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Abstract. We set out a strategy for quantizing attribute bootstrap ag-
gregation to enable variance-resilient quantum machine learning. To do
so, we utilise the linear decomposability of decision boundary parame-
ters in the Rebentrost et al. Support Vector Machine to guarantee that
stochastic measurement of the output quantum state will give rise to
an ensemble decision without destroying the superposition over projec-
tive feature subsets induced within the chosen SVM implementation. We
achieve a linear performance advantage, O(d), in addition to the exist-
ing O(log(n)) advantages of quantization as applied to Support Vector
Machines. The approach extends to any form of quantum learning giving
rise to linear decision boundaries.

1 Introduction

Quantum Machine Learning is a recent area of research initiated by the demon-
stration of a quantum Support Vector Machine (SVM) by Rebentrost, Mohseni
& Lloyd [1] and the k-means algorithm by Aı̈meur, Brassard & Gambs [2] (cf also
[3–8]). The development of the quantum SVM can be regarded as particularly sig-
nificant in that the classical SVM constitutes perhaps the exemplar instance of a
supervised binary classifier, i.e. an entity capable of learning an optimal discrim-
inative decision hyperplane from labeled vectors {(x, y) | x ∈ X̃, y ∈ {−1,+1}}
existing within a feature space.

Bootstrap Aggregation (‘Bagging’) is a well established method within stochas-
tic machine learning for removing variance from classifiers via the production of
bootstrap ensembles to refine the final decision accuracy. It shall be the argument
of this paper that this decision ensemble can be equivalently represented via a
quantum superposition, such that the final decision can be straightforwardly ob-
tained via quantum measurement. Moreover, we shall demonstrate that this is
necessarily more economic in both execution time and the total number of logic
gates required in comparison to classical (and even parallelized quantum) SVM
implementations.

2 Methodological Background

The Classical SVM The standard SVM [9] seeks to maximize the margin (i.e.,
the distance of the decision hyperplane to the nearest data point), subject to a
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constraint on the classification accuracy of the labelling induced by the hyper-
plane’s delineation of a general decision boundary. In its primal form, the soft
margin SVM optimization takes the form of a Lagrange optimization problem:

arg min
(w,b)

{
1

2
‖w‖2 + C

M∑
i=1

ξi

}
subject to: ∀i yi(w · xi − b) ≥ 1− ξi, ξi ≥ 0

where (xi, yi) i = 1 . . .M are the training vectors/labels, yi ∈ {−1,+1}, w is
the weight orientation vector of the decision hyperplane, and b is its bias offset.
(The margin is inversely proportional to ‖w‖). The ξi are slack variables that
give rise to the soft margin with sensitivity controlled by hyper-parameter C.

In the dual form [9], the slack parameters disappear such that the problem
is solved in terms of the Karush–Kuhn–Tucker (KKT) multipliers αi:

arg max
(αi)

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj(x
T
i xj) subject to:

∑
αiyi = 0 : ∀i 0 ≤ αi ≤ C

The problem is one of quadratic programming. As the optimization proceeds,
only a sparse set of the αs’s retain non-zero values. These denote the support
vectors defining the decision hyperplane. This sparsity (i.e. the low parametric
complexity of the decision boundary with respect to the training data) gives the
SVM substantial resilience to over-fitting (and thus reduces classifier variance).

Notably, the term (xTi xj) in the above (equating to the training vector Gram
matrix) may be freely replaced by any kernel function K(xi,xj) that satisfies
Mercer’s condition (i.e. positive semi-definiteness). This vastly extends the util-
ity of the SVM by enabling the mapping of the input decision space into a
large variety of alternative Hilbert spaces of potentially infinite dimensional-
ity (thus guaranteeing linear separability). The decision boundary in the input
space may thus undergo significant morphology variation while crucially retain-
ing the low parametric support-vector characterization of the decision bound-
ary within the Mercer embedding space (the space denoted φ(x) for which
K(xi,xj) ≡ φ(xi)

T (φ(xj)). Critically, at no stage are we required to com-
pute φ(xi)). The KKT conditions guarantee the existence of φ, but the kernel
itself may be calculated based on any similarity function that gives rise to a
kernel matrix obeying Mercer’s condition.

