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Abstract 
 

Designing precise and flexible graphical modelling languages for software 

development 
Stephen John Cook 

 

Model-driven approaches to software development involve building computerized models of 

software and the environment in which it is intended to operate.  

This thesis offers a selection of the author’s work over the last three decades that addresses the 

design of precise and flexible graphical modelling languages for use in model-driven software 

development.  The primary contributions of this work are: 

 Syntropy: the first published object-oriented analysis and design (OOAD) method to fully 

integrate formal and graphical modelling techniques. 

 The creation of the Object Constraint Language (OCL) and its integration into the Unified 

Modeling Language (UML) specification. 

 The identification of requirements and mechanisms for increasing the flexibility of the 

UML specification. 

 The design and implementation of tools for implementing graphical Domain Specific 

Languages (DSLs). 

The starting point was the author’s experience with formal specification techniques contrasted 

with the lack of precision of published object-oriented analysis and design methods. This led to a 

desire to fully integrate these two topics – formal specification and object-orientation - into a 

coherent discipline. The Syntropy approach, created in 1994 by this author and John Daniels, was 

the first published complete attempt to do this. 

Much of the author’s subsequent published work concerns the Unified Modeling Language (UML). 

UML represented a welcome unification of earlier OOAD approaches, but suffered badly from 

inflexibility and lack of precision.  A significant part of the work included in this thesis addresses 

the drawbacks of the UML and proposes improvements to the precision of its definition, including 

through the invention of Object Constraint Language (OCL) and its incorporation into the UML 

specification, and the consideration of UML as source material for the definition of Domain 

Specific Languages (DSLs).  Several of the author’s published works in this thesis concern 

mechanisms for the creation of DSLs, both within a UML framework and separately. 
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Context Statement 
 

Model driven approaches to software development have been widely promoted and researched 

over the past thirty years under a number of slogans and acronyms: Model Driven Software 

Development (MDSD) [1], Model Driven Development (MDD) [2], Model Driven Engineering 

(MDE) [3] and Model Driven Architecture (MDA) [4].  Today there are numerous research 

initiatives dedicated to these topics, including the conferences Models since 1998 [5] and ECMFA 

since 2005 [6], the International Journal on Software and Systems Modeling (SoSyM) since 2002 

[7], and many others.  This entire body of effort establishes the overall landscape for the author’s 

work submitted here. 

The word “model” is worth explaining. Michael Jackson’s book “Problem frames: analysing and 

structuring software development problems” [8] distinguishes two kinds of models: analytic and 

analogic (here he follows Ackoff [9]).  An analytic model is a description of a system which is used 

to analyse that system; an example cited by Jackson is a model of an economy in the form of 

differential equations. An analogic model is a second system that has similar properties to the 

modelled system, for example toy aircraft on a large map used to represent the state of an ongoing 

battle.  Jackson finds the difference between these types of model crucial in software 

development, and chooses to avoid the word model altogether for analytic models, preferring 

instead simply to say “description”.   However, in the mind of this author the discipline of model-

driven development specifically constitutes the building of analytic models of software systems 

and the worlds in which they are embedded, so that a software developer can reason precisely 

about these systems by referring to a suitable abstraction without having to deal with all of the 

details of the modelled system. In this thesis the word model means a mathematical or logical 

construct that accurately represents aspects of a modelled system and which can be used to 

deduce (either directly or through a process of logical inference) conclusions about the properties 

and behaviour of the modelled system.  A graphical model is one that can be rendered as one or 

more two-dimensional diagrams containing shapes and connections between them; and a 

graphical modelling language provides precise syntactic and semantic rules for creating and 

manipulating graphical models. 

There are 17 publications included in this thesis, including articles from refereed journals and 

conferences, magazine articles, book chapters and a complete book.  These were published 

between 1986 and 2012 and represent an evolving body of thinking about the precision and 

flexibility of graphical modelling languages, including several attempts to introduce that thinking 
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into widespread practice both through the publications themselves as well as through the author’s 

involvement in the development of the international standard Unified Modeling Language (UML) 

and several software development tools. 

The author is credited in many other publications which are not included in this thesis, either 

because they cover unrelated topics e.g. [10] [11] [12] [13], they are related but do not add 

materially to content already included e.g. [14] [15] [16] [17] [18], or they cover related topics but 

this author was not a primary contributor e.g. [19] [20] [21]. 

The 17 included publications are organized into four groups covering foundations, language 

precision, language flexibility, and a summary of work to date.  Section V of this context statement 

offers a summary of the overall technical, managerial and political contributions of this work, while 

Section VI provides conclusions about the submitted work and comments on possible future work.  

References for citations in the context statement are provided.  For each publication, the number 

of current citations according to Google Scholar is indicated.  Finally, the publications themselves 

are presented, as copies bound into a separate volume. 
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I. Foundations 

The first group comprises three papers that offer significant individual contributions in two areas 

foundational to the overall narrative of the thesis: object-orientation and formal methods.  These 

papers explore these two areas in some depth but do not in themselves combine the themes of 

the thesis into a coherent whole. 

Object-orientation.  In the 1980s when personal computers with bitmapped displays were first 

emerging into widespread use, prevailing principles for organizing computer programs such as 

structured programming [22] were proving inadequate to the task of organizing programs that 

manipulated the new generation of interactive “WIMP” user interfaces (Windows, Icons, Menus 

and Pointing devices).  New principles emerged, most notably object-orientation, constituted of a 

set of basic concepts: classes, types and instances, polymorphism, separation of interface and 

implementation, class inheritance and type substitution [23].  It took a number of years for these 

principles to become mainstream for the specification and design of computer programs.  

Formal methods. The idea of creating a specification for a program separately from the program 

itself has existed since Ada Lovelace worked with Charles Babbage in the mid-19th century.  Since 

the 1970s a large body of work has studied techniques for doing this precisely, mainly using 

mathematical formulae based on set theory, algebra and logic.  Creating a formal specification 

allows the requirements for a program to be understood and refined prior to (or at least separately 

from) creating the program itself, and enables the program to be checked against its specification, 

by means either of formal proof or structured testing.   

PW1: Languages and object-oriented programming 
(23 citations) 

This 1986 article attempts to provide an in-depth explanation of object-oriented principles at a 

time when these principles were not widely known or understood, certainly in the UK. The article 

explains about types and instances, generic types, abstract data types and polymorphism, which 

it explains under the heading of message/object programming.  The article seeks to draw a 

distinction between data abstraction and object orientation, and it does this by setting up three 

criteria for recognizing object-orientation: 

1. Message names are bound to methods at run-time depending on the receiver of the 

message; 

2. The language includes an explicit class hierarchy; 

3. Both control and data structures are uniformly represented as objects. 



4 
 

In hindsight, only the first of these is truly essential for object-orientation.  Whether phrased in 

terms of messages and methods, invocation of procedures or functions, or otherwise, the real test 

of an object-oriented approach is that the method (procedure) that is invoked depends upon the 

individual object that receives the invocation at run-time.  In class-based languages the chosen 

method depends on the class of the object, but some languages such as JavaScript [24] allow 

methods to be defined on individual objects: JavaScript is a prototype-based language, rather than 

a class-based language.  Prototype-based object-oriented languages were just emerging in 1986 

[25] and it seems that when the article was written this author was unaware of them. Prototype-

based languages typically rely on a system of delegation rather than inheritance for sharing 

implementations and state between objects. In JavaScript, for example, every object is associated 

on creation with a prototype.  Trying to retrieve a property value from an object, if the object lacks 

that property, will cause JavaScript to look for (delegate to) the property in the object’s prototype.  

If the prototype is lacking the property, the search continues in its prototype, and the delegation 

process recursively continues, terminating at the Object.prototype object.  The existence of 

prototype-based object-oriented languages contradicts criterion 2: the need for an explicit class 

hierarchy. 

The author’s observation that both control and data structures should be uniformly represented 

as objects represents an interesting goal, very strongly influenced by Smalltalk.  However, later 

languages that are generally considered to be object-oriented such as Java did not attain this goal, 

although the more recent introduction of lambda expressions [26] into popular languages 

including Java [27] and C# [28] shows movement towards it. 

The article compares four programming languages: Simula [29], Smalltalk [30], Clu [31] and Ada 

[32].  It concludes that of these Smalltalk is the only truly object-oriented language and Simula 

goes most of the way, whereas Clu and Ada do not.  Clu and Ada can better be categorized as 

interface-based languages or data abstraction languages, providing the capability to separate 

interface from implementation which was also novel at that time.   

In retrospect, the article appears somewhat idiosyncratic.  It defines and recommends object-

orientation, but its characterization is restrictive, although it does correctly identify the essential 

point, namely run-time binding of invocation to method depending on the recipient.  This essential 

point is the basis of the definition of the Objective-C language, an object-oriented extension to 

the C programming language [33] invented by Brad Cox in the early 1980s [34] and still in use by 

Apple for their operating systems and APIs [35]. 
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The article mentions single and multiple inheritance, an important point of debate at that time, 

but does not discuss benefits or disadvantages of either.  It draws attention to a relationship 

between type inheritance hierarchies and generic types, but does not delve into the detail of this 

relationship, which has been subsequently studied in depth e.g. Bertrand Meyer’s OOPSLA’86 

paper [36]. 

