no longer
a specification, but an algorithmic action). This de dicto reading is then interpreted as
algorithm design:

�X�HA: ‘an algorithm is designed by X to the effect that an algorithm is
executed by a human to the effect that A’;

�X�MA: ‘an algorithm is designed by X to the effect that an algorithm is
executed by a machine to the effect that A’.

We formulate now the proofs-as-program principle observed in section 2:

Definition 6 (Human-Machine Algorithmic Correspondence) �HA↔ �MA

The intended reading of the proofs-as-programs equivalence is that if an algorithm to
the effect that A is executed by a human, then one to the same effect is executed by a
machine, and vice versa. Albeit equivalent, the two algorithms are not the same:

Definition 7 �MA is a more efficient and optimal version of �HA.

Notice that our analysis does not prescribe that any machine designed algorithm is
the better counterpart of an existent human designed algorithm, or of one that would
otherwise be designed sooner or later by a human. Definition 7 says instead that a ma-
chine executed algorithm (however unintended or unexpected by a human designer, e.g.
because of being the result of learning huge amount of data and drawing correlations
that are difficult to discover at first) is never a procedure that remains inexplicable or
out of the control of a human designer.

As pointed out above, the fragment of modal logic considered in our analysis is
restricted to decidable formulas. This choice is justified by our interest in specifications
with programs, and formally by the fact that a logic including S4 is bound to validate
the necessitation rule: ‘If A is the case, then �A’. In the semantics this rule states that
for every tautology there is an algorithm to verify it, which amounts to the problem of
logical omniscience in an algorithmic version. This old philosophical problem [44,71]
has been already approached under an algorithmic version at least since [40], where
an interpreted system is offered where agents have algorithms as part of their local
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knowledge states, and hence algorithmic knowledge is explicit but distinct from validity.
As such, no agent algorithmically knows all tautologies, nor all the consequences of her
own algorithmic knowledge. Instead, it is possible to prove in this system that any
agent has (implicit) knowledge of her own algorithmic knowledge. We follow here a
different strategy to accommodate (not to solve) the issue of algorithmic omniscience:
we constraint the system to validities that are algorithmically definable, and as such
are at least in theory consistent with the algorithmic interpretation of necessitation.

5 Positive Algorithmic Iteration

In this section we analyse and interpret the various versions of Axiom 4 possible by
interleaving distinct indices on our modalities. We list their meaning and formulate
some obvious consequences. In the following, the neutral assignment X will be substi-
tuted by H and M respectively. With respect to these qualifications of algorithms, it
is essential to keep in mind the level of abstraction we are considering: when referring
to �HA as “an algorithm is executed by a human to the effect that A”, we refer to
an idealised model of effective computability in terms of a human computor in the
process of going through the required steps for obtaining the state of affairs encoded
by A as a proposition; similarly, by �MA intended as “an algorithm is executed by a
machine to the effect that A”, we refer to a mathematically correct model of a physical
machine in the process of going through a step-by-step set of instructions, i.e. a model
of mechanical realizability.

Let us now list all the combinations of human- and machine-designed algorithms
for human- and machine-executed algorithms without negation.

5.1 On human algorithms

4HHH �HA→ �H�HA

If an algorithm is executed by a human to the effect that A, then an algorithm
is designed by a human to the effect that such an algorithm exists.

4HMH �HA→ �M�HA

If an algorithm is executed by a human to the effect that A, then an algorithm
is designed by a machine to the effect that such an algorithm exists.

4HHM �HA→ �H�MA

If an algorithm is executed by a human to the effect that A, then an algorithm
is designed by a human to the effect that an equivalent algorithm executed by
a machine exists.

4HMM �HA→ �M�MA
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If an algorithm is executed by a human to the effect that A, then an algorithm
is designed by a machine to the effect that an equivalent algorithm executed by
a machine exists.

Lemma 1 (Human Algorithmic Completeness) Everything that is algorithmically
feasible for a human to execute, can logically be designed and executed by both humans
and machines.

Proof By 4HHH , 4HMH , 4HHM , 4HMM .

Lemma 2 Everything that is algorithmically feasible for a human to execute, can log-
ically be designed in a faster and optimal form by a machine.

Proof By 4HMH and Definition 7.

Lemma 3 Turing Machines are a logical possibility.

Proof By 4HHM .

The results from this section justify the thesis that mechanically executed compu-
tational intelligence can level with – and in fact improve on – any humanly executable
act of intelligent computation.

Lemma 4 Turing Machines can optimise algorithms executed by humans.

Proof By Definition 7, Lemma 3 and 4HMM .

