

Advances in Wireless Communications and Networks
2017; 3(2): 10-22
http://www.sciencepublishinggroup.com/j/awcn
doi: 10.11648/j.awcn.20170302.11

 Review Article

Software Defined Networking for Wireless Sensor Networks:
A Survey
Muhammad Ali Hassan, Quoc-Tuan Vien, Mahdi Aiash

School of Science and Technology, Middlesex University, London, United Kingdom

Email address:
MH1516@live.mdx.ac.uk (M. A. Hassan), Q.Vien@mdx.ac.uk (Q.-T. Vien), M.Aiash@mdx.ac.uk (M. Aiash)

To cite this article:
Muhammad Ali Hassan, Quoc-Tuan Vien, Mahdi Aiash. Software Defined Networking for Wireless Sensor Networks: A Survey. Advances in
Wireless Communications and Networks. Vol. 3, No. 2, 2017, pp. 10-22. doi: 10.11648/j.awcn.20170302.11

Received: April 24, 2017; Accepted: May 11, 2017; Published: May 28, 2017

Abstract: One main feature of Software Defined Networking (SDN) is the basic principle of decoupling a device’s control

plane from its data plane. This simplifies network management and gives network administrators a remarkable control over the

network elements. As the control plane for each device within the network is now implemented on a separate controller, this

reliefs individual devices from the overhead caused by complex routing. Specifically, this feature has been shown to be

extremely beneficial in the case of resource-constrained Wireless Sensor Networks (WSNs). By keeping the control logic away

from the low-powered nodes, the WSNs can resolve their major issues of resource underutilisation and counter-productivity. This

paper highlights the importance of adopting the SDN in the WSNs as a relatively new networking paradigm. This is introduced

through a comprehensive survey on relevant networking paradigms and protocols supported by a critical evaluation of the

advantages and disadvantages of these mechanisms. Furthermore, open research issues and challenges are pointed out shedding a

light on future innovations in this field.

Keywords: Software Defined Networking (SDN), Wireless Sensor Network (WSN), OpenDaylight, OpenFlow,

Virtualised WSN

1. Introduction
The Internet has made an enormous impact on the world of

communications. It has interconnected billions of networking

devices all over the world [1]. These devices share

information with each other in the form of digital data packets.

The networking protocols are responsible for the delivery of

these packets to their respective destinations. Despite their

significance, these protocols have not evolved over the years,

which are complex and thus restrict innovation. In the

traditional network management, network administrators had

to configure each device manually by using proprietary

commands. Newer policies or protocols cannot be introduced

in the network on the fly, while automatic reconfiguration and

response mechanisms are almost non-existent. The still

ongoing transition of protocol change from IPv4 to IPv6

shows how difficult it is to introduce new changes [2].
Network management is even more complicated when it

comes to large data centres. In the past, storage, computing,

and networking resources within a data centre were all kept

separated from each other. This was done for the ease of

management and also for the sake of security enhancement.

With the growing demand of networking and computing

resources, it became difficult to provide separated resources

for these entities and the organisations were forced to

consolidate resources. The reduced cost of

micro-electromechanical systems and the advent of operating

system (OS) virtualisation have recently facilitated such

practical requirement by allowing the deployment of hundreds

and even thousands of virtual machines on a few physical

servers [3]. This however has brought issues of operational

efficiency and power consumption. Furthermore, the

virtualised environment also demands a unique IP address for

each virtual machine (VM). This in turn presents a hurdle of

managing and provisioning IP addresses and networking

resources to a large number of VMs simultaneously, which is

likely to cause data bottlenecks.

The aforementioned issues were the motivation behind the

invention of Software Defined Networking (SDN) (see [4]-[6]

and references therein). The micro-controller technology was

11 Muhammad Ali Hassan et al.: Software Defined Networking for Wireless Sensor Networks: A Survey

booming at a steady pace whereas the networking side merely

made any significant progress in feature development or

introducing new ideas. The SDN has therefore emerged as the

future of modern day networking offering simplicity,

scalability, versatility and innovation over the traditional

networking models. The basic architecture of SDN separates

the device’s control plane from its data plane. The control

plane for all of the devices inside the network is relocated to a

remote site where the controller overlooks and manages the

entire network. The decision making is done by the controller

and then the instructions are sent to the data plane to

implement those decisions. For example, in case of data

congestion, the controller will make the decision to redirect

the flow of traffic and order the devices to update their flow

tables accordingly. This feature of traffic management is not

possible with the traditional networking models as changes to

the routing paths cannot be implemented directly. Some

research also have a different view of SDN that they refer to as

the software driven networks. They present a middle approach

whereby some parts of the network are managed by the

controller, while others are still managed by the more

traditional control plane. Nevertheless, both have the same

idea of a greater and more flexible network device

programmability.

Additionally, SDN offers an energy efficient solution for

power-constrained network elements such as in Wireless

Sensor Networks (WSNs) which consists of a group of

embedded devices called sensor nodes. WSNs is an example

of a system that can benefit from this feature of the SDN. The

sensor nodes collect numerous environmental data, such as

temperature, light, humidity, pressure, sound, etc., and send it

to base station [7], [8]. These nodes are deployed in areas

where physical access to these devices might not always be

possible and most of the times these nodes run on small

limited batteries and may not have any renewable energy

resource. Hence, these devices cannot either run complex

protocols or perform heavy computational activities, which

limits the functionality and efficiency of the entire network.

The SDN provides an alternative networking model for these

devices enabling them to not only run complex protocols but

also customise the functionality of the network according to

the needs. It simplifies the management of networking models

and utilises networking resources more efficiently. These

features are indeed highly suitable for the low-powered nodes

in the WSNs. However, there has not been a significant

approach towards introducing this concept to the WSN

domain and the architectures for deploying the SDN in WSNs

have not been practically tested and validated considering

various scenarios in reality.
In this paper we aim at accomplishing the following:

i) To analyse of SDN and its effectiveness in the present

networking environment.

ii) To investigate the current SDN solutions and their

practicality for WSNs.

iii) To compare the SDN solutions available for wired and

wireless networks with those available for the WSNs.

iv) To summarise the findings and to propose future work in

this area.

Our contribution in this paper is to provide a comprehensive

study on highlighting the importance of using SDN in WSN.

We plan on achieving this by investigating the research work

that has been done so far in this area and pointing out the key

factors in SDN that can be of benefit to the WSN. We then

present our findings along with the proposed future work.

The rest of this paper is organised as follows: Section 2

starts with the background of SDN and WSNs. We then

describe various architectures of SDN for WSNs with relevant

research works in Section 3. Section 4 summarises the

findings and proposes future work. Finally, Section 5 draws

the main conclusions from this paper.

2. Literature Review on WSN and SDN
2.1. Wireless Sensor Network (WSN)

A WSN is made up of a large number of small, low-cost,

low powered sensor nodes. These nodes monitor

environmental conditions, such as temperature, sound,

pressure, humidity, etc., and then send that information

wirelessly over the network to a host system where it is

processed, analysed and presented in a readable format [7], [8].

