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Abstract This study compares two different evolu-

tionary approaches (clonal and aclonal) to the design

of homogeneous two-robot teams (i.e., teams of mor-

phologically identical agents with identical controllers)

in a task that requires the agents to specialise to differ-

ent roles. The two approaches differ mainly in the way

teams are formed during evolution. In the clonal ap-

proach, a team is formed from a single genotype within

one population of genotypes. In the aclonal approach, a

team is formed from multiple genotypes within one pop-

ulation of genotypes. In both cases, the goal is the syn-

thesis of individual generalist controllers capable of in-

tegrating role execution and role allocation mechanisms

for a team of homogeneous robots. Our results diverge

from those illustrated in a similar comparative study,

which supports the superiority of the aclonal versus the
clonal approach. We question this result and its theo-

retical underpinning and we bring new empirical evi-

dence showing that the clonal outperforms the aclonal

approach in generating homogeneous teams required

to dynamically specialise for the benefit of the team.

The results of our study suggest that task-specific ele-

ments influence the evolutionary dynamics more than

the genetic relatedness of the team members. We con-

clude that the appropriateness of the clonal approach

for role allocation scenarios is mainly determined by
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the specificity of the collective task, including the eval-

uation function, rather than by the way in which the

solutions are evaluated during evolution.

Keywords Evolutionary Robotics · Homogeneous

and Heterogeneous Teams · Role-allocation

1 Introduction

Distributed multi-robot teams are robotic systems that

mimic some of the properties of natural swarm, such

as the capability to develop adaptive responses with-

out central control and with local and simple com-

munication strategies [4]. Several research studies in

robotics have been focusing on the issues related to

the use of homogeneous versus heterogeneous multi-

robot teams in tasks requiring the robots to take differ-

ent roles [13]. In a homogeneous multi-robot team the

robots share equivalent physical structure and identical

control system. Each single robot has its own controller,

which is an exact copy of those assigned to the other

team mates. Specialisation in homogeneous multi-robot

teams emerges through a dynamic or self-organising

process of task/role allocation. That is, the members of

a team autonomously allocate the roles among them-

selves. In a heterogeneous multi-robot team the team

members differ in the hardware structure, in the con-

trol system, or in both of them [5]. Specialisation in

heterogeneous multi-robot teams is determined by ei-

ther structural, functional or both types of differences

among the team members.

The idea of facing tasks requiring specialisation with

the use of homogeneous multi-robot teams has some

clear advantages over the alternative of using hetero-

geneous teams. From the point of view of robustness,
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heterogeneous teams are rather fragile since, due to spe-

cialisation, if an element of the team fails, its function

can not be easily replaced, and the entire team is likely

to fail. Similarly, the team might fail if, due to environ-

mental changes, the collective task demands a differ-

ent redistribution of agents to activities. Homogeneous

teams do not suffer from these limitations since the ca-

pability of each individual to take any role makes the

performance of the team less susceptible to single robot

failure and to changes in the operating conditions [see

22, 1]. However, from the design point of view, it can be

a difficult task to obtain complex team level responses

through the definition of individual mechanisms and

rules of interactions [24].

The general goal of this paper is to contribute to

overcome the current limitations in the design of ho-

mogeneous multi-robot teams by shedding light on the

effectiveness of different design approaches based on the

use of artificial evolution. In particular, we revisit a hy-

pothesis originally formulated by Quinn [20], and fur-

ther elaborated by the author in [21], concerning the

use of artificial evolution to the design of homogeneous

two-robot teams for tasks requiring specialisation. From

the point of view of using artificial evolution as design

method, homogeneous teams make the design process

less problematic than heterogeneous teams [23]. Owing

to the fact that the agents of a team share identical

controllers, in homogeneous teams there is no need to

divvy up among the team members the reward received

through their joint actions [18]. Moreover, the problem

search space can be kept relatively small as fewer solu-

tions need to be evaluated (i.e., one solution per group

instead of one for each task required).

The work described in [20] indicates that the evo-

lutionary design of controllers for homogeneous teams

engaged in tasks requiring specialisation can be more ef-

fectively achieved using an alternative approach, which

exploits heterogeneous teams to support the evolution

of individual generalist controllers, which can be de-

ployed also in homogeneous teams (see Section 3 for a

detailed discussion). Starting from a critical analysis of

this work, we first identify task-specific characteristics

of the experimental scenario that we believe may have

significantly contributed to the counterintuitive results

shown in [20]. We design a new comparative study that

tests our hypotheses. Based on the analysis of the ob-

tained results, we formulate conclusions that revisit and

revise the argument put forward in [20] to account for

the results of his study.