5.2 On machine algorithms

4MMM �MA→ �M�MA

If an algorithm is executed by a machine to the effect that A, then an algorithm
is designed by a machine to the effect that such an algorithm exists.

4MHM �MA→ �H�MA

If an algorithm is executed by a machine to the effect that A, then an algorithm
is designed by a human to the effect that such an algorithm exists.

4MMH �MA→ �M�HA

If an algorithm is executed by a machine to the effect that A, then an algorithm
is designed by a machine to the effect that an equivalent algorithm executed by
a human exists.

4MHH �MA→ �H�HA

If an algorithm is executed by a machine to the effect that A, then an algorithm
is designed by a human to the effect that an equivalent algorithm executed by
a human exists.
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Lemma 5 (Machine Algorithmic Completeness) Everything that is algorithmi-
cally feasible for a machine to execute, can logically be designed and executed by both
humans and machines.

Proof By 4MMM , 4MHM , 4MMH , 4MHH .

Lemma 6 Every machine can design non-optimal programs.

Proof By Lemma 5.

Lemma 7 (Universal Turing Machine) The Universal Turing Machine is a logical
possibility.

Proof By Lemma 5.

The results from this section justify the thesis that humans can level with any
machine executable act of intelligent computation (modulo enough time and space).
Or in other words, any algorithmic limit to human computational intelligence is one
for machine computational intelligence as well. The following lemma is the main result:

Lemma 8 Humans can control algorithms designed and executed by machines.

Proof By Definition 6 and 4MHM .

5.3 At the border

Collating the results on positive algorithmic iteration from the previous subsections,
we offer a principle of completeness and one of transparency.

Theorem 1 (Human completeness over Machine Algorithms) Given enough
time and modulo non-optimality, a human can design and modify any algorithm de-
signed by any machine.

Proof By Definition 7 and Lemma 8.

Theorem 2 (Non-opacity of computational intelligence) For every proposition-
ally encoded state that can be algorithmically executed by either a human or a machine,
there are human (non-optimal) and machine (optimal) designs transparent to each
other.

Proof By Lemmas 2 and 8.

6 Negative Algorithmic Iteration

The extension of the logic S4 to iteration with negation is obtained through axiom 5,

5 ¬�¬A→ �¬�¬A

The standard epistemic interpretation of ¬�¬A is given by equivalence to the possibil-
ity operator ♦. In the present context of an algorithmic interpretation of the iteration
axioms, an appropriate reading of negation is required.



Algorithmic iteration for computational intelligence 15

We start by considering �A to be corresponding to a characteristic function for
A, i.e. a function with Boolean outputs returning 1 or True for an algorithm that
satisfies A, and 0 or False otherwise. This makes an algorithm for A computable in
polynomial time P , the class of all decision problems solvable by a deterministic Turing
machine using a polynomial amount of computation time. Accordingly, �¬A is also
a problem computable in P . Then ¬�¬A becomes a problem that is not computable
in polynomial time (P ). This class contains everything that is not computable by a
deterministic algorithm running in polynomial time. The class NP of decision problems
where a positive answer can be verified in polynomial time by a non-deterministic
Turing-Machine contains P but is generally believed not to coincide with it. Above
NP , PSPACE is the set of all decision problems that can be solved by a Turing
Machine using polynomial space and EXPTIME is the set of all decision problems
that have exponential runtime.

�PA can now be used to express any algorithm whose execution requires time
and computational resources that are beyond the standard computational abilities of
the appropriately chosen (mathematically idealised) model of human intelligence. As
they are above our idealised model, they certainly are above the limits of any real,
resource-bounded agent. We can identify in this way hard algorithmic problems in
terms of computational intelligence. Negative iteration amounts then to the following
two formulations:

5H �PA→ �H�PA

If a hard algorithm is executed to the affect that A, then there is a human-design
for it.

5M �PA→ �M�PA

If a hard algorithm is executed to the affect that A, then there is a machine-
design for it.

Notice that the antecedent only claims that such an algorithm is executed, assuming
it exists: the existence itself is an undecidable problem. Examples of hard algorithms
include design of experiments in statistics, protein design in biology, graph colouring
and path construction in geometrical complexity, string-to-string correction in pro-
gramming, optimization in machine learning. Despite these algorithms being ‘hard’ in
a practical and procedural sense, their design and eventually their understanding is
still within the scope of computational intelligence (modulo time and space).

7 Fulfilment and Faithfulness

In [50] a computational theory of belief introspection is developed aimed at analysing
the nature of computational introspection on machines with a non-doxastic knowledge
base. Our analysis has a different take, in that it aims at revealing the expressive pos-
sibilities of a modal language when the modality is taken to interpret an algorithmic
procedure and the iteration allows for both human and mechanical agents’ interleav-
ing. Despite this dissimilarity, a crucial aspect of the work in [50] can be adapted to
our purposes, namely the results on introspection for perfect and bounded rational
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agents. What follows can be considered a purely formal adaptation. We start by a
generalization of the results from the previous section.