These networks, as illustrated in Figure 1, have a wide range

of applications. They can be used to monitor weather

conditions on farm fields or to detect enemy’s movements in

warzones. They can also be used to monitor the traffic to keep

it away from jams and accidents or to predict natural disasters

such as volcanoes and earthquakes.

Figure 1. WSN Environment [8].

The history of WSNs dates back to several decades.

According to a report published by the Silicon Labs on the

evolution of WSNs [9], the Sound Surveillance System

(SOSUS) was the first wireless system that shows any

resemblance to the modern day WSN. It was invented by the

US military to keep track on Soviet submarines. The system

consisted of a large number of submerged acoustic sensors

called hydrophones that were dispersed all over the Atlantic

and Pacific Ocean. This detecting technology is still being

used in some areas to monitor natural disasters.

The weakness of WSN lies in their limited processing

power, storage memory, and communication infrastructure. In

order to improve the overall performance, ensure reliability,

 Advances in Wireless Communications and Networks 2017; 3(2): 10-22 12

and make the system more secure, the system engineer and

designers have to make trade-offs among the choice of

underlying hardware, power resources, and networking

protocols.

In spite of all the drawbacks, today’s WSN differs greatly

from the ones that were developed just a few years ago. In past,

the aforementioned factors were a major hindrance in the

development of these device but the importance of WSN in

various modern applications and advancements in

semiconductor and networking technologies have led to their

large-scale production. These networks are now easier to

manage, the devices have longer lifetimes and they are more

resilient.

Figure 2. WSN Topologies [10].

WSNs are generally classified in four groups [10] including

one-way networks, bi-directional networks, star networks and

mesh networks. As shown in Figure 2, one-way WSN network

topology is the simplest one with only a single, one-way

communication link. An example of its use is in the pressure

measuring systems. The advancement in technology leads to

the need of more efficient topologies and cost-effective

protocols for these designs. For example a star topology finds

its use in easily scaling the number of lights in a room or a

router in a house can use the mesh topology to overcome

shadowing and ensure uniform signal strength throughout the

house. The major area of concern is the security of these

devices. The WSNs are generally set up for gathering records

from insecure environments. The sensitive nature of the

information carried by the nodes poses a great challenge for

the developers to implement a secure framework for these

devices so that the data cannot be corrupted.

2.2. Software Defined Networking (SDN)

SDN is a new networking model that separates the control

and data planes of a device and makes the control plane

programmable by using various APIs [4]-[6]. This results in

an efficient, low-cost and dynamic networking architecture

that provides network administrators with unprecedented

control over the networking elements [9]. As a leading

organisation that aims at promoting the SDN, the Open

Networking Foundation (ONF) is supported by various

companies, such as Cisco, Microsoft, Google, Deutsche

Telekom, etc. [11].
The SDN is also defined as a network design approach that

makes network management easier by closing the gaps

between applications, network services, and devices [12]. This

can be achieved by deploying a single centralised point of

control which is commonly referred to as the SDN controller.

The controller orchestrates and facilitates the correspondence

between the applications and network devices. It exposes and

abstracts the network functions and operations via

programmatic interfaces to the network administrators, which

gives them more control over the network functionality.

In a traditional networking environment, the control and

data planes reside on the same device. The control plane,

which can also be thought of as the brain of the networking

device makes all the decisions regarding the routing tables.

The data plane utilises these routing tables to forward the data

packets. A device with a local control plane will have to be

manually and separately configured. In a scenario where

hundreds of such devices are to be managed, this can prove to

be a tedious task. Moreover, no single device has the visibility

of the entire network. In other words, each device has to work

on its own and share information with its neighbours to form

some sort of view of the network. Also, with the traditional

networks, new routing protocols cannot be implemented

readily. It is also difficult to integrate devices of different

brands to run on the same network as they run proprietary

software. For example, a network consisting of Cisco switches

will only have those switches running in the network with

their proprietary operating systems. It will be difficult to

introduce a Dell switch within the network and to make it

work smoothly alongside the other switches.

With SDN, rather than each device having its own control

plane, a common control plane is implemented on a remote

controller for all the devices in the network. This introduces a

centralised control policy management. The devices are to

become simple packet forwarding elements while all the

decision makings are carried out at the remote controller. The

controller can manipulate the flow of traffic throughout the

network. This relieves the individual devices of the overhead

to manage the routing protocols and policies on their own and

also helps to manage the network traffic which prevents

congestion in the network. With SDN, a user can run multiple

operating systems on devices that are not application specific.

For example, Facebook compute switches do not require a

proprietary software so we can run different operating systems

of our choice on different devices on the same network. In fact,

all tend to agree that SDN does make the network

management simpler [13].

An SDN architecture has three layers (see Figure 3) as

follows:

a) Application Layer: It supports applications that

communicate with the controller and direct it to perform

the desired functions on the underlying physical network

infrastructure. These applications also use data supplied

by the controller to create a logical view of the entire

network. This helps the network administrators in

decision making regarding the network management.

13 Muhammad Ali Hassan et al.: Software Defined Networking for Wireless Sensor Networks: A Survey

These applications can also be used to perform data

analysis. Business oriented applications are used to run

large data centres or to detect suspicious network activity

within the data centre for security purposes.

b) Control Layer: It holds the network controller which is

the main entity that interlinks the application and

infrastructure layer. The controller is responsible for

managing the communication between the two layers. It

conveys the instruction received from the applications to

the underlying physical or virtualised devices and

collects the data from these devices and send it back to

the applications.

c) Infrastructure Layer: The infrastructure layer consists of

physical networking devices that execute the actual data

forwarding. This also includes the virtualised elements.

Figure 3. SDN Architecture [14].

The SDN architecture is usually described by two interfaces,

namely the Northbound interface and the Southbound

interface. The connection between the controller and

applications is referred to as the Northbound interface, while

the connection between the controller and the physical

networking hardware is known as the Southbound interface.

The SDN is basically based on four main pillars as follows [5]:

a) The control and data planes are to be separated from one

another.

b) The forwarding decisions are to be flow based rather

than destination based.

c) The control logic is to be moved to an external SDN

controller.

d) The network control plane is to be made directly

programmable.

Here, three major components of the SDN that can be listed

are:

a) Control Plane: The main task of a control plane is to

create data forwarding tables for the data plane [12]. The

control plane makes these decisions based on the

information provided by the Routing Information Base

(RIB). RIB is the entity that stores the network topology.