The paper is structured as follows. In section 2, we

review the relevant literature. In section 3, we briefly

illustrate Quinn’s work and the hypothesis formulated

by the author to account for his results. In section 4, we

discuss Quinn’s hypothesis, we propose an alternative

reading to Quinn’s [20] results, and we illustrate the

goal of this paper. In section 5, 6, and 7, we describe

the methods of this study. In section 8, we illustrate

the results. Discussion and conclusions are presented in

section 9.

2 Review of relevant works

In this section, we review some of the literature focused

on issues related to the use of artificial evolution for the

design of multi-robot teams for tasks that require the

individual to take different roles [see 13, for a more

detailed review of this research area]. The great ma-

jority of these studies focuses on the analysis of the

relationship between the operating conditions and the

composition of the team (i.e., homogeneous versus het-

erogeneous).

Nitschke et al [14] advocate a particular approach

called Collective Neuro-Evolution (CONE) for the evo-

lution of collective behaviour in teams of simulated

rovers. When compared to other evolutionary design

methods, CONE proved to be the most effective in fa-

cilitating the emergence of behavioural specialisation

in a cooperative scenario. Luke and Spector [12] show

the benefits of another approach for the design of team

strategies in a competitive scenario. In Bongard [3],

the author illustrates a method employing genetic pro-

gramming to evaluate whether a given task is more ef-

ficiently solved by behaviourally heterogeneous or ho-

mogeneous agents. The results of this study indicate

that heterogeneous teams should be preferred to homo-

geneous teams in inherently decomposable tasks (i.e.,

tasks that can be functionally decomposed into differ-

ent sub-tasks). In Ijspeert et al [10], homogeneous and

heterogeneous robots are compared on a task in which

the agents have to cooperate to pull a stick out of the

ground. Results show that the performances of hetero-

geneous and homogeneous teams differ according to the

operational circumstances. For example, heterogeneous

teams are more collaborative than homogeneous teams

when the robots can communicate and when there are

fewer robots than sticks.

A recent series of robotic models focused on issues

relevant to evolutionary biology have produced results

of great interest to roboticists. In particular these stud-

ies shed light on the relationship between the genetic

composition of the team and the emergence of com-

munication, altruism, and colony efficiency in a multi-

task scenario [see 26, 28, 7]. In Waibel et al [27], the

authors focus on tasks that require different levels of

cooperation among the agents, but no specialisation.

Through a systematic investigation of all the possible
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conditions arising from the interaction between the ge-

netic composition of the team (i.e., heterogeneous or

homogeneous) and the level of selection (i.e., individual

or team level), the authors show that cooperative tasks

are more efficiently solved by a homogeneous team of

robots selected on the basis of team-performance, while

non-cooperative tasks are more efficiently solved by be-

haviourally heterogeneous robots selected individually.

The results of this latter study are rather inconsistent

with the results of a previous research work illustrated

by Potter et al [19], who show that there are aspects of

certain cooperative tasks that make them more suitable

to heterogeneous than homogeneous teams. In particu-

lar, Potter et al [19] show that the higher the number

of skill sets required to solve a cooperative tasks, the

more beneficial and necessary heterogeneity becomes.

The work described in Quinn [20] is one of the few

exclusively dedicated to the comparison of different evo-

lutionary methods for the design of homogeneous teams

engaged in cooperative scenarios that require speciali-

sation. The next section briefly describes this work and

illustrates the hypothesis formulated by the author to

account for the obtained results.

3 Quinn’s work

In the work described in [20], two simulated robots

equipped with only infra-red sensors, and initially

placed close to each other in an empty arena, are re-

quired to move in an arbitrary direction by remain-

ing within sensor range. To accomplish their goal, the

robots differentiate their roles in robot leader (i.e., the

one that, being on the front-end of the moving chain,

is supposed to lead the team), and robot follower (i.e.,

the one that follows the leader). The author compares

two different evolutionary approaches for the design of

homogeneous teams engaged in this scenario requiring

behavioural specialisation. In particular, the compari-

son is between two different ways of pairing the mem-

bers of a two-robot team during evolution. In the clonal

approach, a team is formed using a single genotype

from the evolving population of genotypes. Thus, each

genotype generates “cloned” control software for both

robots. It follows that clonal teams are homogeneous

by definition, because all the members of a team have

a controller derived from the same genotype. In the

aclonal approach instead, a team is formed from mul-

tiple genotypes (one for each team member) from the

evolving population of genotypes. Each genotype gen-

erates the control software for only one robot. It fol-

lows that aclonal teams are heterogeneous because each

team member has a controller derived from a different

genotype (see Figure 1).