�X�Y A↔ �ZA X,Y, Z ∈ {H,M}

This principle can be proven to hold by assuming consistency of�XA and completeness
over such algorithms, i.e. that for any action or state A, either the design of an algorithm
to the effect that �XA exists, or one can prove that no such design is possible. A formal
limitation by undecidability is still in place, as �XA cannot be in general shown to
hold for every A. The right to left direction of this equivalence is just a combination of
the various iterations of axiom 4 and it is called positive fulfilment in [50]. Its negative
counterpart extracted from axiom 5 is called negative fulfilment.

Proposition 1 (Fullfilment)

�ZA→ �X�Y A

The left to right direction of the equivalence is called faithfulness in [50]. It expresses
the ability of an iterative computational system to design an algorithm to the effect
that A if its non-iterative counterpart can execute an algorithm to the effect that A
(and not do so if such a performance is not available). Under our interpretation for
negative iteration from Section 6, the principle has the following form:

Proposition 2 (Faithfulness)

�X�Y A→ �PA

It expresses the fact that if an iterative computational system (human, machine or
interleaving the two) can be shown to design an algorithm to the effect that A, then
such an algorithm must exists in some complexity class at most over P .

8 Computational Intelligence is implementation neutral

Our argument has considered the formal identity of algorithm design across mechan-
ical computation (in the sense of Turing) and effective computability (in the sense of
Church). For the former we have referred to rule-based introspection, i.e. the ability
to access internal procedural rules to formulate step-by-step actions; for the latter, we
considered automatic programming, now increasingly based on new machine-learning
techniques reliant on efficient categorization and probabilistic assessment. The result
expressed by Theorem 2 establishes that automatically designed algorithms are trans-
parent to human understanding, modulo optimality.

It is a largely accepted view, in biology as well as in psychology and AI, that
intelligence is an essentially embodied property. Here we do not discuss the extensive
problem of determining whether different embodiments (e.g. in mechanical or biological
components) change in any significant way the nature of intelligence. Instead, we are
interested in showing that fixing the notion of computational intelligence in the sense
of Definition 2, any embodiment preserves it. In the terminology introduced above in
Section 1, we need to show that algorithmic knowledge for mathematical objects of
infinite size is preserved not only by mathematical objects of finite size, but also by
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technological objects. In other words, we need to show that the identity of algorithmic
iteration between humans and machines is neutral with respect to implementation and
hence the result of Theorem 2 holds irrespective of the entities manifesting computa-
tional intelligence. To show that this is the case, it is essential to illustrate how such
identity is preserved at each level of abstraction in the ontology of computing mecha-
nisms.15 The multi-layered analysis of computational systems, reliant on the practice
of computer scientists and philosophically advocated since at least [26], is essential to
the mechanistic explanation of physical computing [60], as well as to the identifica-
tion of their malfunctioning [31,28]. For the present purposes, it is sufficient to apply
the analysis of abstract information for computational systems offered in [63]. In that
context, it is shown how each level in the ontology of computing mechanisms has an
associated epistemological explanation and their relation is offered in informational
terms. In the present context we show that any structure implementing computational
intelligence qualifies as a computing mechanism in the same terms.

We start our description of computing mechanisms at the lowest abstraction level,
where the ontology is expressed as physical data. The associated epistemological inter-
pretation is the realization of actions by hardware. Here information consists of just
structured data. To exemplify, structured data for mechanical computing is difference-
making electrical charges; in biological structures, and in particular in humans im-
plementing rule-based operations, it is a well-defined topology of firing neurons in a
network.16 The next higher level is the encoding of physical states, whose associated
epistemological interpretation is the performing of operations as control of actions. In-
formation at this level is well-formed, performative data: for (digital) computational
systems this corresponds to machine low-level languages, for humans this is the instruc-
tion encoded in DNA and related functions. The ontology at the next higher level is
encoded operations and the corresponding epistemological structure is the definition of
instructions as control of operations. This can be expressed as instructional information
in terms of syntactically well-formed, meaningful data: in machines it is expressed by
programming languages, in humans is reflected by natural language instructions. One
level higher up, the ontology of the computing mechanism is the logic of algorithms,
with its epistemological explanation given by the expressions of tasks, to be instructed,
performed and executed. Here information is abstract and correctness-determining data,
i.e. establishing which instructions (and hence operations and actions) are correct in
view of the current aims. This level is already neutral for machines and humans, as
expressed by the formal identity between mechanical computation and effective com-
putability. Finally, the highest level of the ontology of computing mechanisms is that of
the intention state, with the associated epistemological explanation given by problem
solution. This duality determines algorithm design, i.e. the iteration step specifically
considered in this paper. At this level, content is characterised as abstract, semanti-
cally loaded, truth-determinant information for the algorithm to be designed. At this
level, one asks what the intended action of algorithmic intelligence is, and the latter
in turns defines the models where some actions can be considered true realisations of
that intention, others will not. This level is again neutral, as shown by Theorem 2.

