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Abstract: One main feature of Software Defined Networking (SDN) is the basic principle of decoupling a device’s control 

plane from its data plane. This simplifies network management and gives network administrators a remarkable control over the 

network elements. As the control plane for each device within the network is now implemented on a separate controller, this 

reliefs individual devices from the overhead caused by complex routing. Specifically, this feature has been shown to be 

extremely beneficial in the case of resource-constrained Wireless Sensor Networks (WSNs). By keeping the control logic away 

from the low-powered nodes, the WSNs can resolve their major issues of resource underutilisation and counter-productivity. This 

paper highlights the importance of adopting the SDN in the WSNs as a relatively new networking paradigm. This is introduced 

through a comprehensive survey on relevant networking paradigms and protocols supported by a critical evaluation of the 

advantages and disadvantages of these mechanisms. Furthermore, open research issues and challenges are pointed out shedding a 

light on future innovations in this field. 

Keywords: Software Defined Networking (SDN), Wireless Sensor Network (WSN), OpenDaylight, OpenFlow,  
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1. Introduction 
The Internet has made an enormous impact on the world of 

communications. It has interconnected billions of networking 

devices all over the world [1]. These devices share 

information with each other in the form of digital data packets. 

The networking protocols are responsible for the delivery of 

these packets to their respective destinations. Despite their 

significance, these protocols have not evolved over the years, 

which are complex and thus restrict innovation. In the 

traditional network management, network administrators had 

to configure each device manually by using proprietary 

commands. Newer policies or protocols cannot be introduced 

in the network on the fly, while automatic reconfiguration and 

response mechanisms are almost non-existent. The still 

ongoing transition of protocol change from IPv4 to IPv6 

shows how difficult it is to introduce new changes [2].  
Network management is even more complicated when it 

comes to large data centres. In the past, storage, computing, 

and networking resources within a data centre were all kept 

separated from each other. This was done for the ease of 

management and also for the sake of security enhancement. 

With the growing demand of networking and computing 

resources, it became difficult to provide separated resources 

for these entities and the organisations were forced to 

consolidate resources. The reduced cost of 

micro-electromechanical systems and the advent of operating 

system (OS) virtualisation have recently facilitated such 

practical requirement by allowing the deployment of hundreds 

and even thousands of virtual machines on a few physical 

servers [3]. This however has brought issues of operational 

efficiency and power consumption. Furthermore, the 

virtualised environment also demands a unique IP address for 

each virtual machine (VM). This in turn presents a hurdle of 

managing and provisioning IP addresses and networking 

resources to a large number of VMs simultaneously, which is 

likely to cause data bottlenecks. 

The aforementioned issues were the motivation behind the 

invention of Software Defined Networking (SDN) (see [4]-[6] 

and references therein). The micro-controller technology was 



11 Muhammad Ali Hassan et al.:  Software Defined Networking for Wireless Sensor Networks: A Survey  
 

booming at a steady pace whereas the networking side merely 

made any significant progress in feature development or 

introducing new ideas. The SDN has therefore emerged as the 

future of modern day networking offering simplicity, 

scalability, versatility and innovation over the traditional 

networking models. The basic architecture of SDN separates 

the device’s control plane from its data plane. The control 

plane for all of the devices inside the network is relocated to a 

remote site where the controller overlooks and manages the 

entire network. The decision making is done by the controller 

and then the instructions are sent to the data plane to 

implement those decisions. For example, in case of data 

congestion, the controller will make the decision to redirect 

the flow of traffic and order the devices to update their flow 

tables accordingly. This feature of traffic management is not 

possible with the traditional networking models as changes to 

the routing paths cannot be implemented directly. Some 

research also have a different view of SDN that they refer to as 

the software driven networks. They present a middle approach 

whereby some parts of the network are managed by the 

controller, while others are still managed by the more 

traditional control plane. Nevertheless, both have the same 

idea of a greater and more flexible network device 

programmability. 

Additionally, SDN offers an energy efficient solution for 

power-constrained network elements such as in Wireless 

Sensor Networks (WSNs) which consists of a group of 

embedded devices called sensor nodes. WSNs is an example 

of a system that can benefit from this feature of the SDN. The 

sensor nodes collect numerous environmental data, such as 

temperature, light, humidity, pressure, sound, etc., and send it 

to base station [7], [8]. These nodes are deployed in areas 

where physical access to these devices might not always be 

possible and most of the times these nodes run on small 

limited batteries and may not have any renewable energy 

resource. Hence, these devices cannot either run complex 

protocols or perform heavy computational activities, which 

limits the functionality and efficiency of the entire network. 

The SDN provides an alternative networking model for these 

devices enabling them to not only run complex protocols but 

also customise the functionality of the network according to 

the needs. It simplifies the management of networking models 

and utilises networking resources more efficiently. These 

features are indeed highly suitable for the low-powered nodes 

in the WSNs. However, there has not been a significant 

approach towards introducing this concept to the WSN 

domain and the architectures for deploying the SDN in WSNs 

have not been practically tested and validated considering 

various scenarios in reality. 
In this paper we aim at accomplishing the following: 

i) To analyse of SDN and its effectiveness in the present 

networking environment. 

ii) To investigate the current SDN solutions and their 

practicality for WSNs. 

iii) To compare the SDN solutions available for wired and 

wireless networks with those available for the WSNs. 

iv) To summarise the findings and to propose future work in 

this area. 

Our contribution in this paper is to provide a comprehensive 

study on highlighting the importance of using SDN in WSN. 

We plan on achieving this by investigating the research work 

that has been done so far in this area and pointing out the key 

factors in SDN that can be of benefit to the WSN. We then 

present our findings along with the proposed future work.  

The rest of this paper is organised as follows: Section 2 

starts with the background of SDN and WSNs. We then 

describe various architectures of SDN for WSNs with relevant 

research works in Section 3. Section 4 summarises the 

findings and proposes future work. Finally, Section 5 draws 

the main conclusions from this paper. 

2. Literature Review on WSN and SDN 
2.1. Wireless Sensor Network (WSN) 

A WSN is made up of a large number of small, low-cost, 

low powered sensor nodes. These nodes monitor 

environmental conditions, such as temperature, sound, 

pressure, humidity, etc., and then send that information 

wirelessly over the network to a host system where it is 

processed, analysed and presented in a readable format [7], [8]. 