The article’s attempt to blur the distinction between programming language and operating system 

seems somewhat naïve with three decades of hindsight, because it misunderstands – or at least 

under-estimates - the value chain and security issues involved in delivering a high-performance 

system of interactive applications on a modern personal computer or device.  Distributed systems, 

component-based development and service-oriented architecture were all in the future at the 

time this paper was written.  In 2016 a computing system is necessarily composed of loosely-

coupled components or services, where each component or service provides value to others, the 

whole being the result of the activity of numerous people and organizations.  Usually the 

components and services are organized into layers, to avoid cyclic dependencies, where each 

component must protect itself against misbehaviour by its neighbours and users.  There are many 

reasons, including performance, expressive power, verifiability, skills availability and taste, why 

the developer of a component may wish to choose a particular programming language or 

paradigm, and so the interface between components should not force this choice upon them.  

Nevertheless, this article makes two important contributions.  Firstly, it identifies the importance 

of objects and makes a reasonable attempt to define them, and secondly it points out that objects 

are pervasive in the sense that all aspects of an interactive computer system may be conceived in 

terms of them.  Neither of these points are at all controversial in 2016, but in 1986 they were 

novel, and it was the software industry’s recognition of these points that led to the development 

of object-oriented design languages over the following decade. 

 

PW2: Modelling Generic User-Interfaces with Functional Programs 
(6 citations) 

This conference paper, which is a shortened version of a Queen Mary College internal report, 

introduced modelling into the author’s vocabulary.  Modelling means here the creation of an 

abstract description of a system rather than a programmed implementation; such a separation is 

a basic theme of this thesis. 

At the time this paper was written, WIMP (Windows, Icons, Menus and Pointing devices) 

interfaces were still relatively novel.  This author had recently been experimenting with 



6 
 

programming an early bitmapped workstation – the PERQ [11] – for which programming the user 

interface entailed a great deal of low-level platform-specific coding.  The complexity of WIMP 

interfaces meant that a large portion of the overall effort in programming an interactive 

application on a computer with bitmapped screen and pointing device went into creating the user 

interface.  To help with this, much research was being done into User Interface Management 

Systems (UIMS) and other techniques for formalizing the user interface independently from the 

application, working out how best to separate concerns such as presentation, dialogue 

management, user feedback, and interfacing to the application itself [37], [38], [39].  

This paper falls within the same research area.  It sets out to use a combination of object-oriented 

and functional programming principles to describe user interface aspects of a system 

conceptualized as a function.  The intuition is that an interactive personal computer responds to 

a sequence of input events such as key presses and mouse gestures by generating a sequence of 

pictures.  This is formalized as a function from the input so far to the current picture, and the meat 

of the paper describes how that function may be described in terms of subsidiary functions such 

as Display, InputHandler, Window and so forth. 

The author’s declared aspiration here is that such an abstract description might be amenable to 

formal proofs about certain properties of the modelled system, for example the reachability or 

otherwise of certain states. No such proofs are attempted, and indeed it is not clear that the 

functional programming approach is particularly amenable to such proofs: an axiomatic approach 

such as that in [PW3] would make a better foundation.  

One of the key points made by this paper is the need for a concept of type substitutability in order 

to make the description extensible and enable the separation of user interface from application. 

The model exploits the concept of inheritance introduced by Cardelli in his 1984 paper “A 

Semantics of Multiple Inheritance” [40]. The paper extends Cardelli’s language by adding pattern 

matching, recursive equations, “where” clauses and type inference.  These additions to Cardelli’s 

language certainly increased its expressive power, but it is not obvious that the result is sound; 

considerable additional work would be needed to prove that each expression in the language is 

correctly typed, and such work was not done in this paper. 

Had the paper been written a few years later, it could have used an existing functional language 

such as Haskell [41].  Later again the Common Algebraic Specification Language (CASL) [42] could 

have provided the ability to construct the structures of this description in the form of a set of 

logical axioms and analyse their logical consequences by automatically generating examples and 
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counter-examples. Using CASL or the logical specification language Alloy [43] would certainly have 

been a better approach to satisfying the proof aspirations expressed for this paper. 

 

PW3: Specifying the Apple MacintoshTM Toolbox event manager 
(12 citations) 

The third and final publication in this Foundations group represents another approach to using a 

formal specification language to create precise descriptions of abstractions involved in an 

interactive user interface.  This work makes use of an existing specification language (Larch [44]) 

and an existing software system (the Macintosh toolbox) [45].  The work was done collaboratively 

over a significant period by a research group co-led by the author and funded by the Alvey research 

initiative [46], and represented a considerable learning experience for all participants, both in 

terms of the languages and systems studied, and in terms of the methodological issues arising 

from building a substantial formal specification.  

The article makes a case for formal specification primarily by observing that the English 

documentation of the software is in many cases ambiguous or incomplete.  One way to address 

this is to write experimental programs and tests to elucidate the exact behaviour of the software; 

the role of the formal specification is then to capture accurately the insights arising from such 

experiments. 

Section 3.2 of the article discusses the choice of specification styles between a constructive 

approach, in which a specific abstract structure would be chosen to represent the toolbox state, 

and an axiomatic approach, in which a set of logical axioms are given which any toolbox-

representing abstraction must satisfy, but which do not commit themselves to any particular 

abstraction. The axiomatic approach is chosen, and a sequence of specifications relating to the 

toolbox event queue is developed expressed using axioms such as the following: 

Next(add(q,e)) = if isEmpty(q) then e else Next (q) 

These axioms are presented in the form of logical equations, and their consequences are to be 

deduced by the normal rules of equational logic.  The semantic domain for these equations is to 

be thought of as a many-sorted algebra, where the sorts involved in the axiom above would be 

Queue, Element and Boolean.  None of the sorts are explicitly declared in these axioms. The 

authors have taken the liberty of using -expressions, higher-order functions and where-clauses 

to make the axioms more compact and expressive. 
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These specifications are developed in sequence, incrementally adding features by modifying and 

adding axioms: Basic queue; queue with masking; priority queue with masking; priority 

queue/stack with masking; removing discarded events.   The end result is then transformed into 

Larch traits, and this shows the limited expressive power of Larch, because many of the 

conveniences introduced for expressive power have to be removed, and all operations have to be 

explicitly typed.  Having transformed the specification into Larch, several of the types are explicitly 

declared to correspond to the actual toolbox: for example, event types {null, update, autokey, 

mouse, keyboard, activate, deactivate}.   The Larch specification is fleshed out quite fully for the 

behaviour of the event queue, and finally used to specify the Pascal toolbox function 

GetNextEvent. 

As a result of this work the authors drew a number of conclusions about how to create algebraic 

specifications, and about Larch itself.  In the former category the team tried and discarded several 

different approaches to developing the specification before landing on the approach described in 

the paper. Only after several iterations and readings of the documentation did it become clear 

that the key semantic element was the behaviour of the event queue with different kinds of 

events; once this had been identified, the equational formulation enabled the team to make good 

progress towards defining the essential abstractions.  Finally, the specification had to be 

transformed into Larch and bound to the practicalities of the toolbox. Because Larch does not 

support higher-order functions the resulting specification was more verbose, and we found that 

the definition of Larch/Pascal needed to be extended with an “expects” construct to handle the 

concept of global variable (the singular event queue) which was an essential feature of the 

toolbox. 

Conclusion 

This first group of papers contributed towards the exposition of object-orientation and formal 

methods, which are fundamental to all of the work presented later in this thesis.  At the conclusion 

of this work the author had learnt much about the technicalities of object-oriented design and 

programming, and separately about the practicalities of formal specification using a variety of 

different techniques: functional, logical and algebraic.  What came next were attempts to combine 

these elements into a single paradigm for specifying software systems. To that end, section II of 

this thesis explores the integration of formal methods into diagrammatic object-oriented 

specification languages. 
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II. Language precision 

The years 1990-1994 saw the emergence of a significant number of dissimilar object-oriented 

analysis and design methods, each one represented by one or more books and usually 

commercially associated with CASE (Computer Aided Software Engineering) tools.  These included 

methods by Booch [47], Coad and Yourdon [48], Jacobson [49], Martin and Odell [50], Reenskaug 

[51], Rumbaugh [52], Shlaer and Mellor [53], and others.  These typically introduced a 

diagrammatic notation, explained by means of examples, intended to enable a designer to create 

a high-level depiction of a software system prior to its detailed implementation, thus helping to 

bridge the gap between articulating the system’s requirements and designing its implementation.  

Many of these methods became commercially available in the form of CASE tools that provided 

graphical editors for the notations coupled with various forms of validation and code generation 

capabilities: Rational Rose for the Booch method, Select SDL for Rumbaugh’s Object Modeling 

Technique, ObjectOry for Jacobson’s approach, and many others. In what follows these pre-1994 

methods will be called first-generation object-oriented analysis and design methods. 

In 1994 the Object Management Group (OMG) set out on a process to standardize object-oriented 

analysis and design notations, culminating with the publication of the Unified Modeling Language 

(UML) specification in 1997.  The details of this process are covered in depth in [PW17]; it involved 

studying the first-generation methods, creating a Request for Proposals that solicited submissions 

from the authors of these methods and others, and finally consolidating these submissions into 

the published UML specification.  This author was a primary contributor to all of the major releases 

of UML. 

None of the first-generation object-oriented methods contained significant formal content and 

their use did not involve the formal manipulation of expressions representing mathematical or 

logical entities.  In this sense they were not precise: their interpretation was informal, and they 

offered no system for deduction or verification apart from whatever was provided by specific CASE 

tool implementations.  