It gathers information through observation, manual

programming or integrating with other entities of the

control plane. Once these decisions are made, they are

then stored in the Forwarding Information Base (FIB)

which is responsible for forwarding the packets to their

proper interfaces. The control plane can be of three

following types:

a) Strictly Centralised: This approach to SDN model is

referred to as “revolutionary approach” because it

proposes a complete separation of the device’s control

plane from its physical infrastructure. In this model no

control plane functions exist at a device and it acts

under the total control of the remotely located

centralised controller.

b) Semi Centralised: A semi centralised control plane is

referred to as the “evolutionary approach”. It provides

some new capabilities but does not completely

remove the control plane from the device. Some

control plane functionalities such as learning of MAC

addresses is still carried out on the device while the

centralised controller is given more authority over

other areas of network functionality. This model

utilises the best features of both strictly centralised

and fully distributed control planes.

c) Fully Distributed: In this model each device runs a

complete control plane for each data plane. All the

control planes are interlinked to form a cohesive

network. This approach offers nothing new and is

therefore of little significance.

b) Data Plane: A data plane in SDN is what carries out the

actual data packet forwarding. The packets on a device

are forwarded based on the flow tables assigned to them

by the controller. A flow is a set of packet field values

that filter the incoming packets. If a packet matches the

criteria defined in a particular flow then corresponding

actions are taken on that packet based on the instructions

provided by the controller. All packets belonging to a

particular flow will receive identical treatment. In case a

packet does not belong to the listed flow table entries the

device will then ask the controller to provide new

instructions on dealing with that packet. The flow tables

can be readily updated in case of any policy changes.

Several methods have been proposed for cost-effective,

fast packet forwarding [4]. Hardware classification can

be used to increase processing throughput as using

software in switching devices may result in inefficient

performance. Another method is to classify the flows

into “elephant flows” and “mice flows” categories. Mice

flows are generally numerous but each of them have few

packets. They also have little impact on the overall

network performance. A proposed idea is to send

“elephant flows” to the Application Specific Integrated

Circuit (ASIC) and allow the Central Processing Unit

(CPU) to deal with the “mice flows”.

c) Management Plane: The Management plane is

responsible for performing tasks that are outside the

scope of control and data planes. It manages resource

allocations, client-vendor business agreements, setting

up of physical networking infrastructure, and

configuring bootstraps. Every business organisation has

its own administrative entities.

 Advances in Wireless Communications and Networks 2017; 3(2): 10-22 14

The entity that a control plane utilises to manage the flow

controls in a network is called an SDN controller. The SDN

controller, for example OpenDaylight (ODL) [15], [16] (see

Figure 4 for a typical ODL architecture), should have the

following [12]:

a) A database that stores information regarding network

state, network configuration and network topology

b) A high-level data model that establishes relationships

between the resources and the services provided by the

controller

c) An API that offers the controller services to the

application layer

d) A TCP control session between the controller and the

devices

e) A standards based protocol

f) A topology discovery mechanism for path computation

Figure 4. ODL Architecture [17].

The ODL project is an initiative by The Linux Foundation

to highlight the importance of SDN. The ODL offers the

largest open source SDN controller that is being used in

various organisations and universities. As shown in Figure 4,

the architecture of ODL has a Southbound interface that

supports multi-vendor environment and a Northbound

interface that offers multiple functionalities to various

applications via different APIs. In addition, there is a Service

Abstraction Layer (SAL) that not only interlinks service

requests to the relevant plugins, but also provides a basic

platform for building higher-level services [12]. Open

protocol standards such as OpenFlow or standard protocols

can be used to communicate with the physical or virtualised

hardware.

Some of the key features offered by ODL controller are as

follows [16]:

a) On demand services: It provides readily available

services on bandwidth scheduling.

b) Cloud computing and virtualisation: It offers quality

service on cloud infrastructures. Here, OpenStack is

most commonly used.

c) Resource optimisation: It dynamically optimises the

network resources based on load balancing.

d) Reliable networking model: It provides highly active

and automated networking models for government,

university and private sector networks.

e) Network visibility and control: It offers a centralized

administration of the entire network using a single or

multiple controllers.

2.3. SDN in WSN

The application specific nature restricts the WSN from

utilising their full potential [18]. Multiple WSNs are deployed

for multiple applications in the same area. Similarly, vendors

fail to utilise the common functionalities as they develop

WSN in isolation. Furthermore, the remote deployment nature

of the WSN requires highly autonomous and self-configurable

devices that are not feasible due to the resource limitations of

these devices [19]. Some of the common issues in the WSN

are energy saving, sensor node mobility, network management,

localisation accuracy and virtualised WSN [20].

All of the aforementioned challenges can be effectively

tackled by using SDN. The SDN encourages the development

of cost-effective protocols that can lead to considerable

increase in the productivity of the WSN. The separation of

forwarding plane from the control logic allows easier network

management and enables network virtualisation. Furthermore,

recent boost in the popularity of Internet of Things (IoT) has

resulted in the large-scale production and deployment of the

WSNs [20]. The next decade could see billions of

interconnected sensor-nodes linked through the Internet in

which the SDN can provide a solid platform for handling such

large number of networked devices and also resolve some of

the key issues encountered by the WSN.

In particular, the most significant features that can be

achieved by using SDN enabled WSN nodes are node and

resource management [21]. A controller can take into account

the energy available to different nodes while making the

routing decisions to ensure the best network lifetime. Usually

WSN nodes are considered as application-specific, disposable

devices. But considering their use in Smart Cities where

sensor nodes have to collect, process and transmit different

types of data for different applications, they need a solid

framework in which a much better usage of underlying

infrastructure can be achieved through the SDN deployment.

15 Muhammad Ali Hassan et al.: Software Defined Networking for Wireless Sensor Networks: A Survey

Another key advantage of using SDN is that if a tap in a

network indicates to the controller that a device is showing

signs of being hijacked, then the controller can steer the traffic

away from that device to an Intrusion Detection System (IDS)

for further analysis [22]. This approach can prove very helpful

for WSN domain.
2.3.1. Energy Saving with SDN

With limited energy resources in WSNs, the nodes are

however deployed in situations where they have limited

access to any renewable energy resources. This accordingly

restricts the development of energy efficient protocols, which

in turns affects the overall performance of the network. With

SDN, the power consumed by the nodes can be considerably

saved [20]. The controller can determine the best routing

policies and thus relieves the nodes from making those

decisions on their own. In case the node is about to run out of

battery, it will send a warning to the controller so that it can

make changes to the routing tables in time [23]. Furthermore,

since the controller takes over the control plane functionalities,

the traffic management, resource allocation, and Quality of

Service (QoS) can be efficiently achieved with a lower energy

overhead.

2.3.2. Sensor Node Mobility with SDN
In case of mobile sensors, the network topology frequently

changes which results in delayed convergence time for the

vector based networking protocols. This affects the overall

performance of the network given the fact that a WSN has a

specific topology to a specific application [24]. When an

application changes, the corresponding network topology also

changes. In doing so, the sensor nodes lose energy and their

lifetimes are shortened. With SDN, a centralised controller can

either inject or modify the network policies on the fly. This

will result in lower convergence time for protocols. The

controller also assigns employ a mobility management

protocol that directs the nodes to continuously inform the

controller of their location information. By this way, the

controller will keeps updating the flow tables with new

routing decisions and ensure optimal network performance.