These networks, as illustrated in Figure 1, have a wide range 

of applications. They can be used to monitor weather 

conditions on farm fields or to detect enemy’s movements in 

warzones. They can also be used to monitor the traffic to keep 

it away from jams and accidents or to predict natural disasters 

such as volcanoes and earthquakes.  

 
Figure 1. WSN Environment [8]. 

The history of WSNs dates back to several decades. 

According to a report published by the Silicon Labs on the 

evolution of WSNs [9], the Sound Surveillance System 

(SOSUS) was the first wireless system that shows any 

resemblance to the modern day WSN. It was invented by the 

US military to keep track on Soviet submarines. The system 

consisted of a large number of submerged acoustic sensors 

called hydrophones that were dispersed all over the Atlantic 

and Pacific Ocean. This detecting technology is still being 

used in some areas to monitor natural disasters. 

The weakness of WSN lies in their limited processing 

power, storage memory, and communication infrastructure. In 

order to improve the overall performance, ensure reliability, 
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and make the system more secure, the system engineer and 

designers have to make trade-offs among the choice of 

underlying hardware, power resources, and networking 

protocols.  

In spite of all the drawbacks, today’s WSN differs greatly 

from the ones that were developed just a few years ago. In past, 

the aforementioned factors were a major hindrance in the 

development of these device but the importance of WSN in 

various modern applications and advancements in 

semiconductor and networking technologies have led to their 

large-scale production. These networks are now easier to 

manage, the devices have longer lifetimes and they are more 

resilient. 

 
Figure 2. WSN Topologies [10]. 

WSNs are generally classified in four groups [10] including 

one-way networks, bi-directional networks, star networks and 

mesh networks. As shown in Figure 2, one-way WSN network 

topology is the simplest one with only a single, one-way 

communication link. An example of its use is in the pressure 

measuring systems. The advancement in technology leads to 

the need of more efficient topologies and cost-effective 

protocols for these designs. For example a star topology finds 

its use in easily scaling the number of lights in a room or a 

router in a house can use the mesh topology to overcome 

shadowing and ensure uniform signal strength throughout the 

house. The major area of concern is the security of these 

devices. The WSNs are generally set up for gathering records 

from insecure environments. The sensitive nature of the 

information carried by the nodes poses a great challenge for 

the developers to implement a secure framework for these 

devices so that the data cannot be corrupted. 

2.2. Software Defined Networking (SDN) 

SDN is a new networking model that separates the control 

and data planes of a device and makes the control plane 

programmable by using various APIs [4]-[6]. This results in 

an efficient, low-cost and dynamic networking architecture 

that provides network administrators with unprecedented 

control over the networking elements [9]. As a leading 

organisation that aims at promoting the SDN, the Open 

Networking Foundation (ONF) is supported by various 

companies, such as Cisco, Microsoft, Google, Deutsche 

Telekom, etc. [11]. 
The SDN is also defined as a network design approach that 

makes network management easier by closing the gaps 

between applications, network services, and devices [12]. This 

can be achieved by deploying a single centralised point of 

control which is commonly referred to as the SDN controller. 

The controller orchestrates and facilitates the correspondence 

between the applications and network devices. It exposes and 

abstracts the network functions and operations via 

programmatic interfaces to the network administrators, which 

gives them more control over the network functionality. 

In a traditional networking environment, the control and 

data planes reside on the same device. The control plane, 

which can also be thought of as the brain of the networking 

device makes all the decisions regarding the routing tables. 

The data plane utilises these routing tables to forward the data 

packets. A device with a local control plane will have to be 

manually and separately configured. In a scenario where 

hundreds of such devices are to be managed, this can prove to 

be a tedious task. Moreover, no single device has the visibility 

of the entire network. In other words, each device has to work 

on its own and share information with its neighbours to form 

some sort of view of the network. Also, with the traditional 

networks, new routing protocols cannot be implemented 

readily. It is also difficult to integrate devices of different 

brands to run on the same network as they run proprietary 

software. For example, a network consisting of Cisco switches 

will only have those switches running in the network with 

their proprietary operating systems. It will be difficult to 

introduce a Dell switch within the network and to make it 

work smoothly alongside the other switches.  

With SDN, rather than each device having its own control 

plane, a common control plane is implemented on a remote 

controller for all the devices in the network. This introduces a 

centralised control policy management. The devices are to 

become simple packet forwarding elements while all the 

decision makings are carried out at the remote controller. The 

controller can manipulate the flow of traffic throughout the 

network. This relieves the individual devices of the overhead 

to manage the routing protocols and policies on their own and 

also helps to manage the network traffic which prevents 

congestion in the network. With SDN, a user can run multiple 

operating systems on devices that are not application specific. 

For example, Facebook compute switches do not require a 

proprietary software so we can run different operating systems 

of our choice on different devices on the same network. In fact, 

all tend to agree that SDN does make the network 

management simpler [13]. 

An SDN architecture has three layers (see Figure 3) as 

follows: 

a) Application Layer: It supports applications that 

communicate with the controller and direct it to perform 

the desired functions on the underlying physical network 

infrastructure. These applications also use data supplied 

by the controller to create a logical view of the entire 

network. This helps the network administrators in 

decision making regarding the network management. 
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These applications can also be used to perform data 

analysis. Business oriented applications are used to run 

large data centres or to detect suspicious network activity 

within the data centre for security purposes. 

b) Control Layer: It holds the network controller which is 

the main entity that interlinks the application and 

infrastructure layer. The controller is responsible for 

managing the communication between the two layers. It 

conveys the instruction received from the applications to 

the underlying physical or virtualised devices and 

collects the data from these devices and send it back to 

the applications. 

c) Infrastructure Layer: The infrastructure layer consists of 

physical networking devices that execute the actual data 

forwarding. This also includes the virtualised elements. 

 
Figure 3. SDN Architecture [14]. 

The SDN architecture is usually described by two interfaces, 

namely the Northbound interface and the Southbound 

interface. The connection between the controller and 

applications is referred to as the Northbound interface, while 

the connection between the controller and the physical 

networking hardware is known as the Southbound interface. 