This brief recount suggests that an ontology implementing computational intelli-
gence as by Definition 2 proceeds in the terms described above: problem formulation,
task assessment, instruction encoding, operation encoding, action execution. We argue

15 We borrow the term computing mechanism in the technical sense introduced by [59].
16 Notice that determining which topology is associated with which action is a hard problem.
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that any entity whose function of interest is that described by computational intel-
ligence according to the description above is a computing mechanism, irrespective of
its implementation. This description is only functional, in the sense that it does not
exclude that the same ontology might be able to qualify differently with respect to
other functions: in particular, a human intelligence will be epistemologically different
when it does not perform acts of computational intelligence in this specific sense. This
description is objective in the sense of the mechanistic account [60], as it qualifies as
computational only those activities that have a well-defined task and an algorithmic
solution to it. Moreover, the explanation provided reflects the essence of the mecha-
nistic account because it relies on identifying components at each abstraction level,
with the associated function and in relation to other components (i.e. the organiza-
tion). Here the mechanistic account of reference is by definition restricted to recursive
functions, encoded in a relevant way for the appropriate ontology. The complementary
question whether an artificial entity can produce intentions that cannot be produced
by its biological counterpart would first require an epistemological description of such
ontology that does not qualify it as a computing mechanism: we have argued that such
is not the case for the technology mastered so far.

9 Conclusions

We have presented a modal argument on the possibility of iterative computational
systems. We have formally argued that interleaving of human and machine algorithms
at design and execution stages is possible: such an argument justifies transparency
of computational intelligence to both humans and machines. One main consequence of
such an argument is that algorithmic design and execution by a machine can in principle
always be translated to an equivalent algorithm designed and execution by humans,
modulo efficiency in retrieving and computing resources. These results are embedded
in the principles of Fulfilment and Faithfulness. We have explicitly constrained our
analysis to specification with associated provably correct algorithms.

The current debate on Artificial Intelligence has developed in particular towards the
theoretical justification that an artificial agent might develop computational abilities
which, through some form of self-reflection, can progress to stages that largely surpass
any human intelligence. This has ignited a heated debate over the possibility that such
a Super-Intelligence might develop objectives that are non-aligned to human principles
and in turn become dangerous to our species. Our formal argument can be interpreted
as offering a strong theoretical basis for reconsidering the arguments on the (ethical,
economical, epistemological) risks of the technological singularity when this is expected
to result from current technologies based on programming. We believe that fulfilment
and faithfulness express the current reality of artificial intelligence: what machines can
do, is exactly what we program them for and our current understanding of machine
behaviour is under control in the sense that we know the range of expected outputs
from correctly behaving programs, although we might not ourselves be able to produce
those outputs. It should be stressed moreover that failure and errors in open systems are
sources of unbounded risks. This part of our thesis is relatively trivial and unsurprising.

Beyond this, faithfulness expresses a stronger theoretical position. It claims that
any self-programmable machine will still operate in a range of input-output relations
theoretically accessible to humans. This certainly does not mean that humans will al-
ways be able to anticipate and hence control the actions of an artificial agent endowed
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with some level of intelligence: the speed and sheer amount of data that can be organ-
ised, controlled, analysed for correlations and analogies and its rule-inference power
will grow beyond our finite abilities. But whatever such machine might be able to
learn and plan to do is still within the limits of algorithmic design and understanding:
these are ultimately under our control. This thesis is strengthened by showing that any
implementation of Computational Intelligence amounts to a computing mechanism.

We believe that safe Artificial Intelligence is a task for designers, who need to
put in place safe-lock procedures to allow humans to rely on its use. The design of
safe AI is one of the available views on required responses to catastrophic AGI risks,
see [70] for an overview, [42] for a recent model of safe AI design. Computational
intelligence supports the thesis that AI research should enforce internal constraints for
both technically well-functioning algorithms and philosophically well-motivated aims,
[73]. The possibility to develop highly beneficial AI is at our disposal and this is the
time to draw the appropriate limits and ensure that we start from the right principles.
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