The group of publications presented in this part of the thesis addresses this imprecision in first-

generation graphical modelling languages by adding a logical constituent, based on the author’s 

experience with formal methods.  The first and primary contribution is the Syntropy method 

introduced in 1994; subsequent contributions chart the introduction of ideas derived from 

Syntropy into the Unified Modeling Language (UML) and Object Constraint Language (OCL). 
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PW4: Designing Object Systems: object-oriented modelling with Syntropy 
(612 citations) 

This author, working with colleague John Daniels and others, became increasingly dissatisfied with 

first-generation object-oriented methods when putting them to practical use in a commercial 

environment.  There were two key points of dissatisfaction.  Firstly, the methods were inherently 

imprecise in their definition, and the actual meaning of models would only emerge through the 

actual behaviour of a CASE implementation; there were no accurate ways to reason about the 

meaning of a model apart from implementing it.  This imprecision was particularly frustrating to 

the author given his experience of formal specification.  Secondly, the words analysis and design 

as promoted by these methods often appeared to offer a distinction without a difference. Analysis 

is supposed to focus on functional requirements while design is supposed to focus more on 

implementation concerns.  However, making this distinction in practice is very hard to sustain 

without a much better description of the difference.  First-generation methods tended to 

subscribe to one of two competing ideologies: the elaborational approach vs the translational 

approach [54].  In the elaborational approach, most typically exemplified by Booch [47], the path 

from analysis to design involves adding and adjusting details (elaborating) until the model 

represents the desired implementation sufficiently accurately.  Here, the distinction between 

analysis and design is fundamentally ambiguous. By contrast, the translational approach, of which 

the archetype was Shlaer and Mellor’s Recursive Design [53], proposes that analysis will produce 

a complete, accurate model of the behaviour of the desired software, whereas design involves the 

creation of a translation which will generate the implementation from the analysis model.  

However, it is reasonable to question whether “a complete, accurate model of the behaviour of 

the desired software” may be said to constitute an analysis, rather than a design. 

In the light of these major concerns with first-generation OO methods, the author and John Daniels 

saw an opportunity to create a new approach that tackled them, and wrote the book “Designing 

Object Systems” to meet this opportunity.  The book sets out a complete discipline, called 

Syntropy, for modelling a system within a software development process using object-oriented 

ideas combined with formal methods, which made clear distinctions between different modelling 

viewpoints. 

Syntropy was one of the two first published attempts to define a graphical object-oriented 

modelling language incorporating the precision of formal specification languages, the other being 

Fusion [55] (see below).  Syntropy did this by making systematic use of navigation expressions [56] 

to integrate a type model with formal constraints.  Navigation expressions appeared a few times 

informally in the popular book by Rumbaugh et al [52], but Syntropy was the first published 
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formalism to define and use them systematically.  Section 3.2 of the book gives a comprehensive 

definition of navigation expressions, which provided the foundation for the approach that 

appeared later in OCL.  To express logical constraints, Syntropy adopted ideas and notations from 

the specification language Z [57]. 

Syntropy avoids the terminology of analysis vs design altogether.  Instead, it identifies three 

distinct modelling viewpoints: essential, specification, and implementation. The essential model is 

a behavioural model of the subject domain of a system, which models the subject domain as a set 

of state machines communicating by means of shared events.  In principle it can be used to model 

any subject domain and makes no commitments about whether software is involved. The 

specification model identifies a boundary between a software system and its environment, and 

models that boundary again in terms of communicating state machines, this time specifying which 

events are inputs to the software and which are outputs. The implementation model specifies the 

mechanisms by which the software responds to its input events, once again using state machines, 

this time communicating by sending and receiving messages. 

Syntropy is one of very few methods to make a clear distinction between modelling the subject 

domain and modelling the software itself [58].  Jackson System Development (JSD) [59] made a 

similar distinction: Jackson has throughout his career demonstrated refreshing and unusual clarity 

on points such as this. 

The book is divided into 5 parts: 

1. Systems models and views. A single chapter sets out the philosophy and overview of the 

approach. 

2. Modelling the world. Chapters 2-5 explain how to model state and behaviour by means of 

communicating state machines using the essential model interpretation, with many 

examples.  Chapter 2 makes the important distinction between object type and object class; 

an object type defines the features in common to a set of similar objects which conform to 

the type, while an object class is a description of implementation details.  Chapter 4 

introduces the idea of an “initial object” making the scope of a model well-defined. This idea 

reappears in the discussion of OCL allInstances in [PW8]. 

3. Models of software. Chapter 6 explains the specification model and chapter 7 the 

implementation model.  Chapter 8 goes into considerable detail about the complexities of 

sub-typing of statecharts in the three different modelling viewpoints.  To the best of this 

author’s knowledge, this material remains one of the most detailed expositions of this 

problem area in the literature. Chapter 9 addresses concurrency, and provides a fairly 
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detailed description of how to manage type-conformance in situations where multiple 

clients may concurrently access the same object. 

4. System architecture. Chapters 10-12 explain how to scope and encapsulate models, 

partition them into domains and viewpoints, and transition between the three 

interpretations. 

5. The development process. The final chapter 13 briefly discusses how to manage a software 

development process incorporating the ideas set out in the book. 

Syntropy takes a very state-centric view of modelling.  Every object type is described using a 

combination of a statechart [60] and logic, and the behaviour of a system is to be thought of as a 

set of communicating state machines.  This state-centric view is in considerable contrast to the 

functional and algebraic methods put forward in the author’s earlier works [PW2] and [PW3].  

Syntropy would not be a good formalism for (say) specifying the factorial function: although it 

would be in principle possible to define a factorial-calculator object and the various events that 

occurred as that object recursively used itself to calculate the answer, the result would be baroque 

and unhelpful. Nevertheless, Syntropy did prove to have a significant level of applicability to many 

real-world problems and was used in many training and consulting engagements by its authors 

and their colleagues between 1990 and 1994.  It was also quite widely cited, and its attempts at 

formality were attractive to researchers looking to improve on the precision of object-oriented 

representations, e.g. [61]. 

Another method that emerged at the same time as Syntropy was Fusion [55]. Fusion aspired to 

integrate the most valuable aspects of first-generation OO methods into a coherent approach 

(hence its name), and made some use of formal methods, although nowhere near as much as 

Syntropy.  For Fusion, operation pre- and post-conditions were logically formalized using a 

structured English approach, and object lifecycles were formalized using lifecycle expressions, 

which used a kind of Extended Backus-Naur Form (EBNF) [62] to specify possible sequences of 

operations for an object. 

An important method based on UML that took formalism seriously was Catalysis by D’Souza and 

Wills [63], published in 1999 after several years of development.  Catalysis had its roots in Alan 

Wills’ PhD thesis which added formality to object-oriented programming [64], and also in 

Desmond D’Souza’s earlier work on applying and improving OMT and Fusion [65].  Catalysis 

adopted UML notation and put it to service in a complete and rigorous method that offered a 

wealth of ideas across all stages of a software development lifecycle, from business modelling 

through requirements specification, component design, object design and architecture.  Catalysis 
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is unique amongst the UML family of languages (see [PW10]) in its insistence on precision and 

formality across all aspects of the lifecycle and all kinds of models: static models, behaviour models 

and interaction models.  Catalysis cites Syntropy and Fusion as major influences, and Alan Wills 

became a close colleague and co-author with this author for many years [PW7, PW8, PW9, PW14]. 

Syntropy was also influential in the development of component-based development, particularly 

as realized in CASE tools produced by Texas Instruments.  In a personal communication to the 

author, Keith Short says the following: 

“Between 1985 and 1997 Texas Instruments, in conjunction with James Martin Associates, led 

the field in establishing Computer Aided Software Engineering (CASE) products and 

methodologies. When sold to Sterling Software in 1997, TI (then owner of James Martin 

Associates) was the seventh largest software company in the world, with a turnover of $800M 

per year, and over a thousand customers worldwide representing many diverse enterprises, 

military groups and government departments. The core CASE approach championed by James 

Martin himself, and later employees of TI, was based on Information Engineering (IE), a 

comprehensive methodology for building computer systems that matched business objectives 

and system user requirements. 

… 

As Architect for the Information Engineering Facility (TI’s CASE product, later renamed to 

Composer), and later as Research Director for TI’s CASE Research Laboratory, I was at the 

forefront of TI’s effort to combine IE with OO software development.  It was during this period 

of research into a workable combined approach to what eventually became published as 

Component Based Development, that my team and I discovered the work of Steve Cook and 

John Daniels published in 1994 in the book “Designing Object Systems, Object Oriented 

Modelling with Syntropy”.   Cook and Daniels’ work was groundbreaking, being the first fully 

fleshed-out approach to combining design in-the-large (software components that could 

match business tasks) and programming in-the-small (OO design of classes of which 

components are composed). Cook and Daniels’ approach was also novel in using well-formed 

logic expressions to describe component and class behaviors, providing an opportunity for 

machine-testing and verification of component and class implementations. This was of great 

interest to us at TI, as we were working to extend the specification of business tasks, and to 

exploit further opportunities for program generation. In many ways, Syntropy represented the 

first published effort to provide the glue combining IE and OO.” [66]  

The authors’ aspirations to create one or more CASE tools based directly on Syntropy were never 

realized.  Syntropy was commercially overtaken by the initiative by the Object Management Group 

(OMG) to create a standardized object-oriented modelling language which started in 1994, more-

or-less contemporaneously with the publication of Syntropy.  This initiative, documented in 

[PW17], led to the creation of UML, and some of the ideas from Syntropy – most notably the 

incorporation of logical constraints using navigation expressions – found their way into UML and 

OCL, as explained in the remaining publications in this group.  UML was initially extremely 

successful and for all intents and purposes superseded all other existing object-oriented methods.  
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Later work by John Daniels with John Cheesman pulled together ideas from Syntropy, Catalysis, 

and Sterling Software’s “Software Adviser” method into a component-based development 

method using UML notation [67]. 