The SDN is basically based on four main pillars as follows [5]: 

a) The control and data planes are to be separated from one 

another. 

b) The forwarding decisions are to be flow based rather 

than destination based. 

c) The control logic is to be moved to an external SDN 

controller. 

d) The network control plane is to be made directly 

programmable. 

Here, three major components of the SDN that can be listed 

are: 

a) Control Plane: The main task of a control plane is to 

create data forwarding tables for the data plane [12]. The 

control plane makes these decisions based on the 

information provided by the Routing Information Base 

(RIB). RIB is the entity that stores the network topology. 

It gathers information through observation, manual 

programming or integrating with other entities of the 

control plane. Once these decisions are made, they are 

then stored in the Forwarding Information Base (FIB) 

which is responsible for forwarding the packets to their 

proper interfaces. The control plane can be of three 

following types: 

a) Strictly Centralised: This approach to SDN model is 

referred to as “revolutionary approach” because it 

proposes a complete separation of the device’s control 

plane from its physical infrastructure. In this model no 

control plane functions exist at a device and it acts 

under the total control of the remotely located 

centralised controller. 

b) Semi Centralised: A semi centralised control plane is 

referred to as the “evolutionary approach”. It provides 

some new capabilities but does not completely 

remove the control plane from the device. Some 

control plane functionalities such as learning of MAC 

addresses is still carried out on the device while the 

centralised controller is given more authority over 

other areas of network functionality. This model 

utilises the best features of both strictly centralised 

and fully distributed control planes. 

c) Fully Distributed: In this model each device runs a 

complete control plane for each data plane. All the 

control planes are interlinked to form a cohesive 

network. This approach offers nothing new and is 

therefore of little significance. 

b) Data Plane: A data plane in SDN is what carries out the 

actual data packet forwarding. The packets on a device 

are forwarded based on the flow tables assigned to them 

by the controller. A flow is a set of packet field values 

that filter the incoming packets. If a packet matches the 

criteria defined in a particular flow then corresponding 

actions are taken on that packet based on the instructions 

provided by the controller. All packets belonging to a 

particular flow will receive identical treatment. In case a 

packet does not belong to the listed flow table entries the 

device will then ask the controller to provide new 

instructions on dealing with that packet. The flow tables 

can be readily updated in case of any policy changes. 

Several methods have been proposed for cost-effective, 

fast packet forwarding [4]. Hardware classification can 

be used to increase processing throughput as using 

software in switching devices may result in inefficient 

performance. Another method is to classify the flows 

into “elephant flows” and “mice flows” categories. Mice 

flows are generally numerous but each of them have few 

packets. They also have little impact on the overall 

network performance. A proposed idea is to send 

“elephant flows” to the Application Specific Integrated 

Circuit (ASIC) and allow the Central Processing Unit 

(CPU) to deal with the “mice flows”. 

c) Management Plane: The Management plane is 

responsible for performing tasks that are outside the 

scope of control and data planes. It manages resource 

allocations, client-vendor business agreements, setting 

up of physical networking infrastructure, and 

configuring bootstraps. Every business organisation has 

its own administrative entities. 
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The entity that a control plane utilises to manage the flow 

controls in a network is called an SDN controller. The SDN 

controller, for example OpenDaylight (ODL) [15], [16] (see 

Figure 4 for a typical ODL architecture), should have the 

following [12]: 

a) A database that stores information regarding network 

state, network configuration and network topology 

b) A high-level data model that establishes relationships 

between the resources and the services provided by the 

controller 

c) An API that offers the controller services to the 

application layer 

d) A TCP control session between the controller and the 

devices 

e) A standards based protocol 

f) A topology discovery mechanism for path computation  

 
Figure 4. ODL Architecture [17]. 

The ODL project is an initiative by The Linux Foundation 

to highlight the importance of SDN. The ODL offers the 

largest open source SDN controller that is being used in 

various organisations and universities. As shown in Figure 4, 

the architecture of ODL has a Southbound interface that 

supports multi-vendor environment and a Northbound 

interface that offers multiple functionalities to various 

applications via different APIs. In addition, there is a Service 

Abstraction Layer (SAL) that not only interlinks service 

requests to the relevant plugins, but also provides a basic 

platform for building higher-level services [12]. Open 

protocol standards such as OpenFlow or standard protocols 

can be used to communicate with the physical or virtualised 

hardware. 

Some of the key features offered by ODL controller are as 

follows [16]: 

a) On demand services: It provides readily available 

services on bandwidth scheduling. 

b) Cloud computing and virtualisation: It offers quality 

service on cloud infrastructures. Here, OpenStack is 

most commonly used. 

c) Resource optimisation: It dynamically optimises the 

network resources based on load balancing. 

d) Reliable networking model: It provides highly active 

and automated networking models for government, 

university and private sector networks. 

e) Network visibility and control: It offers a centralized 

administration of the entire network using a single or 

multiple controllers. 

2.3. SDN in WSN 

The application specific nature restricts the WSN from 

utilising their full potential [18]. Multiple WSNs are deployed 

for multiple applications in the same area. Similarly, vendors 

fail to utilise the common functionalities as they develop 

WSN in isolation. Furthermore, the remote deployment nature 

of the WSN requires highly autonomous and self-configurable 

devices that are not feasible due to the resource limitations of 

these devices [19]. Some of the common issues in the WSN 

are energy saving, sensor node mobility, network management, 

localisation accuracy and virtualised WSN [20]. 

All of the aforementioned challenges can be effectively 

tackled by using SDN. The SDN encourages the development 

of cost-effective protocols that can lead to considerable 

increase in the productivity of the WSN. The separation of 

forwarding plane from the control logic allows easier network 

management and enables network virtualisation. Furthermore, 

recent boost in the popularity of Internet of Things (IoT) has 

resulted in the large-scale production and deployment of the 

WSNs [20]. The next decade could see billions of 

interconnected sensor-nodes linked through the Internet in 

which the SDN can provide a solid platform for handling such 

large number of networked devices and also resolve some of 

the key issues encountered by the WSN. 