The Quantum SVM The quantum SVM implementation proposed by Reben-
trost, Mohseni and Lloyd [1] uses a least square reimplementation of the classic
kernelized SVM so as to implicate the efficient quantum matrix inversion of
Harrow, Hassidim & Lloyd [10]. The problem to be solved now becomes:

F

(
b
α

)
.
=

(
0 1T

1 K + γ−1I

)(
b
α

)
=

(
0
y

)
1T ≡ (1, 1, 1 . . .)T (1)

whereK is the kernel matrix (i.e. a permissible generalization of the Gram matrix
satisfying Mercer’s condition), γ−1 is the trade-off parameter between the SVM
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optimization and accuracy. Training object classifications are denoted by the
vector y ∈ ([−1, 1]

M
)T for the M training objects order-correlated with the

kernel matrix K (training object vectors xk are represented in their own basis).
Finally, α and b (the object of the optimization) are respectively the weight and
bias offset parameters of the decision hyperplane within the Mercer embedding
space induced by the kernel (though note that here the alpha represent distances
from the margin).

Consequently, quantum matrix inversion of F solves for the SVM parameters
α, b, producing the solution state:

|α, β〉 =
1

b2 +
∑M
k=1 α

2
k

(
b | 0〉+

M∑
k=1

αk | k〉

)
(2)

Utilization of these parameters for classification of novel data requires the
implementation of a query oracle implicating all of the labeled data:

| ũ〉 =
1(

b2 +
∑M
k=1 α

2
k|xk|2

) 1
2

(
b | 0〉 | 0〉+

M∑
k=1

|xk| αk | k〉 |xk〉

)
(3)

and also the query state:

| x̃〉 =
1

M |x|2 + 1

(
| 0〉 | 0〉+

M∑
k=1

|xk| | k〉 |xk〉

)
(4)

( | k〉 is thus an index state over training vectors)
The classification is then carried out as the inner product of the two states,

i.e. by performing a swap test and allocating class labels on the basis of the inner
product probability being greater or less than 1

2 (the swap test is performed via
the use of an ancilla to construct the state 1√

2
( | 0〉 | ũ〉+ | 1〉 | x̃〉) which is then

measured in the basis 1√
2
( | 0〉 − | 1〉)).

Bootstrap Aggregation and Attribute Bootstrap Aggregation Stan-
dard bootstrap aggregation is an effective approach for stabilizing unstable clas-
sifiers such as decision trees and neural networks [11]. It consists in randomly
sampling, with replacement, d groups from the total set of training samples M ,
training the resulting classifiers and combining the output either via decision
fusion (such as majority voting) or averaging in the case of regression-like clas-
sifiers. Each set can be expected to have M(1− e−m/M ) unique training vectors
on average for draw size m.

It may be shown, via bias/variance analysis [12], that bagging can be con-
sidered primarily as a method for reducing variance with respect to training-set
permutation/sampling. It is therefore be employed predominantly on low-bias
classifiers, since classifiers must necessarily trade-off variance against bias in their
design (bias is in this sense the expected discrepancy from Bayes optimality).
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Bootstrap aggregation is therefore notably less effective for an idealized SVM
(or in completely linearly separable problems) owing to the intrinsic variance-
resilience implied in the definition of the maximum margin SVM classifier in
terms of the support objects -i.e. those objects for which, in which the dual
form of SVM optimization problem, the Lagrangian multipliers are non-zero
[9]. Typically, these are highly sparse, and therefore training set sub-sample
permutation has no effect unless explicitly excluding these objects.

There are, however, techniques for artificially adjusting bias/variance within
SVMs. The parameter γ−1 above dictates the trade off between data fitting and
maximization of the the margin. Favoring the former should therefore reduce
the bias. An alternative strategy for bias reduction applicable to the quantum
SVM applies when considering the polynomial kernel: K(xj ,xk) = (xj ·xk)D ≡
φ(xj) ·φ(xk). Here, D can control bias via the relationship between polynomial
degree and functional localization.