PW5: Experience with Formal Specification of CMM and UML 
(10 citations) 

In 1994 this author left his consulting company Object Designers Ltd to join IBM’s new European 

Object Technology Practice.  There, Syntropy became a fundamental influence in a commercial 

project run in the IBM Insurance Solutions Development Center in La Hulpe, Belgium, by a team 

largely recruited by this author and comprising Aldo Eisma, Anna Karatza, Mark Skipper, Georges-

Pierre Reich, and Jos Warmer. The goal of this project was to build a software development tool 

for modelling insurance policies and processes using object-oriented concepts, heavily based on 

Syntropy.  However unlike in Syntropy there was to be no use of unfamiliar mathematical symbols; 

instead it used a library of operations with names rendered using only ASCII characters.  These 

operations acted on single objects and on the collections of objects resulting from navigation 

expressions; the collection operations were inspired by operations defined in the Smalltalk 

language [30]. This project was where Object Constraint Language (OCL) was developed. 

Like Syntropy, this project succumbed commercially to the OMG’s initiative to create the 

standardized object-oriented modelling language UML. The project was never published or turned 

into a product or service; instead IBM decided to base its insurance modelling work on the 

emerging UML standard. The energies of this author were hence redirected into influencing the 

UML standard on behalf of IBM in order to improve the precision and flexibility of the UML 

definition.  IBM teamed up with the company ObjecTime who were at that time vendors of a tool 

for the Real-Time Object-Oriented Modelling (ROOM) method [68], and a 194-page submission to 

the OMG was developed with this author and Bran Selic as the lead authors.  This submission is 

for copyright reasons not in the public domain, although it can be accessed by OMG members at 

http://www.omg.org/cgi-bin/doc?ad/97-01-18.  The document contains a complete definition of 

OCL, the Core Meta-Model (CMM) intended to be a basis for building general-purpose and 

domain-specific modelling languages, and a technique called schemes for customizing CMM to 

produce specialized languages. 

The IBM/ObjectTime submission was just one of several submissions for the definition of UML.  

The other main submission was the so-called “three amigos” document from Rational, which 

represented a unification of the ideas of Booch, Rumbaugh and Jacobsen.  Via a political process 

http://www.omg.org/cgi-bin/doc?ad/97-01-18
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described in [PW17], elements of the IBM/ObjectTime submission were incorporated into the 

eventual published UML 1 standard, including the entirety of OCL. 

A key idea in CMM was to satisfy a requirement for flexibility.  CMM was defined as a framework 

within which modelling languages could be built through schemes, somewhat analogous to the 

later UML profiles.  UML in contrast was defined as a complete language and as a result makes 

many detailed design commitments that have subsequently proved problematic as UML has been 

applied in various domains.  Part III of this thesis discusses this point in depth. 

This workshop paper [PW5] was written by authors of the IBM/ObjectTime submission, and 

summarizes experiences with using OCL within the definition of UML and its predecessor CMM.  

It is the first mention of OCL in the published literature.  Its primary author is Jos Warmer, who 

was assigned by IBM to integrate OCL into the UML submission once it had been decided to merge 

ideas from the IBM/ObjectTime submission into the final joint proposal. 

An interesting online weblog post by Jean Bézivin about CMM and the incorporation of OCL into 

UML [69] describes this author as the “éminence grise” of the IBM contribution to UML 1 and 

explains how OCL was incorporated from CMM into UML while the contribution of schemes was 

lost. 

[PW5] claims that a lack of a formal mathematical base for OCL is a “non-problem”.  In hindsight 

this is wrong.  Logical issues in the OCL definition have certainly caused problems, and indeed one 

of the publications in this thesis [PW8] was an initiative by this author and colleagues to resolve 

some of these problems.  There are many papers in the literature dealing with OCL issues, and 

ongoing work exists to this day: there has been a series of OCL workshops connected with the 

MODELS conference series for the past 15 years [70].  Work remains to be done: at the time of 

writing in 2016 there are 206 open issues recorded against the OCL definition1. 

PW6: Informal formality? The Object Constraint Language and its application in the UML 

metamodel 
(37 citations) 

This conference paper is the first reasonably comprehensive publication of OCL in the literature. 

It explains the language with examples, sets out the main characteristics of the language, and gives 

examples of the use of OCL to specify well-formedness rules in the UML metamodel.  It coincided 

with the publication by Warmer and Kleppe of their popular book on OCL [71], to which this author 

contributed a foreword. 

                                                           
1 http://issues.omg.org/issues/lists/ocl2-rtf?view=OPEN  

http://issues.omg.org/issues/lists/ocl2-rtf?view=OPEN
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The paper points out that tools are essential in order to verify the correctness of OCL expressions.  

At the time of writing in 1998, the only tool available was a simple parser, which found errors in 

more than 50% of the hand-written OCL.  A later paper by Richters and Gogolla [72] using more 

sophisticated OCL tools to check UML 1.3 again found errors in more than 50% of the OCL 

expressions.  In fact, it was not until the development of UML 2.5 from 2012-2015 that good 

enough tools were available to check the syntactic and semantic correctness of the OCL used to 

define the UML metamodel. Today in 2016 there is an online validator available at 

http://validator.omg.org/se-interop/tools/validator that will check UML models and metamodels 

for their validity under OCL constraints. 

PW7: Defining the context of OCL expressions 
(18 citations) 

When UML version 1.1 was formally published by the OMG [73], the definition of OCL was included 

as a chapter in the UML specification document.  Once OCL was formally incorporated into UML 

and reached a wide audience some of its deficiencies became more apparent.  At that time an 

informal grouping of researchers emerged with a shared interest in identifying and articulating 

these deficiencies.  The group comprised this author, Anneke Kleppe, Richard Mitchell, Bernhard 

Rumpe, Jos Warmer and Alan Wills.  One of the deficiencies identified early by the group was a 

lack of precise definition for how the free variables in an OCL expression are bound in the 

environment defined by a UML model.  This problem is also identified in section 3.11 of [PW8], 

below. 

A proposed solution for this problem is presented in [PW7] for which this author was the lead 

writer. The solution proposes a system of global and local declarations that represent how 

elements from the enclosing UML model appear in the environment of an OCL expression.  Global 

declarations are inferred for every package from the contents of the package and everything 

visible from it.  Local declarations are inferred based on the placement of the OCL expression 

within the model.  The treatment offers a use of OCL at the meta-level for specifying these 

declarations.  It is not noted in the paper but we may note here that this is a circular definition: 

the meta-level definitions would rely on a context defined by the definitions themselves.  In a 

practical implementation this would pose a bootstrapping problem.  

When UML 2.0 was published in 2005, the specification for OCL was separated and became an 

independent specification managed and versioned in its own right, with the starting version being 

2.0 in order to align with UML.  Clause 12 of the formal specification for OCL 2.0 published by the 

http://validator.omg.org/se-interop/tools/validator
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OMG in 2006 [74] and subsequently revised (currently at version 2.4) specifies mechanisms similar 

to those set out in [PW7]. 

PW8: The Amsterdam manifesto on OCL 
(67 citations) 

In 1998 the informal research group listed above met in Amsterdam for two days to discuss and 

clarify various issues in the definition of OCL.  At that stage OCL was becoming pervasively used 

among researchers into object-oriented design and modelling: the Warmer and Kleppe book 

written in 1998 and published in 1999 [71] received more than 200 citations by the end of 2000.  

The discussions and conclusions of the Amsterdam workshop were encapsulated in this 

“manifesto” document which was edited by Bernhardt Rumpe and first published in 1999 as report 

TUM-I9925 of the Technische Universität München, and finally published in a Springer “State-of-

the-Art Survey” volume edited by Tony Clark and Jos Warmer in 2002.  All participants in the 

workshop are listed as authors of the manifesto. 

The manifesto uses an example originated by Warmer and Kleppe to explain OCL in terms of 

business rules that would apply to a hotel.  After an introduction to the language and a description 

of its status, the discussion is grouped into bug fixes, clarifications, extensions and applications. 

An important problem identified in section 2.2 is the definition of OclAny.  In the original OCL 

definition, OclAny was the common supertype of all types, which meant that OclAny was the 

supertype of Set(OclAny), which in turn enabled the encoding of Russell’s paradox [75].  This 

problem was initially observed in a paper by Mark Bickford and David Guaspari which was not 

published but is available to OMG members at http://www.omg.org/members/cgi-

bin/doc?ad/98-10-01.pdf. 

The essence of the problem is this:  define OCL expressions R and P as follows. 

R:  OclAny.allInstances->select(x:Set(OclAny) | not x->includes(x))  

P: R->includes(R)  

According to the type rules for OCL, both expressions are well-typed; and it follows from the usual 

rules of set membership that P = not P.  