In [20], the author makes use of the aclonal ap-

proach to design artificial neural networks that, at the

end of the evolution are used to control homogenous

groups. That is, while during evolution, solutions are

evaluated in heterogeneous groups, after evolution, the

best solutions are tested in homogeneous groups. The

results of the study surprisingly indicate that, regard-

less of the theoretical disadvantages clearly listed and

discussed in the paper, the unconventional use of the

aclonal approach is a more effective way than the clonal

approach to generate controllers for homogeneous sys-

tems in which the team members have to autonomously

specialise for the benefit of the team. In other words,

the results of the study indicate that the most efficient

way to evolve homogeneous multi-robot teams for task

requiring specialisation is through the aclonal approach;

that is, by evolving heterogeneous multi-robot teams.

To account for these results, Quinn formulates and

brings evidence in favour of a hypothesis according to

which the aclonal approach takes advantages of specific

evolutionary dynamics that are precluded to the clonal

approach.

Analysis of the behaviour of heterogeneous

teams at various stages of aclonal runs revealed

that agents initially evolved to perform spe-

cialised roles within a team. The allocation of

roles was thus initially genetically determined.

One consequence of this is that roles could be

developed and refined prior to the evolution of

any dynamic allocation mechanism. This was ob-

viously not an option in clonal runs where teams

were constrained to be homogeneous. For clonal

individuals, the adoption of complementary roles

necessarily requires the existence of some dy-

namic role allocation mechanism. However, the

evolution of any dynamic allocation mechanism

seems unlikely before agents have the ability to

perform distinct roles. Presumably then, clonal

teams had to evolve behavioural roles simultane-

ously with the mechanisms for allocating these

roles. In contrast, aclonal populations’ capacity

for specialisation enabled them to discover and

refine behavioural roles independently of the dis-

covery and development of dynamic role alloca-

tion mechanisms [20, p 133].

In summary, the author of [20] claims that, in the

aclonal approach, behavioural roles can be developed

and refined in genetically unrelated agents, owing to

the emergence of specialisation. That is, agents from

the same evolving population possess the mechanisms

to play one role or the other but not both. Speciali-

sation precedes and paves the way to the evolution of

generalist solutions which emerge when evolution finds
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(a) (b)

Fig. 1 (a) The clonal approach. A single genotype is used to create two identical controllers, one for robot 1 and one for robot
2. The team is evaluated and the fitness is associated to that genotype. (b) The aclonal approach. A genotype is randomly
paired with another genotype. The two genotypes are used to create two different controllers. Each controller is associated to
each robot for half of the evaluation time. For example, in the scenario depicted in (b), genotype 1 is randomly paired with
genotype 27. The team is evaluated and the team fitness is associated to genotype 1. The same mechanism applies to genotypes
2 and 100.

the mechanisms to allow the agents to dynamically allo-

cate the roles. The study also shows that, in the clonal

approach, the gradual evolution from genetically spe-

cialised to generalist solutions is not possible, because

the agents are clones, and the adoption of complemen-

tary roles necessarily requires the existence of some

dynamic role allocation mechanisms. Thus, the author

concludes that the clonal approach is penalised by the

fact that behavioural roles and the mechanisms to allo-

cate them have to (laboriously) evolve simultaneously.

4 Our hypothesis

This study focuses on a two-robot scenario very similar

to the one illustrated in [20]. We are moved by the hy-

pothesis that the results shown in [20] concerning the

superiority of the aclonal versus the clonal approach are

affected by the evaluation function, which according to

us limits the potentialities of the clonal approach as a

method for the design of generalist controllers for homo-

geneous multi-robot teams engaged in tasks requiring

specialisation. We remind the reader that a generalist

solution refers to a single controller capable of underpin-

ning both role execution and role allocation processes

in a team of homogeneous robots.

In [20], the author argues that in task requiring

specialisation, generalist solutions are found less eas-

ily by clonal than aclonal approaches because clonal

approaches, by working with homogeneous teams, are

limited by the simultaneity argument, which constrains

the evolutionary dynamics capable of generating suc-

cessful teams. I remind the reader that the simultane-

ity argument refers to the idea that behavioural roles

and the mechanisms to allocate them have to evolve si-

multaneously. We argue that the simultaneity argument

discussed in [20] is induced by the type of evaluation

function that Quinn uses to design controllers for ho-

mogeneous two-robot teams. Thus, we predict that the

clonal approach, if used in combination with a differ-

ent type of evaluation function, can exploit alternative

evolutionary paths in which the mechanisms for role

allocation and for executing the roles can evolve at dif-

ferent evolutionary times in spite of the homogeneity of

the team members.