2.3.3. Network Management with SDN
Network management is a complex and challenging process

for WSN administrators. Traditional networking requires the

management of proprietary software on proprietary hardware

devices. In case of sensor nodes, using network components of

different vendors makes the management process even more

complicated [21]. The cost of managing a WSN is relatively

high and any new policy or protocol implementation would

require the need of altering the nodes’ hardware. Such process

requires physical access to all the nodes which might not

always be possible. Therefore, SDN can help transform the

network administration problem to a network programming

one. Complexity of the sensor network is dramatically eased

with SDN. New routing protocols can be readily employed on

the network and also facilitates the compilation of different

versions of the same network applications for different types

of sensor nodes.

2.3.4. Localisation Accuracy with SDN
Data provided by a sensor node without correct location

information could be considered useless. Due to the

energy-constrained nature of the nodes, traditional networking

cannot achieve highly accurate location information as it

requires running sophisticated localisation algorithms that can

prove to be an overhead for these devices. It is shown in [21]

that with SDN, a highly accurate location information can be

obtained by using a centralised routing algorithm. The

gathered location information can be used by a network

topology discovery algorithm to further improve the routing

decisions made by the controller. This location information

data can then be of use to various sensor applications.

2.3.5. Virtualised WSNs with SDN
It is suggested in [20] that applying SDN in WSNs will

enable different organisations and applications to share the

same underlying physical infrastructure instead of deploying

separate networks. This will result in reduced cost to

customers, reduced cost of ownership and will allow the

network to expand economically. Although the SDN was not

designed for resource-constrained WSN, its features can be

leveraged to form a virtualised environment for WSN.

3. Architecture for SDN in WSN
The novel idea of exploiting OpenFlow technology to

address reliability issues in sensor networks was presented by

[25], while the first architectural proposal was presented by

[18] in the form of Software Defined Wireless Sensor

Network (SD-WSN). Some of the notable, proposed

architectures for using SDN in WSN are as follows:

a) Software Defined Wireless Sensor Network (SD-WSN)

b) TinySDN

c) Service-centric networking for URban-scale Feedback

Systems (SURF)

d) Software Defined Networking in WIreless Sensor

nEtworks (SDN-WISE)

3.1. Software Defined Wireless Sensor Network (SD-WSN)

Figure 5. SD-WSN Architecture [18].

 Advances in Wireless Communications and Networks 2017; 3(2): 10-22 16

SD-WSN presents the first effort of combining SDN and

WSNs. The aim of the SD-WSN design is to tackle the

problems of resource underutilisation, counter-productivity,

rigidity in policy changes, and network management in WSNs

[18]. The fundamental assumption made by the OpenFlow

protocol is that the underlying network is composed of highly

sophisticated networking devices. While on the other side, the

WSN networks are composed of devices with low power and

specifications. As OpenFlow was primarily designed as a

wired protocol hence its direct implementation on the WSN

domain would not be fruitful. SD-WSN proposes some

changes to it and present a new solution that can work with the

WSN. The core component of SD-WSN is the Sensor

OpenFlow (SOF) protocol. It is used as a standard

communication protocol between the data plane and control

plane. The aim is to make the underlying network more

programmable by deploying user configurable flow tables.

As shown in Figure 5, the architecture of SD-WSN offers

the following features [18]:

3.1.1. Data Plane (Creating Flows)
Note that the WSNs are mostly data-centric and the actual

data has more importance than where it came from. Therefore,

they employ a different addressing scheme which also

includes attributes. For example, “nodes with temperature >

30”. This will need to be catered during the creation of flow

tables. Here, WSN addressing schemes can be classified into

Class-1 and Class-2. Class-1 comprises of unique 16 bit

addresses, whereas Class-2 consists of Concatenated Attribute

Value (CAV) pairs. There are two methods for flow creation,

including:

a) Redefining flow tables: SD-WSN handles Class-1

addressing scheme as shown by an example in Table 1. It

exploits an OpenFlow eXtensible Match (OXM) like

format which is used to define flow Matches. Two new

oxm_type fields are introduced by SOF which are

OXM_SOF_SRC (source) and OXM_SOF_DST

(destination) while the rest of the fields are same as that

in OpenFlow. Class-2 addressing scheme is handled by

introducing a CAV format which is a quadruple as shown

by an example in Table 2 and Table 3. By adding a new

oxm_type field of OXM_SOF_CAV any Class-2 flows

can be formed.

Table 1. Class-1 Flow [18].
oxm_type=

OXM_SOF_SRC

oxm_hasmask

=1
oxm_length=4

oxm_value=

0x796F

oxm_mask=

0xFF00

oxm_type=

OXM_SOF_DST
oxm_mask=0 oxm_length=2 oxm_value=0

Table 2. Class-2 Flow (30<temperature<60) [18].

oxm_type=

OXM_SOF_CAV

cav_offset

=48

cav_cast=

int32

cav_op=

“>”
cav_value=30

oxm_type=

OXM_SOF_CAV
cav_offset=48

cav_cast=

int32

cav_op=

“<”
cav_value=60

Table 3. Class-2 Flow (Zone-ID=7 and x-coordinate>150) [18].
oxm_type=

OXM_SOF_CAV

cav_offset

=40

cav_cast=

int16
cav_op= “=” cav_value=7

oxm_type=

OXM_SOF_CAV
cav_offset=42

cav_cast=

int16

cav_op=

“>”

cav_value=

150

b) Augmenting with IP: The second method is to augment

WSN with IP. Two off-the-shelf IP stacks are

recommended, including uIP/uIPv6 and Blip.

3.1.2. Control Plane (SOF Channel)
It offers reliable TCP/IP connectivity which also ensures

orderly message delivery. The two parties are identified using

IP addresses. These addresses are generally unavailable in

Wireless Sensor Networks (WSN). This issue is addressed by

SD-WSN. Out of the two methods described in the previous

section if the network operator selects the first method of

non-IP addressing, then Sensor OpenFlow (SOF) channel can

be directly implemented on the WSN. If however the network

operator decides to augment WSN with IP then SOF channels

will be self-sufficient as those IP stacks come with

ready-made TCP implementations. The SOF channel needs to

be hosted within the same WSN. This can be problematic for

the energy-constrained WSN since it has to carry the

additional control traffic between the controller and the sensor

nodes. Furthermore, the control traffic in the WSN is large and

without a proper mechanism, it will overload the entire

network.

The control traffic mainly comprises of two types of

messages, namely Packet-in and Packet-out. A packet-in is a

request sent by the node to the controller to seek instructions

on how to deal with a packet that does not match any flow

entry. A packet-out is the response from the controller giving

instruction on how to deal with the packet. The control traffic

in WSN is often bursty in nature and multiple requests are sent

to the controller. In case of several different sensors sending

several flow setup request to the controller simultaneously, the

network will overload. Furthermore this scenario will often

occur as each flow has an expiration timer. To tackle with this

problem, the SD-WSN instructs the sensor nodes to send only

one packet-in request for the first time and withdraw any

further requests having same destination address as the first

packet until the corresponding packet-out is received. This

will prevent the data bottlenecks.