One way of addressing this problem would be simply to declare that an expression such as R is 

undefined semantically, even though it is well-defined syntactically.  This is a dubious principle for 

language design, so the problem was remedied in the definition of OCL 1.3 by removing 

Set(OclAny)from the subtypes of OclAny.  However, this is a special case; the overall 

problem of semantic consistency has not been resolved. Consider the following:  

http://www.omg.org/members/cgi-bin/doc?ad/98-10-01.pdf
http://www.omg.org/members/cgi-bin/doc?ad/98-10-01.pdf
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context T inv: not self.oclIsKindOf(T) 

This simple well-typed OCL expression is a contradiction semantically.  Later work on OCL such as 

[76] has produced much more detail on this and many other issues. 

Another “bug” identified in section 2.3 is the operation allInstances(), which is supposed 

to deliver the set of instances of a given type within some scope, although the scope is not well-

defined: indeed, within the UML specification the scope of a model is explicitly undefined.  Section 

6.3 of UML 2.5 states “The concept of an execution scope is not further defined within UML 

semantics, because exactly to what it corresponds varies depending on the domain of discourse” 

[77]. The manifesto declares that “allInstances()” is dangerous, and recommends instead 

a style of modelling related to the “initial object” introduced in Syntropy [PW4]. 

The manifesto attempts to clarify the meaning of undefined, proposing a three-valued logic 

(Kleene logic) for logical expressions, which has subsequently been incorporated into the formal 

OCL specification.  It also clarifies recursion, with a discussion about how recursive equations may 

in general have many solutions, and how it is normal for the semantics of programs to take the 

least fixed point solution if one exists.  This discussion has not significantly impacted the OCL 

specification, which doesn’t acknowledge this issue; OCL users normally give OCL an operational 

semantics, essentially treating any recursive constraint as a functional program. 

The manifesto suggests a number of extensions to the language, some of which were introduced 

into OCL as a response to various versions of the manifesto: oclIsNew, isUnique, let 

expressions, and some of which were not. Finally, the manifesto discusses the application of OCL 

to defining behaviour in various styles, including the Syntropy style, and also the definition of an 

OCL metamodel and how it might be used to customize UML. 

Conclusion 

Syntropy was the first significant published attempt to combine a graphical object-oriented design 

language with a formal specification language.  It showed how to add logical statements to class 

diagrams and statecharts using navigation expressions and collection operations, and how to 

interpret the resulting entities as models of the world and as specifications of software.  As UML 

was first standardized, Syntropy ideas were incorporated, most notably in the creation of OCL, its 

use in the UML definition, and its subsequent criticism and evolution. 

There is a considerable gap between conclusions about UML and OCL drawn within the academic 

literature and what actually happens in the evolution of the standardized technologies.  

Improvements to the standardized technologies take place slowly and are driven by processes 
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(see [PW17]) that take little account of what is published in the academic literature unless 

researchers actively engage with the OMG’s processes.  For example, some of the suggestions in 

the Amsterdam manifesto [PW8] found their way into the OCL specification by means of the 

OMG’s issue resolution process.  This was largely because a key participant in the workshop 

(Warmer) was also an influential participant in the relevant OMG Revision Task Force at the 

appropriate time. 
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III. Language flexibility 

This group of papers addresses the flexibility of graphical modelling languages by proposing 

techniques for language customization, both within the context of UML and separately from it 

with Domain Specific Languages (DSLs). 

As observed earlier [PW5], CMM was designed with flexibility as a key requirement, and with the 

concept of modelling scheme central to its architecture, where a scheme provided a way to 

assemble modelling language components into a language to address a particular subject domain.  

The UML 1.0 initiative did not adopt this requirement, and instead produced a single language 

which was in effect a political compromise between all of the parties to the UML submission.  In 

1999, the OMG issued a Request for Information [78] asking vendors and users of UML whether a 

major revision of UML was required.  23 responses were received [PW17] and analysed; the 

consequence was the issuance in 2000 of two Requests for Proposal, one for UML 2.0 

Infrastructure [79] and another for UML 2.0 Superstructure [80].   

The UML 2.0 Infrastructure RFP contains the following requirement about extensibility: 

“Many of the users and vendors who are defining profiles are encountering problems 

with the semantic restrictions imposed by the lightweight extension mechanisms. 

Consequently, there is widespread support for including a first-class extensibility 

mechanism in the next major revision. This will allow users and vendors to define their 

own metaclasses, providing further support for specifying a “family of languages” 

based on UML. 

Further, certain metamodel elements (e.g., generalization) have been given semantics 

that are implementation-dependent on the C++ programming language. 

Consequentially, it is problematic to specialize the semantics of these model elements 

in a profile to meet the needs of other domains.” 

Unfortunately, this extensibility requirement was not at all met by the UML 2.0 specification that 

was finally published in 2005. This turned out to be an architectural mess which was only 

somewhat resolved ten years later by UML 2.5, published in 2015 after a lengthy simplification 

process [81].  Many examples of this inflexibility are given in the group of papers in this section of 

the thesis; a simple example is the definition of visibility, which in UML 2.0 is implementation-

dependent on the Java programming language and is problematic to apply to other domains.  

Papers [PW9] and [PW10] were written while the requirements for UML 2.0 were being defined; 

the influence of these papers on that process may be seen in the use of the phrase “family of 

languages” in the quotation above. 

The appearance of UML 2.0 which failed to meet its extensibility or simplicity objectives was an 

important incentive for the separate emergence within the software industry of Domain Specific 
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Languages (DSLs): custom languages designed for creating models within a particular domain.  This 

author was a significant contributor to this emerging trend, as shown in [PW11] to [PW15] in this 

group of publications. 

PW9: Defining UML family members using prefaces 
(61 citations) 

This conference paper was written by the same group of researchers described in [PW7] above 

and was published in 1999, two years after the release of UML 1.1. The detailed history of 

publication of UML is described in [PW17]. In 1999 UML was the topic of many popular books as 

well as many academic publications, as the software development industry was beginning to get 

to grips with UML in order to decide what value it would have in practical software development 

processes.  Practitioners were beginning to recognize that UML is in practice a family of languages, 

where each family member has different rules for the syntax and semantics.  In recognition of this, 

the OMG was itself issuing Requests for Proposal for UML profiles, where each RFP contained a 

working definition of what was meant by profile.   The origins of the word profile are described in 

Jean Bézivin’s online weblog [82] which explains the background of these RFPs in work by Ed 

Seidewitz and Dave Frankel. 

The intent of [PW9] is to go further than the OMG’s working definition of profile, and provide a 

comprehensive description, with some examples, of the kinds of customization that UML users 

would want in practice. The term preface is used to avoid confusion, although ultimately the 

intention of profiles and prefaces would be very similar.  Prefaces are reminiscent of the concept 

of schemes from CMM, but much more elaborated and detailed. Section 2 of the paper 

intentionally defines UML as a family of languages rather than a single language, and motivates 

this description by reference to profile development within the OMG, publications from authors 

including the “three amigos” and other researchers, and the practicalities of code generation in 

various different environments. 

The paper explains some of the customization that a preface might accomplish using an example 

of how a class diagram might relate to a statechart diagram.  The paper claims that UML does not 

insist on a particular interpretation of this relationship.  In hindsight this claim may be misleading: 

UML 1.3 does in fact associate a Transition with an Event (although optionally), where an Event 

may include CallEvents, ChangeEvents, SignalEvents and TimeEvents, and where CallEvents are 

directly associated with Operations.   Thus although UML may not insist upon a particular 

relationship between statecharts and classes it is certainly highly suggestive of a preferred 

relationship, and this presumption is a significant barrier to flexibility. Indeed, UML 2 later 
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explicitly introduced a second interpretation called “protocol state machines”; in the view of this 

author this was exactly the wrong direction of travel, the preferred approach being to remove any 

such presumption from the basic language and to defer details of relationships between state 

machines and classes to a preface or some other customization mechanism.  This example hits at 

the heart of the flexibility problems with UML which eventually led to the emergence of domain-

specific language tools. 

Relationships between concepts are just one kind of information that might be contained in a 

preface. Section 4 of the paper lists many others, including customized meanings of specific 

notations, additional constraints, framing rules, programming-language specific support, 

communication paradigms and persistence mechanisms. Section 5 proposes that prefaces may be 

structured using packages, and that customizations may occur at different levels in the value 

chain: standards, toolsmiths, companies and individual projects.  The paper also discusses how 

semantics of prefaces may be described, how overlaps and inconsistencies may be handled, and 

how code generation may be combined with prefaces to produce executable systems. 

This paper unfortunately does not evaluate or analyse UML in terms of its flexibility. A naïve reader 

might assume that UML as defined, coupled with an implementation of prefaces as described in 

the paper, would offer a flexible route towards customized domain-specific modelling languages. 

Such is not the case, as is shown in the next item. 

PW10: The UML family: Profiles, prefaces and packages 
(39 citations) 

This invited conference paper covers somewhat similar ground to [PW9] but focuses much more 

on the state of the UML definition itself, and points out ways in which the UML definition does 

not lend itself as a basis for variation.  The paper was published when UML 2 was being envisioned, 

and was ancillary to this author’s ultimately unsuccessful campaign to formulate UML 2 as a family 

of variants, rather than a single language. It makes a critique of the UML specification document, 

noting that material called “semantics” is informal and erratic, that the language has no consistent 

level of abstraction, and that the metamodel contains unnecessary redundancy but is incomplete. 

The paper overviews existing and proposed approaches for UML variation: profiles, metamodel 

extensions, and prefaces (citing and quoting [PW9]).  It endorses and summarizes a feasibility 

study commissioned and funded by this author (representing IBM) and carried out by the Precise 

UML Group [21].  The purpose of the feasibility study was to propose a new architecture for UML 

2 based on the following three requirements (quoted verbatim from [21]): 
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1. It should be precise to the degree that conformance can be checked systematically, 

without argument, preferably automatically, and that self-consistency of the 

definition can be established. 