The most generally effective strategy for bootstrap aggregation, however, uti-
lizes feature subspaces (referred to as either ‘attribute bagging’ or the ‘random
subspace method (RSM)’). Here, it is the selection of the features for classifi-
cation that constitutes the bootstrap set. Subspace remapping is, however, also
a natural quantum operation (implemented by projectors). Thus, if the set of
training vectors xk are represented within an orthonormal Hilbert basis, we are
implicitly concerned with the projectors { | P1〉〈P1 | , | P2〉〈P2 | , . . .} in carrying
out subspace selection within a quantum context, where the Pi are Hilbert space
vectors with spans corresponding to the feature subsets Pi. We will thus utilize
this approach in the following to define distinct set of classifiers constituting the
ensemble.

Critically, from the point of view of efficiently quantizing attribute bagging,
we do not require individual classifier decisions to be identified as such within the
final ensemble decision: in effect, the collective classifier acts as a single composite
classifier. In quantum terms, this implies that classifiers are able to exist as a
superposition without individual measurement prior to the final decision output.

3 Proposed Attribute Bootstrap Aggregation Method

The standard attribute bootstrap aggregation algorithm proceeds as follows: for
M training objects with N features, we individually train S classifiers on the
respective feature sets ds = {ds ⊂ N | |ds| < N}, either with or without
replacement. To classify test objects, we combine the S classifier outputs by e.g.
majority vote or summation over posterior probabilities.

In the following quantum implementation of attribute bootstrap aggregation
our objective will thus be to set up a quantum superposition of classifier decision
hyperplanes associated with each attribute selection. This will give rise to an en-
semble sum over decisions for which it may be demonstrated that a collective
measurement is sufficient for ensemble classification (we are thus implicitly opt-
ing for the ‘summation over posterior probability’ form of attribute bootstrap
aggregation.)
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We initialize our approach by selecting a total of S random selections, ps,
from N features, either with or without replacement, such that ps ∈ {0, 1}N . ps
is hence a characteristic function indexing basis states | k〉. For each projector
indexed by s we can thus train an SVM : F−1s

(
φ(Psxj)Tφ(Psxk),y

)
where Ps

is the projection matrix corresponding to ps (i.e Ps is the diagonal matrix having
the binary values of ps on its leading diagonal; Ps{i, j} = 0 if i 6= j, Ps{i, i} =
ps(i) ∀i, j ∈ {1, 2, . . . , N}).

In quantum terms, this means that we can construct a solution state super-
position over training vector basis states in order to construct the query oracle
(Note that the bootstrap sets occupy the full training vector Hilbert space, irre-
spective of the differential subspace dimensionalities, so that we are free to form
a superposition over projected vectors; thus we do not consider explicit sums
over projectors,

∑S
s=1 | Ps〉〈Ps | , or density operators, such as would be implicit

in a statistical ensemble approach).
Hence, (setting φ to the identity for convenience) we can construct the quan-

tum state:

| ũB〉 =
1

S
1
2

S∑
s=1

|αs, βs〉 ≡ N
S∑

s=1

(
bs | 0〉 | 0〉+

M∑
k=1

|Psxk|α(k,s) | k〉 | Ps〉〈Ps | |xk〉

)

where N =
1

(
∑S

s=1 b
2
s +

∑M
k=1 α

2
(k,s)|Psxk|2)

1
2

(implicitly obtaining the quantum speed up for each SVM implementation
within the superposition).

A key point to note is that the set of α(k,s)’s for some arbitrary S acts
over all of the M training vectors in order to define the decision hyperplane
(in contrast to the Lagrange dual SVM formulation), each defining a distance
from the optimal margin. As such, the set {α(k,s)} defines a unique subspace of
dimensionality |ps| − 1 within the subspace subtended by the {Psxk} (i.e the
decision hyperplane), where |ps| here indicates the Hamming weight. However,
the same {α(k,s)} also define a unique subspace of dimensionality N − 1 within
X, namely the direct product of the decision hyperplane with the null space of
Ps. We may therefore, (in constructing the solution state only, and absolutely
not the SVM matrix inversion) treat | Ps〉〈Ps | |xk〉 and |xk〉 equivalently with
regard to the {α(k,s)} (though not the |xk|).