Unlike other networks, the nodes in WSN act like end

devices that generate data packets on their own instead of just

forwarding them. Therefore, in SD-WSN a new traf-gen

module is added on each sensor node for traffic generation.

Depending on the implementation, it can run in blocking

(synchronously awaiting sensory data to become available),

call-back (asynchronously triggered by a “data-available”

event) or round-robin (periodically checking if data is

17 Muhammad Ali Hassan et al.: Software Defined Networking for Wireless Sensor Networks: A Survey

available) manner.

Furthermore, the WSN at times need to perform data

aggregation to reduce data redundancy. However, such feature

is absent in SDN. To tackle this issue, SD-WSN model offers

an in-net proc module. If processing is not needed, then it

simply forwards it to the flow table. In case of making any

changes to the algorithm, an over the air programming (OTA)

technology can be used to direct the changes.

3.2. TinySDN

TinySDN is a TinyOS-based SDN framework [21]. The

TinySDN introduces multiple controllers in WSN and has two

main components which are SDN sensor node and SDN

controller node (see Figure 6). The TinySDN design focuses

on the key issues of energy supply, communication latency

and smaller link layer frames. Most of these issues were not

addressed by the previously proposed architectures for SDN in

WSN. It is also the first SDN based design for devices running

TinyOS. Typical WSN devices have only one radio module

that transmits or receives signals at a given time. Therefore,

data and control planes have to share the same communication

link and available bandwidth. This in-band control causes

delays in the network. Furthermore the control and data flows

must also be separated. It is shown in [21] that the IEEE

802.15.4 standard provides a very limited bandwidth which

results in an average of 250 Kbps increased latency per hop

until reaching the controller. If the controller is placed directly

on the sink, then it can reduce the latency considerably by

exploiting the positioning of the nodes. The TinySDN

proposes a new model in which multiple controllers are used

in WSN and one of them is placed closer to the end nodes.

Figure 6. TinySDN Design [21].

3.2.1. SDN-Enabled Sensor Node
As the end devices are considered peripheral to SDN, they

are out of the scope for OpenFlow but on the other hand sensor

nodes in WSN behave like end devices by generating data

packets. Keeping that in view, the TinySDN can deploys an

SDN-enabled node which plays both roles of an SDN switch

and an SDN end device. Each SDN-enabled node must find an

SDN controller node to join and then receive flow

specifications. An SDN enabled sensor node is split into three

parts.

a) TinyOS Application: This portion is the equivalent to the

end device. It generates data packets and then places

them on the network using the programming interface

provided by the TinySDN component. The network

designer of programmer writes it according to the WSN

application.

b) TinySdnP: It is the main component of TinySDN which

checks whether the received packet matches a flow entry

in the flow table and then performs the related action. If

not then it sends a flow setup request named “packet-in”

to an SDN controller. It is also responsible for

performing a flow table update when it receives a flow

setup response named “packet-out”.

c) ActiveMessageC: This TinyOS component manages and

provides a programming interface to interact with the

radio module of the sensor node. It performs all tasks

related to wireless communication such as data

forwarding and topology information discovery.

3.2.2. SDN Controller Node
The SDN controller node(s) that are responsible for creating

network flows with two different modules as follows:

a) Sensor Mote Module: It runs on sensor mote and

communicates with SDN-enabled sensor node using

ActiveMessageC. It acts as an intermediate between the

controller server module and the network. It forwards the

received messages to the controller server and receives

the messages from the network for the controller server

module.

b) Controller Server Module: It contains the control plane

logic and is responsible for hosting controller

applications and managing the network flow and

topology information.

3.2.3. Specification of Flows and Actions in Tiny SDN
Two actions are specified in TinySDN including forward

and drop. The forward action performs packet forwarding to

the next hop while the drop action indicates that a packet

should be dropped. In terms of flows, the TinySDN has two

types of flows, i.e. control flows and data flows. The control

flows are meant for control traffic between SDN-enabled

sensor nodes and SDN controller nodes while the data flows

are meant for application’s data traffic. Specifically, flows are

classified as flow entries in the flow tables where each entry is

composed of four field as shown in Tables 4 and 5. In case of

data flow table the identification field is Flow ID whereas in

case of control flow table the identification field is the

Destination node ID.

Table 4. Data Flow [21].

Flow ID Action Value Count
1 Drop N/A 100

2 Forward 5 10

101 Forward 10 27

Table 5. Control Flow [21].

Destination Node ID Action Value Count
0 Forward 4 5

1 Forward 4 2

7 Forward 6 2

At network start-up, the first task for an SDN-enabled

Sensor Node is to find an SDN controller Node and enlist

itself with it. For this discovery process, the TinySDN runs the

 Advances in Wireless Communications and Networks 2017; 3(2): 10-22 18

Collection Tree Protocol (CTP). This protocol is widely used

in multi-hop TinyOS-based applications and has two main

advantages of hardware Independence and multiple SDN

controllers. The network topology information collection

comprises of two steps:

a) Step 1: Each TinySDN-enabled sensor node recognises

its neighbour and measures the link quality between

them;

b) Step 2: The information regarding the link state is sent to

the TinySDN controller node through a CTP path or

control flow.

3.3. Service-Centric Networking for Urban-Scale Feedback
Systems (SURF)

In WSNs, the sensing applications are considered to be

more significant as compared to typical network applications

such as firewall. As described in [20], the SURF is an

architecture that acknowledges the differences between a

typical SDN and WSNs. It recognises that nodes are not only

switches as in the traditional OpenFlow SDN networks, but

they also have one or more application components. It also

addresses the issue of different stakeholders with different

requirements sharing a single large infrastructure.

The SURF controller has the following capabilities [20]:

a) It sets up and manages data flows through the network

that maintain a required level of QoS.

b) It finds the optimal subset of nodes that can service an

external sensing request in terms of quality of sensing

and communication.

c) It dynamically adjusts the allocations of data flows and

sensing applications by migrating flows or applications

in order to respond to external changes or reallocation

requests.

The SURF architecture has following layers:

3.3.1. Network Applications
This layer handles the business and network applications

that control and monitor a set of resources managed by a

single or multiple SDN controllers. In case of multiple parties

using the same virtualised WSN infrastructure, the

applications at this layer receive events and notifications about

the state of virtual networks (VNs), and then can alter them

with varying levels of QoS and bandwidth.