2. It should be comprehensive, covering syntax, both concrete and abstract, and 

semantics. On the other hand, redundant and overlapping concepts should be kept 

to a minimum. 

3. It should accept that UML is a family of languages, providing mechanisms that allow 

profiles and language extensions to be defined in a controlled and managed way, 

and which makes the relationships of profiles and extensions to existing language 

fragments explicit and unambiguous. 

These requirements are as compelling today as they were then.  Unfortunately the working group 

constituted to formulate UML 2 never accepted the idea of UML as a family of languages, mostly 

ignored the work in [21] and other important contributions (see [PW17]), and in consequence in 

the mind of this author and many others missed a vital opportunity. 

PW11: Domain-specific modeling and model driven architecture 
(121 citations) 

In 2003 this author changed employer, moving from IBM to Microsoft.  Part of the reason for this 

move was dissatisfaction and frustration with the end result of the UML 2 development process, 

to which this author was a key contributor and representative of IBM’s interests.  The essence of 

this dissatisfaction, as mentioned above and discussed further in [PW17], was that UML 2 

completely missed the opportunity to put flexibility at the heart of its architecture. 

Working with new colleagues at Microsoft provided this author with an opportunity to push 

forward model-driven development approaches without a significant corporate commitment to 

UML.  This magazine article, published online in 2004, is a position paper setting out a strategy for 

the role of models in software development based on domain-specific languages (DSLs), coupled 

with frameworks, patterns, tools and development practices integrated into software product 

lines.   This approach was to be promoted by Microsoft under the slogan of Software Factories, 

and described in detail in the book from which the chapters [PW12] are drawn. It was at this point 

in the history of model-driven engineering that industry interest in model-driven development 

was shifting from generic approaches, such as UML and MDA, to domain-specific approaches 

based on product-line engineering by analogy with mass-production, continuous improvement 

and mass-customization approaches in more mature industries. This article caught the spirit of 

that shift: it triggered significant controversy [83], but is also rather widely cited including in many 

academic research publications, e.g. [84], [85], [86]. Many of these citations refer to it as a source 

of definition for domain-specific modelling; for example Lopes et al [84] quote [PW11] thus: 
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“DSLs are defined by Steve Cook as languages that instead of being focused on a 

particular technological problem such as programming, data interchange or 

configuration, are designed so that they can more directly represent the problem 

domain which is being addressed”. 

The article points out that there are several important components of a complete software 

development approach: models, frameworks, patterns, code, tools and processes. It criticizes 

MDA primarily on the grounds that the MDA distinction between platform-independent models 

and platform-specific models is not often an important distinction in a software project, and leads 

to problems of performance and platform integration.  The article criticizes UML on the grounds 

of its lack of flexibility, and in particular how the mapping between UML and .Net (an important 

Microsoft application framework) is problematical, leading Microsoft to adopt UML conventions 

but to eschew “legal” UML. 

Having introduced the concept of domain-specific languages (DSLs) and the consequential need 

for languages and tools to implement them, the article goes on to find fault with MOF as a 

language for defining modelling languages, on the grounds of the narrow scope of MOF and the 

problems with XMI (XML Metadata Interchange) as an interoperability format.  The article points 

out that generating XML schemas from metamodels, as is done with MOF and XMI, causes 

combinatorial versioning problems as the metamodel, MOF and XMI are all subject to revision.  

Instead, each domain-specific modelling language should define its own purpose-built domain-

specific XML schema following widespread industry practice. 

PW12: Software Factories: Assembling Applications with Patterns, Models, Frameworks, and 

Tools 
(1319 citations) 

2004 saw the publication of this book setting out a vision for the industrialization of software 

development through the use of patterns, models, frameworks and tools. The book sold widely, 

was translated into several languages, and won a Jolt Productivity award in 2005.  The lead authors 

were Jack Greenfield and Keith Short.  This author and Stuart Kent were invited to contribute two 

chapters focused on the technicalities of modelling language definition and implementation, and 

an appendix offering a detailed critique of UML and MDA. 

Chapter 8: Language Anatomy concerns how domain-specific modelling languages are defined. It 

explains the various components of a language definition: abstract syntax, semantics, concrete 

syntax and serialization syntax.  It uses a simple language called Our Simple Language (OSL) as an 

example to illustrate the various aspects of language definition. 
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Abstract syntax is defined using context-free grammar (CFG) and metamodel and the two 

approaches are compared and contrasted.  The discussion points out that when languages 

combine graphical and textual elements, a combination of metamodels and CFGs is required.  OCL 

is used to specify well-formedness rules, and a system of annotations designed by this author 

based on an extended OCL is used to define concrete syntax.  The Serialization Syntax section 

explains XML-based serialization and contrasts purpose-built schemas with generated schemas, 

pointing out that generated schemas have the consequence that metamodel changes will 

invalidate existing serialized documents and require migration tools, whereas with purpose-built 

schemas a metamodel change only requires a change to the mapping between metamodel and 

schema. 

The final Semantics section of chapter 8 was written by Kent and discusses translational semantics 

and trace-based semantics. 

Chapter 9: Families of Languages builds on the material in Chapter 8 and describes tools for 

creating DSLs and their components, and how these components may be assembled and 

configured to create families of languages.  This chapter introduces a DSL for creating DSLs, and 

points out that this can be used to define and bootstrap itself.  It introduces language components 

as units of language reuse, with templates and “glue models” to hold them together. It then 

introduces a Tool Factory Architecture for the creation of custom tools for domain specific 

languages (including itself).  This is essentially the beginnings of the project, led by this author, 

which designed and implemented the actual DSL Tools product (see PW14) (although regrettably 

some components described in this chapter – the Pattern Engine, Animator/Interpreter and Model 

By Example components - never saw the light of day). 

The ideas presented in Chapter 9 correspond to a style of development which was labelled 

“Language-Oriented Programming” and “Language Workbenches” by Martin Fowler in an 

influential on-line article http://www.martinfowler.com/articles/languageWorkbench.html and 

also his 2010 book on Domain Specific Languages [87]. Fowler cites the work described here as an 

important example of this style of development. 

Appendix B of the book offers a fairly detailed critique of the UML and MDA initiatives. It covers 

similar ground to PW11 but in more technical detail, with historical material similar to that covered 

in PW17. 

http://www.martinfowler.com/articles/languageWorkbench.html
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PW13: Separating concerns with domain specific languages  
(1 citation) 

This brief article is the written counterpart of an invited keynote speech.  It summarizes the case 

for domain-specific languages, motivating it by the inherent heterogeneity of contemporary 

software development tasks. 

PW14: Domain-specific Development with Visual Studio DSL Tools 
(279 citations) 

Publication PW14 is an extract from a book written to accompany a product – “DSL Tools” - 

developed by Microsoft Corporation as a plugin for Microsoft Visual Studio. This author was the 

lead architect and designer of DSL Tools.  The book was written by the core members of the 

development team and published in the Microsoft .Net Development series.  The writing style is 

informal and tutorial, according to general guidelines for this kind of book.  

Chapter 1 entitled “Domain-Specific Development”, written by this author, is included in this 

thesis. The chapter sets out the philosophy and overall design of the DSL Tools product; the 

remainder of the book describes the product in detail.  The chapter starts by describing how a 

custom language can be defined to solve a class of problems.  The solution to a class of problems 

has a fixed part and a variable part, where the fixed part represents the commonalities amongst 

the class, and the variable part determines the differences between solutions. In domain-specific 

development the variable part is represented by the domain-specific model and plugged into the 

fixed part to constitute the complete solution. 

Two real commercial examples are included from early customers of the product: 

 Himalia2 build user interfaces based on Windows Presentation Foundation by integrating 

the output from three models: a Navigation model, a Use Case model and a User Profile 

model. 

 Ordina3 in their Microsoft Development Center developed a software factory which uses 

a Web Scenario model, a Data Contract model, a Service model and a Business Class 

model. 

Several other examples are proposed but not explained in detail: software defined circuitry; 

embedded systems constructed from state machines, device interfaces, and software process 

                                                           
2 https://visualstudiogallery.msdn.microsoft.com/8A37F5B7-1AF8-4699-BD6A-2BB3317E5825  
3 https://www.ordina.com/  

https://visualstudiogallery.msdn.microsoft.com/8A37F5B7-1AF8-4699-BD6A-2BB3317E5825
https://www.ordina.com/
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customization.  Illustrated by these examples, the benefits of domain-specific development are 

enumerated and the balance of benefits against costs discussed. 

The chapter continues on the theme of domain specific languages.  Three approaches to defining 

textual DSLs are proposed: BNF definitions and a parser-generator, embedded DSLs, and XML 

schemas.  Graphical DSLs are then introduced and a set of graphical conventions, derived from 

UML, are proposed.  Each of the aspects of a DSL is described: notation, domain model, model 

validation, generation, serialization and integration. The DSL tools product integrates these 

aspects into a single user experience for creating customized graphical DSLs. 

A closely-related product, the “Application Designer” which is a DSL for modelling endpoints in 

distributed systems, provides the example for a detailed walkthrough of how a simple model of 

stock price calculation can be used to generate a complete skeleton implementation of a web 

service to implement the model, using .Net artifacts. Maintenance of this implementation is 

illustrated by the ability to refactor a name over multiple technologies. 