In particular, the most significant features that can be 

achieved by using SDN enabled WSN nodes are node and 

resource management [21]. A controller can take into account 

the energy available to different nodes while making the 

routing decisions to ensure the best network lifetime. Usually 

WSN nodes are considered as application-specific, disposable 

devices. But considering their use in Smart Cities where 

sensor nodes have to collect, process and transmit different 

types of data for different applications, they need a solid 

framework in which a much better usage of underlying 

infrastructure can be achieved through the SDN deployment. 
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Another key advantage of using SDN is that if a tap in a 

network indicates to the controller that a device is showing 

signs of being hijacked, then the controller can steer the traffic 

away from that device to an Intrusion Detection System (IDS) 

for further analysis [22]. This approach can prove very helpful 

for WSN domain. 
2.3.1. Energy Saving with SDN  

With limited energy resources in WSNs, the nodes are 

however deployed in situations where they have limited 

access to any renewable energy resources. This accordingly 

restricts the development of energy efficient protocols, which 

in turns affects the overall performance of the network. With 

SDN, the power consumed by the nodes can be considerably 

saved [20]. The controller can determine the best routing 

policies and thus relieves the nodes from making those 

decisions on their own. In case the node is about to run out of 

battery, it will send a warning to the controller so that it can 

make changes to the routing tables in time [23]. Furthermore, 

since the controller takes over the control plane functionalities, 

the traffic management, resource allocation, and Quality of 

Service (QoS) can be efficiently achieved with a lower energy 

overhead. 

2.3.2. Sensor Node Mobility with SDN 
In case of mobile sensors, the network topology frequently 

changes which results in delayed convergence time for the 

vector based networking protocols. This affects the overall 

performance of the network given the fact that a WSN has a 

specific topology to a specific application [24]. When an 

application changes, the corresponding network topology also 

changes. In doing so, the sensor nodes lose energy and their 

lifetimes are shortened. With SDN, a centralised controller can 

either inject or modify the network policies on the fly. This 

will result in lower convergence time for protocols. The 

controller also assigns employ a mobility management 

protocol that directs the nodes to continuously inform the 

controller of their location information. By this way, the 

controller will keeps updating the flow tables with new 

routing decisions and ensure optimal network performance. 

2.3.3. Network Management with SDN 
Network management is a complex and challenging process 

for WSN administrators. Traditional networking requires the 

management of proprietary software on proprietary hardware 

devices. In case of sensor nodes, using network components of 

different vendors makes the management process even more 

complicated [21]. The cost of managing a WSN is relatively 

high and any new policy or protocol implementation would 

require the need of altering the nodes’ hardware. Such process 

requires physical access to all the nodes which might not 

always be possible. Therefore, SDN can help transform the 

network administration problem to a network programming 

one. Complexity of the sensor network is dramatically eased 

with SDN. New routing protocols can be readily employed on 

the network and also facilitates the compilation of different 

versions of the same network applications for different types 

of sensor nodes.  

2.3.4. Localisation Accuracy with SDN  
Data provided by a sensor node without correct location 

information could be considered useless. Due to the 

energy-constrained nature of the nodes, traditional networking 

cannot achieve highly accurate location information as it 

requires running sophisticated localisation algorithms that can 

prove to be an overhead for these devices. It is shown in [21] 

that with SDN, a highly accurate location information can be 

obtained by using a centralised routing algorithm. The 

gathered location information can be used by a network 

topology discovery algorithm to further improve the routing 

decisions made by the controller. This location information 

data can then be of use to various sensor applications. 

2.3.5. Virtualised WSNs with SDN 
It is suggested in [20] that applying SDN in WSNs will 

enable different organisations and applications to share the 

same underlying physical infrastructure instead of deploying 

separate networks. This will result in reduced cost to 

customers, reduced cost of ownership and will allow the 

network to expand economically. Although the SDN was not 

designed for resource-constrained WSN, its features can be 

leveraged to form a virtualised environment for WSN. 

3. Architecture for SDN in WSN 
The novel idea of exploiting OpenFlow technology to 

address reliability issues in sensor networks was presented by 

[25], while the first architectural proposal was presented by 

[18] in the form of Software Defined Wireless Sensor 

Network (SD-WSN). Some of the notable, proposed 

architectures for using SDN in WSN are as follows: 

a) Software Defined Wireless Sensor Network (SD-WSN) 

b) TinySDN 

c) Service-centric networking for URban-scale Feedback 

Systems (SURF) 

d) Software Defined Networking in WIreless Sensor 

nEtworks (SDN-WISE) 

3.1. Software Defined Wireless Sensor Network (SD-WSN) 

 
Figure 5. SD-WSN Architecture [18]. 
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SD-WSN presents the first effort of combining SDN and 

WSNs. The aim of the SD-WSN design is to tackle the 

problems of resource underutilisation, counter-productivity, 

rigidity in policy changes, and network management in WSNs 

[18]. The fundamental assumption made by the OpenFlow 

protocol is that the underlying network is composed of highly 

sophisticated networking devices. While on the other side, the 

WSN networks are composed of devices with low power and 

specifications. As OpenFlow was primarily designed as a 

wired protocol hence its direct implementation on the WSN 

domain would not be fruitful. SD-WSN proposes some 

changes to it and present a new solution that can work with the 

WSN. The core component of SD-WSN is the Sensor 

OpenFlow (SOF) protocol. It is used as a standard 

communication protocol between the data plane and control 

plane. The aim is to make the underlying network more 

programmable by deploying user configurable flow tables. 

As shown in Figure 5, the architecture of SD-WSN offers 

the following features [18]: 

3.1.1. Data Plane (Creating Flows)  
Note that the WSNs are mostly data-centric and the actual 

data has more importance than where it came from. Therefore, 

they employ a different addressing scheme which also 

includes attributes. For example, “nodes with temperature > 

30”. This will need to be catered during the creation of flow 

tables. Here, WSN addressing schemes can be classified into 

Class-1 and Class-2. Class-1 comprises of unique 16 bit 

addresses, whereas Class-2 consists of Concatenated Attribute 

Value (CAV) pairs. There are two methods for flow creation, 

including: 

a) Redefining flow tables: SD-WSN handles Class-1 

addressing scheme as shown by an example in Table 1. It 

exploits an OpenFlow eXtensible Match (OXM) like 

format which is used to define flow Matches. Two new 

oxm_type fields are introduced by SOF which are 

OXM_SOF_SRC (source) and OXM_SOF_DST 

(destination) while the rest of the fields are same as that 

in OpenFlow. Class-2 addressing scheme is handled by 

introducing a CAV format which is a quadruple as shown 

by an example in Table 2 and Table 3. By adding a new 

oxm_type field of OXM_SOF_CAV any Class-2 flows 

can be formed. 