3.3.2. Controller
The main responsibility of the controller is to execute the

requests of the applications coming through the northbound

APIs. These applications have access to the Network

Information Base (NIB) and they direct the controller to

perform tasks such as resource management and

re-optimisation, responding to and generating events as a

result of changes in the underlying network; and computing a

collection of packet forwarding rules. These rules are then

installed into the WSN nodes via the southbound API. One of

the key motivations behind their design of SURF is to enable

network virtualisation. To support this feature, the SURF SDN

control logic introduces four entities in the controller,

including

a) Resource Allocator: It is responsible for determining

whether a VN or network function virtualisation (NFV)

request can be accommodated by the network. If the

service request can be supported then the resource

allocator interacts with the virtualiser to allocate the

physical resources that will form part of the VN.

b) Virtualiser: This entity is responsible for creating a VN

agent that represent the resources through a subset view

of the NIB and actions available to the application.

c) Orchestrator: It ensures that the service function chains

which are responsible for running network services are

flexibly compose network functions and are working as

independent functions by following the service-oriented

principles. The orchestrator is also responsible for

resolving conflicts between different applications and to

ensure optimal performance in terms of resource

utilisation, overhead, sleep schedules and routing.

d) Management: The management plane in the controller

consists of a service manager, a tenant manager, a

physical network model that keeps track of the physical

infrastructure and an Operation Support Service (OSS).

The network model maintains a database of network

dynamics, the tenant manager has a database of tenant

functions, and the service manager maintains a database

of VN application and functions.

3.3.3. Physical and Virtual WSN
This layer consist of the physical or virtualised network

elements which implement the decisions made in the

controller layer issued via the southbound interface. An

extension of Constrained Application Protocol (CoAP) can be

a suitable choice as it is well established within the WSN field.

The southbound plane of the controller is expected to support

multiple protocols that are designed by keeping in

consideration the limitations of the underlying infrastructure.

This plane of the controller also has a topology manager which

updates the NIB for the SDN control logic. It also considers

the modifications necessary on sensor node protocol stack

required to support communication with the controller via the

southbound API.

3.4. Software Defined Networking in WIreless Sensor
Networks (SDN-WISE)

Although the previously mentioned architectures have been

shown to provide a number of advantages over the traditional

WSNs without SDN, there exist a few shortcomings as

follows [26]:

a) Protocol details are not provided which are fundamental

for the correct operation of the network.

b) The architectures are not practically implemented and

hence no performance evaluations of the proposed

solutions have been carried out.

SDN-WISE designed in [26] is the first practical

implementation of an OpenFlow like SDN solution designed

specifically for WSNs. Unlike other architectures, the

SDN-WISE aims to limit the exchange of information

19 Muhammad Ali Hassan et al.: Software Defined Networking for Wireless Sensor Networks: A Survey

between the nodes and the controller, and also to make sensor

nodes directly programmable.

Furthermore, the SDN-WISE offer the ease of

implementing the SDN controller logic. This represents a

major advantage as compared to the previously proposed

solutions as it increases the flexibility and simplicity in

network programming. The SDN-WISE also offer the

opportunity to run its controller in a simulated environment.

Simulation software such as OMNET++ and COOJA can be

used to test its functionality.

The SDN-WISE endeavour to be proficient in the utilisation

of sensor resources regardless of the fact that such

productivity may result in a lower data rate. To be energy

efficient, it encourages the use of duty cycle to periodically

turn the radio module on and off, which would help in

conserving the energy. Moreover, since the WSNs are

inherently information driven, the SDN-WISE makes the

system more aware of the packet content. The nodes can deal

with packets based on the information available in their header

and payload. More complex relational operators are also

introduced in the flow tables. In OpenFlow, the system

resources are separated by the FlowVisor into small portions.

Every portion is associated with only one controller at a time.

A further notice in WSN is that the same bit of information can

be of significance to another application running on another

controller. The SDN-WISE therefore also permit various

controllers to specify different rules for the same packet

according to their needs.

3.4.1. SDN-WISE Sensor Nodes
The behaviour of SDN-WISE sensor nodes is completely

encoded in three data structures including WISE States Array,

Accepted IDs Array and WISE Flow Table [26]. These

structures are then filled with the instructions originating from

the controllers running at the distant servers. The controllers

define the systems administration arrangements which are

then implemented by the sensor nodes. At any time, each node

is described by one current state for every active controller.

Specifically, the WISE state array is the data structure that

contains those values. The broadcast nature of wireless

medium will enable the nodes to receive all data packets of

which some maybe not meant for them. The Accepted IDs

Array permits each node to choose just those packets that are

meant for it. In case the ID is enlisted in the Accepted IDs

array, the packet will be further processed by filtering it

through the matching rules specified in the WISE flow table.

In case the packet does not match any rule, a request is sent to

the controller to specify the new rules for that packet.

In order to contact the controller, the node needs to specify

the next best hop towards one of the sinks. For this purpose,

the Topology Discovery (TD) layer runs a protocol which is

based on the exchange of TD packets between the nodes.

These packets contain information regarding battery level of

the node and distance from the sink in terms of the number of

hops. Every time a node receives such packet, it compares it

with its own next best hop information and chooses the best

amongst them. This information is also used to populate a

WISE Neighbours List which is periodically sent to the

Topology Management (TM) layer which that generates a

graphical view of the network.

3.4.2. SDN-WISE Protocol Architecture
The protocol architecture is shown in Figure 7.

Figure 7. SDN-WISE Protocol Architecture [26].

Sensor nodes have an IEEE 802.15.4 transceiver and a

Micro Control Unit (MCU). The MCU entertains the

forwarding layer and it executes the forwarding decisions

according to the WISE flow table. It also continuously updates

the WISE flow table according to the configuration commands

sent by the controller. The In-Network Packet Processing

(INPP) layer is present on top of the Forwarding (FWD) layer.

It performs data aggregation and other processing tasks. In

SDN-WISE, the INPP layer reduces the network overhead by

combining small packets that are to travel on the same routes.

Another under development feature of INPP is to perform

network coding which will prove very efficient for several

WSN scenarios. Topology Discovery layer can access all layer.

It controls the behaviour of the nodes at all levels. The

network control logic is directed by a WISE-VISOR. It

includes a Topology Management (TM) layer which abstracts

the networks resources so that different logical networks with

different management policies set by different controllers can

run over the same set of physical devices. The Adaption layer

is responsible for formatting the messages received from the

sink in such way that they can be handled by the

WISE-VISOR. In case the controller runs in the same node

which is hosting the TM layer, the interactions will occur

through the JAVA methods offered by the TM layer or else the

interactions can occur through the JAVA Remote Method

Invocation (RMI) or Simple Object Access Protocol (SOAP).

3.4.3. Topology Discovery
The topology manager module in the WISE-Visor builds a

consistent view of the entire network by collecting local

topology information through TD packets generated by the

sensor nodes. For instance, when a random sensor node A

receives a TD packet from a node B, it will perform the

following operations:

a) Node A will enlist node B’s ID in its current neighbours

along with node B’s current RSSI and battery level.