The customization pit is a refinement of the basic idea of domain-specific development.  The 

customization pit represents a customized solution consisting only of a fixed part and a variable 

part, where the fixed part represents the commonalities amongst a class of problems and the 

variable part representing the differences.  Instead of a hard boundary between these parts, 

developers would prefer a customization staircase, where solutions within the direct target 

boundary are simple, but solutions outside that boundary increase gradually in difficulty with 

distance. Various techniques to implement the staircase are proposed, including the use of 

multiple DSLs, the generation of code explicitly designed to be extended, and modification of the 

code generator itself. 

The chapter concludes with an overview of UML which deconstructs it by presenting it as a set of 

conventions which can be used to build DSLs.  An important advantage of doing this is the creation 

of a model API that represents the target domain, rather than representing the UML metamodel: 

this considerably simplifies the work of a developer using this API. 

PW15: The Domain-Specific IDE 
(9 citations) 

This paper makes a case for domain-specific tools and processes as well as domain-specific 

languages.  It criticizes UML for lack of flexibility (an omnipresent theme in this group of 

publications) and discusses software tools that integrate domain-specific languages, commands, 

user-interfaces and processes. The term domain-specific IDE is preferred to the term Software 

Factory, the latter term being rather overloaded.  Barriers to agility are discussed, including the 
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ability of domain-specific models to avoid premature commitment to design decisions.  Language 

evolution towards multi-paradigm programming languages is briefly discussed.  Code generation, 

validation, debugging and testing are also briefly discussed, and the paper explains the idea of 

modelling all of that in a meta-tool environment. 

Conclusion 

The recognition that flexibility is a crucial aspect of the design of an object-oriented specification 

language originated with the CMM concept of schemes [PW5].  Flexibility goes hand-in-hand with 

precision: an imprecise language is inherently flexible in the weak sense that its meaning is 

ambiguous, but once the meaning of a software design language is precise then mechanisms for 

explicitly introducing flexibility become essential. 

The first two of the papers in this group were published during the period when UML 2 was being 

envisaged, and were intended to influence that process so that UML 2 would explicitly incorporate 

mechanisms for supporting flexibility, such as prefaces.  Unfortunately, this did not happen and in 

fact UML 2 was certainly no more flexible than UML 1 and probably less so, the limited concept of 

profile remaining the only way to customize the language while the language became more 

complicated.  Perhaps in consequence of this limitation, Domain Specific Languages emerged, 

often loosely based on UML considered as a set of conventions. 

Microsoft’s DSL Tools product, for which this author was the lead architect, was a widely-adopted 

commercial implementation of Domain Specific Languages, available as a free download to 

customers of Microsoft Visual Studio. DSL Tools showed that such a language consists of more 

than just a meta-model, and that domain specificity applies to more than just the language, 

reaching out into all of the tools and processes used to develop software in a particular domain. 

Its design also provided features for resolving the “customization pit” problem. 
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IV. Summary 

This final group contains two papers, both invited, that offer a retrospective on the development 

of the technologies discussed in this thesis together with some pointers towards future 

development. 

PW16: Object technology--a grand narrative? 
(4 citations) 

This was an invited contribution to a retrospective session in the ECOOP 2006 conference. It goes 

through the history of object technology, and is critical about many of the historical claims made 

for object technology which have turned out to be naïve or mistaken.  It sets out some of the 

contemporary challenges for programming: language design, library design, service orientation, 

data access and modelling.  It finishes by rejecting the idea that there could be any one paradigm 

or philosophy that will solve all problems of software development: instead there will be a 

continuing proliferation of new representations and a need to fit them together. 

PW17: Looking back at UML 
(7 citations) 

This “Expert’s Voice” paper describes the development of UML from the beginning up to the time 

of writing in 2012.  It covers precursors - OO and diagrammatic languages – and comprehensively 

describes the process of standardization and standard revision. 

An important theme is the “meta-muddle”, which is illustrated most vividly in the first four 

versions of UML 2.x. One example of the muddle is the split of the UML definition into 

superstructure and infrastructure, where the superstructure contains a modified copy of the 

infrastructure while the infrastructure contains the same set of concepts defined in slightly 

different ways. Another is the use of Package Merge in the UML specification which produces a 

document in which the metaclass Classifier is defined in 7 places in UML 2.4 Superstructure. 

Another is the fact that primitive types such as Integer are defined redundantly in several different 

places.  

A second theme addresses UML profiles and their inconsistencies and deficiencies, including 

ambiguity of definition and lack of integration with OCL. 

Section 7 discusses “What UML is for”. It presents Martin Fowler’s UmlMode characterization [88] 

into UmlAsSketch, UmlAsBluePrint and UmlAsProgrammingLanguage.   Executable UML is a long-

standing standardization initiative in the UmlAsProgrammingLanguage category which started 

with the Action Semantics addendum to UML 1.4 published in 2001 and continues today with 
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initiatives including FUML [89] and related initiatives.  There is a specialized market for 

UmlAsProgrammingLanguage and it is supported by various open-source and commercial tools.  

UmlAsSketch, where UML provides conventions for drawing diagrams for communicating during 

software development is uncontentious, widespread and popular, and directly supported by 

diagramming tools that make no pretence to be software development environments e.g. 

http://www.softwarestencils.com/uml/.  UmlAsBluePrint is the most controversial category, 

because this is the principle behind Model Driven Architecture, where UML’s lack of flexibility 

causes most problems and where DSLs have emerged to compete and co-operate with UML. 

An important issue for UML is interoperability and initiatives to improve it.  The systems modelling 

language SysML is a derivative of UML [90].  SysML has made considerable headway in 

government and defence industries and such industries tend to mandate tool interoperability as 

a condition of purchase.  This has triggered a renewed focus at the OMG on UML interoperability 

with the creation of a Model Interchange Working Group that has been studying and resolving 

interoperability issues with UML and SysML.  One of their main conclusions was that UML 

interoperability is inhibited by ambiguity and imprecision in the UML specification [91]. 

This author was the instigator of a process under the aegis of the OMG aimed at improving the 

state of UML.  This process started in 2008 with the issuance of a Request for Information (RFI) 

about the future development of UML [92].  The feedback from this RFI led to a strategy for the 

simplification of UML and improvement of its precision; this author was co-chair of the task forces 

that delivered UML 2.4 and 2.5 in line with this strategy.  As a consequence UML 2.5 finally 

managed to deliver a version of UML from which the redundant definitions had been removed 

and in which almost all of the constraints were expressed in syntactically correct OCL [77].  This 

was a major undertaking: the report from the 2.5 task force amounted to 1115 pages – 

significantly larger than the UML specification itself. 

Although UML 2.5 is a great improvement over its predecessors in terms of simplified and precise 

specification, it does little or nothing to address the problem of flexibility.  That problem remains 

postponed to the future.  For UmlAsSketch, nothing needs to be done: UML’s diagrammatic 

conventions are well established and well known.  For UmlAsProgrammingLanguage, work 

continues in defining executable subsets of UML and giving them operational semantics.  For 

UmlAsBlueprint – the use of UML models as sources for model-driven engineering – the flexibility 

problem and the dilemma between UML and DSLs remains. The solution would be some form of 

unbundling into a family of interrelated configurable modelling languages or theories; whether 

http://www.softwarestencils.com/uml/
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this kind of progress would be economically feasible within the OMG’s policies and procedures is 

unknown. 

Conclusion 

Object-orientation, often seen during the 1980s as an all-embracing paradigm for software 

development, has become just one of the essentials in the toolbox of the software engineer.  

Currently much of the energy devoted to UML improvement at the OMG is going into the 

definition of precise executable subsets of UML: FUML™ [89], Precise Semantics of UML 

Composite Structures [93], and a Request for Proposals for Precise Semantics of UML State 

Machines [94].  The end result of this work will be a standard subset of UML which is effectively a 

graphical object-oriented programming language: precise indeed, but with minimal flexibility.  This 

precise executable UML will most likely fulfil a specialized role in the programming of embedded 

systems. 

The absence of flexibility in today’s UML implies that it is unlikely to continue to play an effective 

role as a flexible specification – “blueprinting” – language for systems implemented using modern 

languages for programming and data representation.  Modern programming languages such as F# 

and Scala are multi-paradigm [95], and it seems appropriate that design and specification 

languages should be the same.  Attempts to create UML profiles for different purposes including 

SysML [90], NIEM-UML [96] and others, have illustrated how UML places unnecessary restrictions 

which inhibit the expressive power and usability of its profiles.  One simple example among many 

is the inability of UML to model a stand-alone property, without it being a property of something: 

this makes mappings of UML to modern data languages including XSD and RDF cumbersome and 

problematic. 
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V. Summary of Contributions 

The overall goal of this work was not only to create original technical contributions to the 

landscape of modelling languages, but also to disseminate those contributions in the software 

engineering field, both through publications as exhibited here as well as through managerial and 

political activities aimed at the development, promotion and use of products and standards.  This 

section summarizes the overall original contributions of this work under these headings. 

Technical contributions 

The core technical contributions for this work are the ideas set out in section 3.2 of Syntropy [PW4] 

for integrating formal predicates into graphical object-oriented design languages: the concept of 

a namespace associated with a class, with navigation expressions defined in a namespace, the 

name “self” referring to a contextual instance, and logical predicates written against those 

navigation expressions.  Semantics of these expressions are given in terms of finite collections 

(sets, bags, and sequences) of objects and values.  These ideas were adopted by OCL, altered to 

avoid the use of non-ASCII mathematical symbols, and as OCL was incorporated into UML the 

ideas became omnipresent in work on the semantics of UML and its derivatives. 