Table 1. Class-1 Flow [18]. 
oxm_type= 

OXM_SOF_SRC 

oxm_hasmask 

=1 
oxm_length=4 

oxm_value= 

0x796F 

oxm_mask= 

0xFF00 

oxm_type= 

OXM_SOF_DST 
oxm_mask=0 oxm_length=2 oxm_value=0 

Table 2. Class-2 Flow (30<temperature<60) [18]. 

oxm_type= 

OXM_SOF_CAV 

cav_offset 

=48 

cav_cast= 

int32 

cav_op= 

“>” 
cav_value=30 

oxm_type= 

OXM_SOF_CAV 
cav_offset=48 

cav_cast= 

int32 

cav_op= 

“<” 
cav_value=60 

Table 3. Class-2 Flow (Zone-ID=7 and x-coordinate>150) [18]. 
oxm_type= 

OXM_SOF_CAV 

cav_offset 

=40 

cav_cast= 

int16 
cav_op= “=” cav_value=7 

oxm_type= 

OXM_SOF_CAV 
cav_offset=42 

cav_cast= 

int16 

cav_op= 

“>” 

cav_value= 

150 

 
b) Augmenting with IP: The second method is to augment 

WSN with IP. Two off-the-shelf IP stacks are 

recommended, including uIP/uIPv6 and Blip. 

3.1.2. Control Plane (SOF Channel)  
It offers reliable TCP/IP connectivity which also ensures 

orderly message delivery. The two parties are identified using 

IP addresses. These addresses are generally unavailable in 

Wireless Sensor Networks (WSN). This issue is addressed by 

SD-WSN. Out of the two methods described in the previous 

section if the network operator selects the first method of 

non-IP addressing, then Sensor OpenFlow (SOF) channel can 

be directly implemented on the WSN. If however the network 

operator decides to augment WSN with IP then SOF channels 

will be self-sufficient as those IP stacks come with 

ready-made TCP implementations. The SOF channel needs to 

be hosted within the same WSN. This can be problematic for 

the energy-constrained WSN since it has to carry the 

additional control traffic between the controller and the sensor 

nodes. Furthermore, the control traffic in the WSN is large and 

without a proper mechanism, it will overload the entire 

network. 

The control traffic mainly comprises of two types of 

messages, namely Packet-in and Packet-out. A packet-in is a 

request sent by the node to the controller to seek instructions 

on how to deal with a packet that does not match any flow 

entry. A packet-out is the response from the controller giving 

instruction on how to deal with the packet. The control traffic 

in WSN is often bursty in nature and multiple requests are sent 

to the controller. In case of several different sensors sending 

several flow setup request to the controller simultaneously, the 

network will overload. Furthermore this scenario will often 

occur as each flow has an expiration timer. To tackle with this 

problem, the SD-WSN instructs the sensor nodes to send only 

one packet-in request for the first time and withdraw any 

further requests having same destination address as the first 

packet until the corresponding packet-out is received. This 

will prevent the data bottlenecks. 

Unlike other networks, the nodes in WSN act like end 

devices that generate data packets on their own instead of just 

forwarding them. Therefore, in SD-WSN a new traf-gen 

module is added on each sensor node for traffic generation. 

Depending on the implementation, it can run in blocking 

(synchronously awaiting sensory data to become available), 

call-back (asynchronously triggered by a “data-available” 

event) or round-robin (periodically checking if data is 
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available) manner. 

Furthermore, the WSN at times need to perform data 

aggregation to reduce data redundancy. However, such feature 

is absent in SDN. To tackle this issue, SD-WSN model offers 

an in-net proc module. If processing is not needed, then it 

simply forwards it to the flow table. In case of making any 

changes to the algorithm, an over the air programming (OTA) 

technology can be used to direct the changes. 

3.2. TinySDN 

TinySDN is a TinyOS-based SDN framework [21]. The 

TinySDN introduces multiple controllers in WSN and has two 

main components which are SDN sensor node and SDN 

controller node (see Figure 6). The TinySDN design focuses 

on the key issues of energy supply, communication latency 

and smaller link layer frames. Most of these issues were not 

addressed by the previously proposed architectures for SDN in 

WSN. It is also the first SDN based design for devices running 

TinyOS. Typical WSN devices have only one radio module 

that transmits or receives signals at a given time. Therefore, 

data and control planes have to share the same communication 

link and available bandwidth. This in-band control causes 

delays in the network. Furthermore the control and data flows 

must also be separated. It is shown in [21] that the IEEE 

802.15.4 standard provides a very limited bandwidth which 

results in an average of 250 Kbps increased latency per hop 

until reaching the controller. If the controller is placed directly 

on the sink, then it can reduce the latency considerably by 

exploiting the positioning of the nodes. The TinySDN 

proposes a new model in which multiple controllers are used 

in WSN and one of them is placed closer to the end nodes. 

 
Figure 6. TinySDN Design [21]. 

3.2.1. SDN-Enabled Sensor Node  
As the end devices are considered peripheral to SDN, they 

are out of the scope for OpenFlow but on the other hand sensor 

nodes in WSN behave like end devices by generating data 

packets. Keeping that in view, the TinySDN can deploys an 

SDN-enabled node which plays both roles of an SDN switch 

and an SDN end device. Each SDN-enabled node must find an 

SDN controller node to join and then receive flow 

specifications. An SDN enabled sensor node is split into three 

parts. 

a) TinyOS Application: This portion is the equivalent to the 

end device. It generates data packets and then places 

them on the network using the programming interface 

provided by the TinySDN component. The network 

designer of programmer writes it according to the WSN 

application. 

b) TinySdnP: It is the main component of TinySDN which 

checks whether the received packet matches a flow entry 

in the flow table and then performs the related action. If 

not then it sends a flow setup request named “packet-in” 

to an SDN controller. It is also responsible for 

performing a flow table update when it receives a flow 

setup response named “packet-out”. 

c) ActiveMessageC: This TinyOS component manages and 

provides a programming interface to interact with the 

radio module of the sensor node. It performs all tasks 

related to wireless communication such as data 

forwarding and topology information discovery. 