 Advances in Wireless Communications and Networks 2017; 3(2): 10-22 20

b) Node A will perform a check on whether the recently

received TD packet from node B has a lower value of the

current distance from the sink then the already enlisted

packets. If it is true, then node A will update its value to

current value plus one and it will set its next hop towards

the controller equal to that of node B.

c) Node A will set its battery level in the corresponding

field of the TD packet.

d) Node A will transmit the updated TD packet over the

broadcast wireless channel.

e) Each sensor node generates a packet containing its

current list of neighbours and sends it periodically to the

WISE-Visor. The list of neighbours is also periodically

cleared. If a node receives a packet directed towards the

WISE-Visor then it redirects it to the node set as their

next hop towards the controller.

The fields in SDN-WISE packet header and SDN-WISE

Flow table are shown in Figures 8 and 9, respectively.

Figure 8. SDN-WISE Packet Header [26].

Figure 9. SDN-WISE Flow Table [26].

As shown in Figure 9, the SDN-WISE Flow table has three

sections including Matching Rules, Actions and Statistics.

The Matching Rules specify three conditions to be fulfilled.

Actions are executed in case the matching takes place and then

the corresponding statistics section is updated accordingly.

The S field in each matching rules specifies whether the

current packet (i.e. s=0) or the current state (i.e. s=1) is under

consideration. Offset and Size specify the first byte and the

size of the string of bytes in the packet. The Operator field

gives the relational operator to be checked against the Value

given in the rule. Actions field specify the corresponding

actions to be taken in case a packet satisfies the matching rules.

Here, an Action is specified by five fields. The type specifies

the type of action for which the possible values can be

“forward to”, “drop”, “modify”, “turn on/off radio”, “send to

INPP”. M states whether the entry is exclusive (i.e. M=0) or

not (i.e. M=1). In case of M=0, if the conditions are satisfied

then the sensor node executes the action and then stops

browsing the WISE flow table. In case of M=1, after

executing the action the sensor node will continue to browse

the WISE flow table and execute other actions if the

corresponding conditions specified in the Matching Rules

section are satisfied. The offset and value field depend on the

type of action. If for example the action is to Forward the

packet then they must specify the next hop ID. If it the action

is to Drop then they will give the drop probability as well as

the next hop OD in case the packet is not dropped. If the action

is to Modify then they specify the offset and the new value to

be written. If it is to send to INPP then they must specify the

type of processing that must be executed and in case of Turn

off radio they must state the time after which the radio should

turn on again. In case the action is to Modify then the flag S

shows whether the action is to be taken on the packet or the

state. Statistics in SDN-WISE are used in a similar way as in

OpenFlow. In case of a match the relevant actions will be

executed and the TTL field in will reduce by one on each hop

and the counter will increment by one.

3.4.4. Exemplary Topology of SDN-WISE
Figure 10 illustrates the functionality of SDN-WISE by

considering a scenario in a network where the data measured

by node A is significant only if the data measured by node B is

higher than a given threshold. An energy efficient policy is

needed to guide node C to drop packets if the packets received

by node B contains a measured data lower than the threshold.

In the traditional OpenFlow, such strategy cannot be

implemented because of the following limitations:

a) Complex relational operators are not supported.

b) Packet handling cannot be done based on the result of

comparison between other packets.

Figure 10. Exemplary Topology [26].

21 Muhammad Ali Hassan et al.: Software Defined Networking for Wireless Sensor Networks: A Survey

This policy can be easily implement in SDN-WISE through

a finite state machine as shown in Figure 11 which is

implemented through the five WISE flow table entries (see

Figure 9).

Figure 11. Finite State Machine [26].

The first two lines specify the transitions between states 0

and 1. In the first entry of the WISE flow table the first

Matching Rule selects packets coming from node B. The

second matching rule selects those that have in the 10th and

11th bytes a value higher than the threshold. Finally the third

matching rule selects the cases in which the current state of the

node is 0. If all these rules are satisfied then the state is set to 1

in the Actions Section.

The second entry selects the cases in which the incoming

packet has been generated by B. It contains data whose value

is lower than or equal to xthr and the current state is 1. In this

case set the state to 0.

The third entry specifies that the packets coming from B

must be forwarded to D in any scenario. The fourth and fifth

entry state that the packets coming from A be dropped if the

current state is 0 or forwarded to D if the current state is 1.

4. Discussion and Future Works
After exploring different features offered by an SDN

controller, it is clear beyond doubt that the SDN offers a great

alternative to the traditional networking model and it can cater

for some of the most common issues in the current networking

environment such as data congestion. The SDN makes the

management of the network easier and thus highly suitable for

scalable data centres and mobile network services. Although

the traditional SDN models offer a versatile controller, they

did not take into account the limitations of a WSN. Therefore,

they cannot be directly applied to a resource-constrained WSN.

On the other hand, the first practical implementation of SDN

in WSN offered by SDN-WISE does take into account the

limitations of WSN’s nodes and offer more suitable

alternatives for WSN. However, at the moment the

SDN-WISE differs greatly from the other SDN controllers

available for the Wired and Wireless Networks. The

SDN-WISE also does not offer a proper GUI to manage flow

tables and data traffic. Specifically, it lacks a proper modelling

interface such as Yang UI offered by the ODL, and thus

requires further development and enhancement. In addition,

the ODL foundation is supported by the leading IT companies

around the world, such as Cisco, ERICSSON, Intel, etc.,

whereas the SDN-WISE is a prospect for implementing the

SDN in WSN.

The first and foremost area of concern for SDN in WSN is

the security of the controller with the development of

technologies and the tremendous increase of number of

devices. New ideas are needed for the development of a solid

framework for these novel designs. An analysis on the security

of SDN can be referred to in [27]. Considering the deployment

of SDN for WSN, various features and modifications are

required to be investigated, especially when taking into

account the practical security issues. Specifically, a major

challenge is how to develop an efficient algorithm to deal with

security threats over a number of sensors employing various

applications.

The concept of deploying distributed controller has already

been proposed but whether it will produce the desired results or

what effects it will have on the energy consumption of the

sensor nodes is yet to be practically investigated. The

functionality of SDN with mobile sensors also needs to be

verified. Furthermore, with the growing popularity of the

Internet of Things (IoTs) where SDN is promising to be an

enabling technology (e.g. [28] and references therein), the

integration of the WSN with these networks would raise diverse

open research problems. In particular, optimisation and

automation of network functions via SDN and machine learning

techniques for various applications and services are giving good

grounds for expecting an intelligent WSN in the near future.

5. Conclusion
In this paper, we have briefly introduced the background of

SDN as well as its feasibility in WSNs. After carefully

examining various features offered by the SDN, the SDN has

been shown to not only offer a more simplified network

management with more control over the network devices, but

also to provide richer programmatic interfaces. The ability to

shape and control data traffic ensures guaranteed content

delivery which can be very useful for VoIP and multimedia

transmissions. It has also been shown that the SDN and

large-scale deployment of the WSNs are the future of

networking. The WSNs are key parts of the Internet of Things

(IoTs) which will lead to billions of wireless sensor nodes

connected to the Internet over the next decade. To cope with

this issue, only the SDN can provide an efficient management

mechanism for the smooth functionality of their design, and

thus promote more research works towards this new approach.