If we thus set α′k =
(∑S

s=1 α(k,s)

)
, b′k =

(∑S
s=1 bs

)
and |x′

k| = |Psxk| ,

then it may be seen (by moving the summation inside the bracket and gathering
terms) that the following equivalences and equalities hold:

| ũB〉 =
1

S
1
2

S∑
s=1

|αs, βs〉 = N

(
S∑

s=1

bs | 0〉 | 0〉+

M∑
k=1

S∑
s=1

|Psxk|α(k,s) | k〉 | Ps〉〈Ps | |xk〉

)

≡ N

(
S∑

s=1

bs | 0〉 | 0〉+

M∑
k=1

S∑
s=1

|x′
k|α(k,s) | k〉 |xk〉

)

≡ normalisation const.×

(
b′ | 0〉 | 0〉+

M∑
k=1

|x′
k| α′

k | k〉 |xk〉

)
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It may thus be seen that the modified basis is identical to the previous basis,
and the ensemble training-data oracle has the same overall form as the original
training oracle. Critically, this means that the training oracle is thus represented
in the same basis as the query state x̃; i.e the sum over projectors | Ps〉〈Ps |
has not altered the representation of the final decision state within the training
vector basis, a result that comes about because of the linear separability of
training weights in the least squares SVM implementation.

The solution is therefore read off as before (i.e by using an ancilla to construct
the state 1√

2
( | 0〉 | ũB〉+ | 1〉 | x̃〉) measured in the basis 1√

2
( | 0〉 − | 1〉)).

Individual classification decisions are thus no longer resolvable in the swap
measurement; only the ensemble decision is measurable. Importantly, no new
logic gates or oracle basis is implicated in this construction. Consequently, boot-
strap aggregation is “free” within the Rebentrost, Mohseni and Lloyd framework.

4 Conclusion

We have demonstrated that it is possible to implement quantum bootstrap ag-
gregation, specifically quantum attribute bootstrap aggregation, without penalty
in quantum machine learning scenarios, using as an exemplar the Rebentrost,
Mohseni and Lloyd SVM model. Thus, we can harness the stabilizing character-
istics of bagging without requiring either additional logical gates or computation
time. To do so, we exploit quantum superposition in such a way as to guarantee
that stochastic measurement of the output state will give rise to an aggregate
(i.e. ensemble) decision without destroying the superposition over feature subsets
induced within the SVM implementation. This is enabled by the linear decom-
posability of decision boundary parameters within the Kernel-induced Mercer
embedding space.

Acknowledgment

The first author would like to acknowledge financial support from the Horizon
2020 European Research project DREAMS4CARS (no. 731593). The second au-
thor is partially supported by EU ICT COST Action IC1405 “Reversible Com-
putation—Extending Horizons of Computing”.

References

1. P. Rebentrost, M. Mohseni, S. Lloyd, Quantum support vector machine for big
data classification, Physical Review Letters 113 (130501).

2. E. Aı̈meur, G. Brassard, S. Gambs, Quantum speed-up for unsupervised learning,
Machine Learning 90 (2) (2013) 261–287.

3. M. Altaisky, N. Zolnikova, N. Kaputkina, V. Krylov, Y. E. Lozovik, N. S. Dattani,
Towards a feasible implementation of quantum neural networks using quantum
dots, arXiv preprint arXiv:1503.05125.



Decision Fusion in Quantum Machine Learning 7

4. S. Lloyd, M. Mohseni, P. Rebentrost, Quantum principal component analysis, Na-
ture Physics 10 (9) (2014) 631–633.

5. J. Barry, D. T. Barry, S. Aaronson, Quantum partially observable markov decision
processes, Physical Review A 90 (3) (2014) 032311.

6. S. Lu, S. L. Braunstein, Quantum decision tree classifier, Quantum information
processing 13 (3) (2014) 757–770.

7. R. R. Tucci, Quantum circuit for discovering from data the structure of classical
bayesian networks, arXiv preprint arXiv:1404.0055.

8. N. Wiebe, A. Kapoor, K. Svore, Quantum algorithms for nearest-neighbor methods
for supervised and unsupervised learning, arXiv preprint arXiv:1401.2142.

9. C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (3) (1995)
273–297. doi:10.1007/BF00994018.

10. A. W. Harrow, A. Hassidim, S. Lloyd, Quantum Algorithm for Linear Systems of
Equations, Physical Review Letters 103 (15) (2009) 150502. arXiv:0811.3171.

11. L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.
12. G. Valentini, T. G. Dietterich, Low bias bagged support vector machines, in: Int.

Conf. on Machine Learning, ICML-2003, Morgan Kaufmann, 2003, pp. 752–759.