3.2.2. SDN Controller Node  
The SDN controller node(s) that are responsible for creating 

network flows with two different modules as follows: 

a) Sensor Mote Module: It runs on sensor mote and 

communicates with SDN-enabled sensor node using 

ActiveMessageC. It acts as an intermediate between the 

controller server module and the network. It forwards the 

received messages to the controller server and receives 

the messages from the network for the controller server 

module. 

b) Controller Server Module: It contains the control plane 

logic and is responsible for hosting controller 

applications and managing the network flow and 

topology information. 

3.2.3. Specification of Flows and Actions in Tiny SDN  
Two actions are specified in TinySDN including forward 

and drop. The forward action performs packet forwarding to 

the next hop while the drop action indicates that a packet 

should be dropped. In terms of flows, the TinySDN has two 

types of flows, i.e. control flows and data flows. The control 

flows are meant for control traffic between SDN-enabled 

sensor nodes and SDN controller nodes while the data flows 

are meant for application’s data traffic. Specifically, flows are 

classified as flow entries in the flow tables where each entry is 

composed of four field as shown in Tables 4 and 5. In case of 

data flow table the identification field is Flow ID whereas in 

case of control flow table the identification field is the 

Destination node ID. 

Table 4. Data Flow [21]. 

Flow ID Action Value Count 
1 Drop N/A 100 

2 Forward 5 10 

101 Forward 10 27 

Table 5. Control Flow [21]. 

Destination Node ID Action Value Count 
0 Forward 4 5 

1 Forward 4 2 

7 Forward 6 2 

At network start-up, the first task for an SDN-enabled 

Sensor Node is to find an SDN controller Node and enlist 

itself with it. For this discovery process, the TinySDN runs the 
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Collection Tree Protocol (CTP). This protocol is widely used 

in multi-hop TinyOS-based applications and has two main 

advantages of hardware Independence and multiple SDN 

controllers. The network topology information collection 

comprises of two steps: 

a) Step 1: Each TinySDN-enabled sensor node recognises 

its neighbour and measures the link quality between 

them; 

b) Step 2: The information regarding the link state is sent to 

the TinySDN controller node through a CTP path or 

control flow. 

3.3. Service-Centric Networking for Urban-Scale Feedback 
Systems (SURF) 

In WSNs, the sensing applications are considered to be 

more significant as compared to typical network applications 

such as firewall. As described in [20], the SURF is an 

architecture that acknowledges the differences between a 

typical SDN and WSNs. It recognises that nodes are not only 

switches as in the traditional OpenFlow SDN networks, but 

they also have one or more application components. It also 

addresses the issue of different stakeholders with different 

requirements sharing a single large infrastructure. 

The SURF controller has the following capabilities [20]: 

a) It sets up and manages data flows through the network 

that maintain a required level of QoS. 

b) It finds the optimal subset of nodes that can service an 

external sensing request in terms of quality of sensing 

and communication. 

c) It dynamically adjusts the allocations of data flows and 

sensing applications by migrating flows or applications 

in order to respond to external changes or reallocation 

requests. 

The SURF architecture has following layers: 

3.3.1. Network Applications  
This layer handles the business and network applications 

that control and monitor a set of resources managed by a 

single or multiple SDN controllers. In case of multiple parties 

using the same virtualised WSN infrastructure, the 

applications at this layer receive events and notifications about 

the state of virtual networks (VNs), and then can alter them 

with varying levels of QoS and bandwidth. 

3.3.2. Controller  
The main responsibility of the controller is to execute the 

requests of the applications coming through the northbound 

APIs. These applications have access to the Network 

Information Base (NIB) and they direct the controller to 

perform tasks such as resource management and 

re-optimisation, responding to and generating events as a 

result of changes in the underlying network; and computing a 

collection of packet forwarding rules. These rules are then 

installed into the WSN nodes via the southbound API. One of 

the key motivations behind their design of SURF is to enable 

network virtualisation. To support this feature, the SURF SDN 

control logic introduces four entities in the controller, 

including  

a) Resource Allocator: It is responsible for determining 

whether a VN or network function virtualisation (NFV) 

request can be accommodated by the network. If the 

service request can be supported then the resource 

allocator interacts with the virtualiser to allocate the 

physical resources that will form part of the VN. 

b) Virtualiser: This entity is responsible for creating a VN 

agent that represent the resources through a subset view 

of the NIB and actions available to the application. 

c) Orchestrator: It ensures that the service function chains 

which are responsible for running network services are 

flexibly compose network functions and are working as 

independent functions by following the service-oriented 

principles. The orchestrator is also responsible for 

resolving conflicts between different applications and to 

ensure optimal performance in terms of resource 

utilisation, overhead, sleep schedules and routing. 

d) Management: The management plane in the controller 

consists of a service manager, a tenant manager, a 

physical network model that keeps track of the physical 

infrastructure and an Operation Support Service (OSS). 

The network model maintains a database of network 

dynamics, the tenant manager has a database of tenant 

functions, and the service manager maintains a database 

of VN application and functions. 

3.3.3. Physical and Virtual WSN  
This layer consist of the physical or virtualised network 

elements which implement the decisions made in the 

controller layer issued via the southbound interface. An 

extension of Constrained Application Protocol (CoAP) can be 

a suitable choice as it is well established within the WSN field. 

The southbound plane of the controller is expected to support 

multiple protocols that are designed by keeping in 

consideration the limitations of the underlying infrastructure. 

This plane of the controller also has a topology manager which 

updates the NIB for the SDN control logic. It also considers 

the modifications necessary on sensor node protocol stack 

required to support communication with the controller via the 

southbound API. 

3.4. Software Defined Networking in WIreless Sensor 
Networks (SDN-WISE) 

Although the previously mentioned architectures have been 

shown to provide a number of advantages over the traditional 

WSNs without SDN, there exist a few shortcomings as 

follows [26]: 

a) Protocol details are not provided which are fundamental 

for the correct operation of the network. 

b) The architectures are not practically implemented and 

hence no performance evaluations of the proposed 

solutions have been carried out. 