The centralised nature of the SDN controller also presents a

great challenge to the security of the whole network as it

makes the network vulnerable to a single point of failure. The

concept of SDN itself is relatively new to the networking

world. However, the growing demand of WSN deployments

will certainly lead to more innovations in this field.

References
[1] J. D. McCabe, Network Analysis, Architecture, and Design, 3rd

edition, Elsevier, 2007, ISBN: 9780123704801.

 Advances in Wireless Communications and Networks 2017; 3(2): 10-22 22

[2] M. Dye, R. McDonald, and A. Rufi, Network Fundamentals,
CCNA Exploration Companion Guide, 2007, ISBN:
9781587132087.

[3] Q. Zhang and L. Liu, "Workload Adaptive Shared Memory
Management for High Performance Network I/O in Virtualized
Cloud," in IEEE Transactions on Computers, vol. 65, no. 11, pp.
3480-3494, Nov. 2016.

[4] W. Xia, Y. Wen, C. H. Foh, D. Niyato and H. Xie, "A Survey on
Software-Defined Networking," in IEEE Communications
Surveys & Tutorials, vol. 17, no. 1, pp. 27-51, Firstquarter
2015.

[5] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S.
Azodolmolky and S. Uhlig, "Software-Defined Networking: A
Comprehensive Survey," in Proceedings of the IEEE, vol. 103,
no. 1, pp. 14-76, Jan. 2015.

[6] T. Mizrahi and Y. Moses, "Time4: Time for SDN," in IEEE
Transactions on Network and Service Management, vol. 13, no.
3, pp. 433-446, Sept. 2016.

[7] I. F. Akyildiz, Weilian Su, Y. Sankarasubramaniam and E.
Cayirci, "A survey on sensor networks," in IEEE
Communications Magazine, vol. 40, no. 8, pp. 102-114, Aug.
2002.

[8] Johanna, “Wireless sensor network design,” 2014. Available at:
https://wirelessmeshsensornetworks.wordpress.com/tag/wirele
ss-sensor-network-technology-and-its-application-using-vlsi/.

[9] Silicon Labs (White Paper), “The Evolution of Wireless Sensor
Networks,” 2013. Available at:
http://www.silabs.com/documents/public/white-papers/evoluti
on-of-wireless-sensor-networks.pdf.

[10] D. Cooley, “Wireless Sensor Networks Evolve to Meet
Mainstream Needs,” 2012. Available at:
http://rtcmagazine.com/articles/view/102871.

[11] J. Tourrilhes, P. Sharma, S. Banerjee and J. Pettit, "SDN and
OpenFlow Evolution: A Standards Perspective," in Computer,
vol. 47, no. 11, pp. 22-29, Nov. 2014.

[12] T. D. Nadeau and K. Gray, SDN: Software Defined Networks,
O'Reilly Media, 2013, ISBN: 9781449342302.

[13] S. Costanzo, L. Galluccio, G. Morabito and S. Palazzo,
"Software Defined Wireless Networks: Unbridling SDNs,"
2012 European Workshop on Software Defined Networking,
Darmstadt, 2012, pp. 1-6.

[14] SDX Central, “Understanding the SDN architecture,” 2015.
Available at:
https://www.sdxcentral.com/sdn/definitions/inside-sdn-archite
cture/.

[15] D. Suh, S. Jang, S. Han, S. Pack, M.-S. Kim, T. Kim and C.-G.
Lim, "Toward Highly Available and Scalable Software Defined
Networks for Service Providers," in IEEE Communications
Magazine, vol. 55, no. 4, pp. 100-107, April 2017.

[16] OpenDaylight, “OpenDaylight: Open Source SDN Platform,”
2013. Available at: https://www.opendaylight.org/.

[17] D. Ward, “OpenDaylight: Building an Open Source
Community around SDN,” 2013. Available at:
http://blogs.cisco.com/news/opendaylight.

[18] T. Luo, H. P. Tan and T. Q. S. Quek, "Sensor OpenFlow:
Enabling Software-Defined Wireless Sensor Networks," in
IEEE Communications Letters, vol. 16, no. 11, pp. 1896-1899,
Nov. 2012.

[19] A. De Gante, M. Aslan and A. Matrawy, "Smart wireless sensor
network management based on software-defined networking,"
2014 27th Biennial Symposium on Communications (QBSC),
Kingston, ON, 2014, pp. 71-75.

[20] D. O’Shea, V. Cionca and D. Pesch, “The Presidium of
Wireless Sensor Networks - A Software Defined Wireless
Sensor Network Architecture,” in: R. Agüero, T. Zinner, M.
García-Lozano, BL. Wenning, A. Timm-Giel (eds), Mobile
Networks and Management, Lecture Notes of the Institute for
Computer Sciences, Social Informatics and
Telecommunications Engineering, vol 158. Springer, 2015.

[21] B. Trevizan de Oliveira, L. Batista Gabriel and C. Borges
Margi, "TinySDN: Enabling Multiple Controllers for
Software-Defined Wireless Sensor Networks," in IEEE Latin
America Transactions, vol. 13, no. 11, pp. 3690-3696, Nov.
2015.

[22] K. Slavov, D. Migault and M. Pourzandi, “Identifying and
addressing the vulnerabilities and security issues of SDN,” in
Ericsson Technology Review, Vol. 92, No. 7, Aug. 2015.
Available at:
https://www.ericsson.com/assets/local/publications/ericsson-te
chnology-review/docs/2015/etr-sdn-security.pdf.

[23] Y. Choi, Y. Choi and Y.-G. Hong, "Study on coupling of
software-defined networking and wireless sensor networks,"
2016 Eighth International Conference on Ubiquitous and
Future Networks (ICUFN), Vienna, 2016, pp. 900-902.

[24] A. Boonsongsrikul, S. Kocijancic and S. Suppharangsan,
"Effective energy consumption on wireless sensor networks:
Survey and challenges," 2013 36th International Convention
on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), Opatija, 2013, pp. 469-473.

[25] A. Mahmud and R. Rahmani, "Exploitation of OpenFlow in
wireless sensor networks," Proceedings of 2011 International
Conference on Computer Science and Network Technology,
Harbin, 2011, pp. 594-600.

[26] L. Galluccio, S. Milardo, G. Morabito and S. Palazzo,
"SDN-WISE: Design, prototyping and experimentation of a
stateful SDN solution for WIreless SEnsor networks," 2015
IEEE Conference on Computer Communications (INFOCOM),
Kowloon, 2015, pp. 513-521.

[27] I. Ahmad, S. Namal, M. Ylianttila and A. Gurtov, "Security in
Software Defined Networks: A Survey," in IEEE
Communications Surveys & Tutorials, vol. 17, no. 4, pp.
2317-2346, Fourthquarter 2015.

[28] N. Bizanis and F. A. Kuipers, "SDN and Virtualization
Solutions for the Internet of Things: A Survey," in IEEE Access,
vol. 4, pp. 5591-5606, 2016.