Significant technical contributions from Syntropy also include the identification of modelling 

perspectives, cited in various publications including Michael Jackson’s work on Problem Frames 

[8], and a detailed consideration of how subtyping applies to statecharts. 

In the world of UML, this author created original contributions in how to add flexibility to the UML 

specification, through the identification of possible points of variability in that specification, and 

proposing mechanisms for instantiating those variabilities.  This work followed through into the 

detailed definition and implementation of mechanisms for defining domain-specific languages as 

explained in section III. 

Managerial contributions 

Syntropy was created using funding and resources from a boutique consulting company, Object 

Designers Ltd, founded by this author together with John Daniels.  Much of the content was used 

by the staff of the company delivering the material in the form of training courses and consulting 

engagements. 

This author was headhunted by IBM in 1994 to become the technical leader of their emerging 

European Object Technology Practice, where Syntropy became a pivotal influence on the 

development of an internal tool for modelling insurance policies and processes, as described 

earlier in the summary for [PW5], for which this author provided technical leadership.   This project 
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created OCL.  On the appearance of UML 0.8 in 1995, IBM decided to base the insurance work on 

the emerging standard, anticipating being able to capitalize on a variety of UML tools.  This author 

then became IBM’s manager and lead representative for the UML standardization process, writing 

a complete proposal together with Bran Selic, with OCL forming part of the proposal, and then 

following through the development of later versions of UML up to and including UML 2.0. 

Once incorporated into UML, OCL became widely used in academia.  A search in “Google Scholar” 

for “OCL Object Constraint Language” yields 22600 results; for comparison, a similar search for 

“UML Unified Modeling Language” yields 121000 results.  The “OCL Portal” maintained by the 

Technical University of Dresden4 lists 18 OCL tools, dated from 2005 to 2012, including simple 

parsers, a commercial business rules tool, and an interactive proof checker. 

Headhunted again in 2003, this time by Microsoft, this author created and led a team of six based 

in Cambridge, UK, with the remit to develop a tool for implementing Domain Specific Languages.  

The “DSL Tools” were developed and made generally available as part of the Visual Studio SDK and 

remain available to this date5.  The book [PW14] explains the product in detail. 

In 2008 Microsoft decided to re-embrace UML and to release a UML tool suite as part of the Visual 

Studio suite; the “DSL tools” provided the platform for the creation of this UML tool.  This author 

became the architect of this tool suite, as well as becoming Microsoft’s representative to the 

Object Management Group in efforts to improve the UML definition. In this capacity the author 

was the chair of the task forces that delivered UML 2.4 and UML 2.5, as well as serving on the 

OMG Architecture Board and Board of Directors. 

Political contributions 

“Political” here refers to activities performed in the interests of gaining strategic power in the 

process of translating technical ideas from the laboratory into widely-available products and 

standards.  In relation to this thesis, these activities primarily involved engaging with the Object 

Management Group (OMG) in various capacities as summarised below, and explained more in 

[PW17]. 

The emergence of UML 0.8 provided the first political opportunity.  To influence the standard, it 

was essential to engage in the process.  This author convinced IBM executives to sponsor the 

writing of a submission, and to give permission for the use of OCL in it.  The proposal was 

presented at various OMG meetings, and a consortium of submitting companies formed. This 

                                                           
4 http://st.inf.tu-dresden.de/oclportal/  
5 https://msdn.microsoft.com/en-us/library/bb126259.aspx  

http://st.inf.tu-dresden.de/oclportal/
https://msdn.microsoft.com/en-us/library/bb126259.aspx
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author presented at many OMG meetings, and was instrumental in ensuring that OCL was an 

integral part of the final UML 1.0 compromise submission that was finally accepted.  Subsequently, 

this author represented IBM at the OMG throughout the process that led to UML 2.0, and was a 

primary author of the UML 2.0 standard. 

One of the author’s objectives for UML 2.0 was to increase the language’s flexibility and make it 

better-defined.  To assist with this, the author persuaded IBM executives to fund the Precise UML 

Group to make a feasibility study [21].  However, this effort had a disappointingly small impact on 

the UML 2.0 that was finally published, because vested interests were too powerful to be 

overcome by technical quality judgements. 

As noted above, Microsoft re-embraced UML in 2008.  There were, however, misgivings about the 

quality of the standard.  This author was assigned to represent Microsoft at the OMG in order to 

drive through improvements, and initiated a Request for Information process that led to the 

requirements for UML 2.5.  As noted in the summary of [PW17], UML 2.5 was a great improvement 

on its predecessors in terms of clarity and simplicity of specification, but did little or nothing to 

address the problem of flexibility. 

Support for UML 2.5 is claimed at the time of writing by most available UML tools, including No 

Magic’s MagicDraw, Sparx Systems Enterprise Architect, and Eclipse Model Development Tools 

(MDT).  Many other tools including Eclipse UML Designer, Papyrus,  Rational Software Architect, 

and Altova’s UModel are directly based on Eclipse MDT and either support UML 2.5 today or are 

likely to intercept it in due course. 

So overall, this political engagement had successes and failures.  The major successes were the 

incorporation of OCL into UML in the first place, and the major simplification represented by UML 

2.5.  The main failure was in implanting flexibility as a core feature of the UML architecture, despite 

many efforts to do so.  It is very difficult to implant flexibility after the fact; the problem was 

inherent in the original definition of UML, and despite many efforts, it remains. 
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VI. Overall Conclusion 

The use of graphical models in software development is widespread.  UML is the best known 

graphical modelling language in terms of the number of publications about it, but there are many 

others, including Entity-Relationship modelling [97], Business Process Modelling Notation (BPMN) 

[98], EXPRESS information modelling [99], Fundamental Modelling Concepts [100], Integrated 

Computer-Aided Manufacturing (ICAM) Definition (IDEF) [101], Object Role Modelling [102], 

Specification and Description Language (SDL) [103], Petri nets [104], and flowcharts [105].  Many 

of these are precursors of UML, some are derivatives of it, and some are its competitors; several 

of these languages are primarily used in particular domains, for example SDL in 

telecommunications and IDEF in integrated manufacturing.  This thesis argues that precision and 

flexibility are both highly desirable characteristics of any such language, and the body of work 

described here has contributed materially to promoting this argument in academia and industry, 

particularly focused on UML and also on the development of domain-specific languages. 

Since its first appearance in 1997, UML has evolved through two major revisions, the second of 

which first added a great deal of unnecessary complexity and then attempted to simplify it again. 

The introduction of OCL into the UML world, based on work by this author and colleagues, made 

a large contribution to the precision of the UML specification.  This author also presented 

arguments for flexibility using the slogan “family of languages”, but these arguments did not 

manage to sufficiently influence the evolution of UML itself. 

The software industry’s experience with UML has not been uniformly positive.  Alex Bell’s ACM 

Queue paper “Death by UML Fever” [106] identifies 15 ways in which UML can be seriously and 

misguidedly misapplied in an organization with often devastating results on software 

development programs. 

Marian Petre’s 2013 paper [107] presents a study of interviews of 50 professional software 

engineers in 50 companies and identifies the following patterns of UML use: 

Category of UML Use  Instances of Declared Current Use 

no UML 35 

retrofit 1 

automated code generation 3 

selective 11 

wholehearted 0 

 

If these results are taken as representative, we see that the majority of practitioners (70%) do not 

use UML.  Of those that do, 73% use it “selectively”, as a tool for thinking or communication; these 
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users typically use only some of the UML diagrams, and tend to adapt them for the task at hand.  

Nobody uses UML wholeheartedly (i.e. with organization-wide commitment to UML) at the time 

of the study, although some of the interviewees had experienced past attempts to do that which 

had not generally succeeded.  Much of the feedback on UML describes it as too ideological and 

too complicated. 

Hutchinson et al’s 2011 paper [108] studies only MDE practitioners and considers how they use 

various modelling technologies.  Of these practitioners, almost 85% use UML and almost 40% use 

a DSL.  Use of UML is again found to be selective, often in conjunction with non-UML languages. 

Conclusions about the productivity, costs and benefits of MDE are mixed and complex, although 

there are plenty of reports of increased productivity, quality and consistency. 

As these papers indicate, UML is looking increasingly obsolete amongst today’s heterogeneous 

world of multi-paradigm programming languages and data representations.  As UML ages, the 

need for a precisely defined and flexible multi-paradigm alternative that combines the benefits of 

UML and DSLs seems increasingly persuasive.  There exist many ad-hoc attempts to combine UML 

and DSLs, for example a plugin for the tool ArgoUML that adds security-related features to UML 

[109], the open-source Papyrus UML tool that provides both UML and domain-specific modelling 

capabilities [110], and domain-specific UML profiles such as the UML Profile for BPMN Processes  

[111].  None of these attempts, however, provide any principled language architecture that 

systematically identifies or represents similarities and differences between UML elements and DSL 

elements; they all rely on one-off mappings between the UML and DSL worlds. 

Further work is needed to define what any such multi-paradigm alternative might be or how it 

might come to be made commercially available.  It should retain the value of the conventions that 

UML has made widely-understood while avoiding the pitfalls of inflexibility and complication.  It is 

hoped that the work presented in this thesis would provide useful background to such an 

endeavour. 
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