SDN-WISE designed in [26] is the first practical 

implementation of an OpenFlow like SDN solution designed 

specifically for WSNs. Unlike other architectures, the 

SDN-WISE aims to limit the exchange of information 
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between the nodes and the controller, and also to make sensor 

nodes directly programmable. 

Furthermore, the SDN-WISE offer the ease of 

implementing the SDN controller logic. This represents a 

major advantage as compared to the previously proposed 

solutions as it increases the flexibility and simplicity in 

network programming. The SDN-WISE also offer the 

opportunity to run its controller in a simulated environment. 

Simulation software such as OMNET++ and COOJA can be 

used to test its functionality. 

The SDN-WISE endeavour to be proficient in the utilisation 

of sensor resources regardless of the fact that such 

productivity may result in a lower data rate. To be energy 

efficient, it encourages the use of duty cycle to periodically 

turn the radio module on and off, which would help in 

conserving the energy. Moreover, since the WSNs are 

inherently information driven, the SDN-WISE makes the 

system more aware of the packet content. The nodes can deal 

with packets based on the information available in their header 

and payload. More complex relational operators are also 

introduced in the flow tables. In OpenFlow, the system 

resources are separated by the FlowVisor into small portions. 

Every portion is associated with only one controller at a time. 

A further notice in WSN is that the same bit of information can 

be of significance to another application running on another 

controller. The SDN-WISE therefore also permit various 

controllers to specify different rules for the same packet 

according to their needs. 

3.4.1. SDN-WISE Sensor Nodes  
The behaviour of SDN-WISE sensor nodes is completely 

encoded in three data structures including WISE States Array, 

Accepted IDs Array and WISE Flow Table [26]. These 

structures are then filled with the instructions originating from 

the controllers running at the distant servers. The controllers 

define the systems administration arrangements which are 

then implemented by the sensor nodes. At any time, each node 

is described by one current state for every active controller. 

Specifically, the WISE state array is the data structure that 

contains those values. The broadcast nature of wireless 

medium will enable the nodes to receive all data packets of 

which some maybe not meant for them. The Accepted IDs 

Array permits each node to choose just those packets that are 

meant for it. In case the ID is enlisted in the Accepted IDs 

array, the packet will be further processed by filtering it 

through the matching rules specified in the WISE flow table. 

In case the packet does not match any rule, a request is sent to 

the controller to specify the new rules for that packet. 

In order to contact the controller, the node needs to specify 

the next best hop towards one of the sinks. For this purpose, 

the Topology Discovery (TD) layer runs a protocol which is 

based on the exchange of TD packets between the nodes. 

These packets contain information regarding battery level of 

the node and distance from the sink in terms of the number of 

hops. Every time a node receives such packet, it compares it 

with its own next best hop information and chooses the best 

amongst them. This information is also used to populate a 

WISE Neighbours List which is periodically sent to the 

Topology Management (TM) layer which that generates a 

graphical view of the network. 

3.4.2. SDN-WISE Protocol Architecture  
The protocol architecture is shown in Figure 7. 

 
Figure 7. SDN-WISE Protocol Architecture [26]. 

Sensor nodes have an IEEE 802.15.4 transceiver and a 

Micro Control Unit (MCU). The MCU entertains the 

forwarding layer and it executes the forwarding decisions 

according to the WISE flow table. It also continuously updates 

the WISE flow table according to the configuration commands 

sent by the controller. The In-Network Packet Processing 

(INPP) layer is present on top of the Forwarding (FWD) layer. 

It performs data aggregation and other processing tasks. In 

SDN-WISE, the INPP layer reduces the network overhead by 

combining small packets that are to travel on the same routes. 

Another under development feature of INPP is to perform 

network coding which will prove very efficient for several 

WSN scenarios. Topology Discovery layer can access all layer. 

It controls the behaviour of the nodes at all levels. The 

network control logic is directed by a WISE-VISOR. It 

includes a Topology Management (TM) layer which abstracts 

the networks resources so that different logical networks with 

different management policies set by different controllers can 

run over the same set of physical devices. The Adaption layer 

is responsible for formatting the messages received from the 

sink in such way that they can be handled by the 

WISE-VISOR. In case the controller runs in the same node 

which is hosting the TM layer, the interactions will occur 

through the JAVA methods offered by the TM layer or else the 

interactions can occur through the JAVA Remote Method 

Invocation (RMI) or Simple Object Access Protocol (SOAP). 

3.4.3. Topology Discovery  
The topology manager module in the WISE-Visor builds a 

consistent view of the entire network by collecting local 

topology information through TD packets generated by the 

sensor nodes. For instance, when a random sensor node A 

receives a TD packet from a node B, it will perform the 

following operations: 

a) Node A will enlist node B’s ID in its current neighbours 

along with node B’s current RSSI and battery level. 
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b) Node A will perform a check on whether the recently 

received TD packet from node B has a lower value of the 

current distance from the sink then the already enlisted 

packets. If it is true, then node A will update its value to 

current value plus one and it will set its next hop towards 

the controller equal to that of node B. 

c) Node A will set its battery level in the corresponding 

field of the TD packet. 

d) Node A will transmit the updated TD packet over the 

broadcast wireless channel. 

e) Each sensor node generates a packet containing its 

current list of neighbours and sends it periodically to the 

WISE-Visor. The list of neighbours is also periodically 

cleared. If a node receives a packet directed towards the 

WISE-Visor then it redirects it to the node set as their 

next hop towards the controller. 

The fields in SDN-WISE packet header and SDN-WISE 

Flow table are shown in Figures 8 and 9, respectively. 

 
Figure 8. SDN-WISE Packet Header [26]. 

 
Figure 9. SDN-WISE Flow Table [26]. 

As shown in Figure 9, the SDN-WISE Flow table has three 

sections including Matching Rules, Actions and Statistics. 

The Matching Rules specify three conditions to be fulfilled. 

Actions are executed in case the matching takes place and then 

the corresponding statistics section is updated accordingly. 

The S field in each matching rules specifies whether the 

current packet (i.e. s=0) or the current state (i.e. s=1) is under 

consideration. Offset and Size specify the first byte and the 

size of the string of bytes in the packet. The Operator field 

gives the relational operator to be checked against the Value 

given in the rule. Actions field specify the corresponding 

actions to be taken in case a packet satisfies the matching rules. 

Here, an Action is specified by five fields. The type specifies 

the type of action for which the possible values can be 

“forward to”, “drop”, “modify”, “turn on/off radio”, “send to 

INPP”. M states whether the entry is exclusive (i.e. M=0) or 

not (i.e. M=1). In case of M=0, if the conditions are satisfied 

then the sensor node executes the action and then stops 

browsing the WISE flow table. In case of M=1, after 

executing the action the sensor node will continue to browse 

the WISE flow table and execute other actions if the 

corresponding conditions specified in the Matching Rules 

section are satisfied. The offset and value field depend on the 

type of action. If for example the action is to Forward the 

packet then they must specify the next hop ID. If it the action 

is to Drop then they will give the drop probability as well as 

the next hop OD in case the packet is not dropped. If the action 

is to Modify then they specify the offset and the new value to 

be written. If it is to send to INPP then they must specify the 

type of processing that must be executed and in case of Turn 

off radio they must state the time after which the radio should 

turn on again. In case the action is to Modify then the flag S 

shows whether the action is to be taken on the packet or the 

state. Statistics in SDN-WISE are used in a similar way as in 

OpenFlow. In case of a match the relevant actions will be 

executed and the TTL field in will reduce by one on each hop 

and the counter will increment by one. 

3.4.4. Exemplary Topology of SDN-WISE 
Figure 10 illustrates the functionality of SDN-WISE by 

considering a scenario in a network where the data measured 

by node A is significant only if the data measured by node B is 

higher than a given threshold. An energy efficient policy is 

needed to guide node C to drop packets if the packets received 

by node B contains a measured data lower than the threshold. 

In the traditional OpenFlow, such strategy cannot be 

implemented because of the following limitations: 

a) Complex relational operators are not supported.  

b) Packet handling cannot be done based on the result of 

comparison between other packets. 

 
Figure 10. Exemplary Topology [26]. 
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This policy can be easily implement in SDN-WISE through 

a finite state machine as shown in Figure 11 which is 

implemented through the five WISE flow table entries (see 

Figure 9). 

 
Figure 11. Finite State Machine [26]. 

The first two lines specify the transitions between states 0 

and 1. In the first entry of the WISE flow table the first 

Matching Rule selects packets coming from node B. The 

second matching rule selects those that have in the 10th and 

11th bytes a value higher than the threshold. Finally the third 

matching rule selects the cases in which the current state of the 

node is 0. If all these rules are satisfied then the state is set to 1 

in the Actions Section.  

The second entry selects the cases in which the incoming 

packet has been generated by B. It contains data whose value 

is lower than or equal to xthr and the current state is 1. In this 

case set the state to 0. 

The third entry specifies that the packets coming from B 

must be forwarded to D in any scenario. The fourth and fifth 

entry state that the packets coming from A be dropped if the 

current state is 0 or forwarded to D if the current state is 1. 

4. Discussion and Future Works 
After exploring different features offered by an SDN 

controller, it is clear beyond doubt that the SDN offers a great 

alternative to the traditional networking model and it can cater 

for some of the most common issues in the current networking 

environment such as data congestion. The SDN makes the 

management of the network easier and thus highly suitable for 

scalable data centres and mobile network services. Although 

the traditional SDN models offer a versatile controller, they 

did not take into account the limitations of a WSN. Therefore, 

they cannot be directly applied to a resource-constrained WSN. 

On the other hand, the first practical implementation of SDN 

in WSN offered by SDN-WISE does take into account the 

limitations of WSN’s nodes and offer more suitable 

alternatives for WSN. However, at the moment the 

SDN-WISE differs greatly from the other SDN controllers 

available for the Wired and Wireless Networks. The 

SDN-WISE also does not offer a proper GUI to manage flow 

tables and data traffic. Specifically, it lacks a proper modelling 

interface such as Yang UI offered by the ODL, and thus 

requires further development and enhancement. In addition, 

the ODL foundation is supported by the leading IT companies 

around the world, such as Cisco, ERICSSON, Intel, etc., 

whereas the SDN-WISE is a prospect for implementing the 

SDN in WSN. 

The first and foremost area of concern for SDN in WSN is 

the security of the controller with the development of 

technologies and the tremendous increase of number of 

devices. New ideas are needed for the development of a solid 

framework for these novel designs. An analysis on the security 

of SDN can be referred to in [27]. Considering the deployment 

of SDN for WSN, various features and modifications are 

required to be investigated, especially when taking into 

account the practical security issues. Specifically, a major 

challenge is how to develop an efficient algorithm to deal with 

security threats over a number of sensors employing various 

applications.  

The concept of deploying distributed controller has already 

been proposed but whether it will produce the desired results or 

what effects it will have on the energy consumption of the 

sensor nodes is yet to be practically investigated. The 

functionality of SDN with mobile sensors also needs to be 

verified. Furthermore, with the growing popularity of the 

Internet of Things (IoTs) where SDN is promising to be an 

enabling technology (e.g. [28] and references therein), the 

integration of the WSN with these networks would raise diverse 

open research problems. In particular, optimisation and 

automation of network functions via SDN and machine learning 

techniques for various applications and services are giving good 

grounds for expecting an intelligent WSN in the near future. 

5. Conclusion 
In this paper, we have briefly introduced the background of 

SDN as well as its feasibility in WSNs. After carefully 

examining various features offered by the SDN, the SDN has 

been shown to not only offer a more simplified network 

management with more control over the network devices, but 

also to provide richer programmatic interfaces. The ability to 

shape and control data traffic ensures guaranteed content 

delivery which can be very useful for VoIP and multimedia 

transmissions. It has also been shown that the SDN and 

large-scale deployment of the WSNs are the future of 

networking. The WSNs are key parts of the Internet of Things 

(IoTs) which will lead to billions of wireless sensor nodes 

connected to the Internet over the next decade. To cope with 

this issue, only the SDN can provide an efficient management 

mechanism for the smooth functionality of their design, and 

thus promote more research works towards this new approach. 

The centralised nature of the SDN controller also presents a 

great challenge to the security of the whole network as it 

makes the network vulnerable to a single point of failure. The 

concept of SDN itself is relatively new to the networking 

world. However, the growing demand of WSN deployments 

will certainly lead to more innovations in this field.  
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