Our hypothesis is based on the following reasoning.

The evaluation function used in [20] is primarily based

on a group metrics. Hereafter, we refer to this type of

function as group oriented evaluation function. As il-

lustrated in [20], the evaluation function rewards teams

for moving the centre of mass as far as possible from

its initial position, while keeping the distance between

the robots below a certain threshold. In homogeneous

teams, the group response targeted by this evaluation

function can only be obtained by generalist solutions

that possess the mechanisms to negotiate a direction

of motion (e.g., to allocate the role of leader and fol-

lower), and the mechanisms to execute the movements

in a coordinated way. In other words, we argue that,

in the task described in [20], any fitness increase in

clonal evolution is likely to be induced only by a re-

stricted set of coordinated actions which require the

existence of both the mechanisms for the allocation

and execution of complementary roles. It follows that

the clonal approach can generate successful generalist

controllers only through a limited set of evolutionary

dynamics in which the mechanisms for the allocation
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and execution of complementary roles evolves simulta-

neously. Based on this reasoning, we hypothesise that

the group oriented evaluation function, in combination

with the homogeneity of the teams characterising the

clonal approach, determines the simultaneity argument

illustrated in [20], and consequently the problems of the

clonal approach if compared with the aclonal approach.

In order to test our hypothesis, we propose to com-

pare the clonal and the aclonal approaches in a task-

allocation scenario for two-robot teams in which the

teams are rewarded by an individual oriented evalua-

tion function. This type of function rewards the groups

with reference to how each single individual contributes

to each activity rather than to how the group collec-

tively performs the task. We believe that the individual

oriented evaluation function gives the clonal approach

the possibility to find progressively better solutions for

a single role independently of the solutions in place

for the other role. With an individual oriented eval-

uation function, the mechanisms for playing the roles

can evolve independently from the mechanisms to allo-

cate them, in spite of the homogeneity condition. Un-

fortunately, the roles in the Quinn’s study (i.e., leader

versus follower) are not necessarily based on different

behavioural competencies1. For this reason, we found

it difficult to design an individual oriented evaluation

function that was general enough to avoid dictating spe-

cific solutions to the task described in [20], and at the

same time coherent to the principles illustrated above.

Consequently, we had no choice than to change the task,

while preserving those elements indicated by Quinn as

responsible for the phenomena illustrated in his study.

We wish to emphasise that the hypothesis formulated

by Quinn refers only to the criteria (i.e., clonal and

aclonal approaches) for the evolution of homogeneous

controllers for two-robot teams engaged in a task re-

quiring the individuals to take different roles. Thus, we

believe that any task that complies with the above men-

tioned characteristics is suitable to test this hypothesis.

We have designed a two-robot task in which, as

in [20], the robots interact only through the activation

of their proximity sensors, and controllers are designed

using exactly the same clonal and aclonal evolutionary

approaches. Contrary to [20], in our task, the two roles

are based on different behavioural responses, and we use

an individual oriented instead of a group oriented evalu-

ation function (see Table 1 for a summary of similarities

and differences between our and Quinn’s task). The re-

1 In [20], the roles are a posteriori identified based on the
characteristics of the best evolved strategies. They are not
part of the definition of the task, and their evolution is not
imposed by the design of the evaluation function.

Fig. 2 Experimental scenario with the two robots placed
within the nest (floor in shades of grey), and the foraging
sites referred to as L-site, and R-site.

sults of this study show that: i) the clonal approach,

in combination with an individual oriented evaluation

function, can generate evolutionary trajectories where

the mechanism for role-allocation and role-execution

evolve at different evolutionary times; ii) without the

limitations imposed by the group oriented evaluation

function, the clonal approach outperforms the aclonal

approach; iii) the aclonal approach exploits evolution-

ary paths that proceed from specialist to generalist so-

lutions as illustrated in [20]. However, in our scenario,

this transition is not as frequent as detailed in [20]. In

view of the results of this work, we revise the hypothe-

sis formulated in [20], we comment on the implications

of the results of our study, and we indicate directions

for future work.

5 The Task and the Simulation Environment

Teams comprising two simulated Khepera mini-robots

are evaluated in the context of a dynamic role-allocation

task. By taking inspiration from the behaviour of so-

cial insects, the roles are nest patrolling and forag-

ing (hereafter, we refer to them as role-patrolling, and

role-foraging, respectively). Roughly speaking, role-

patrolling requires a robot to remain within the nest

(i.e., an area in which the colour of the floor is in shades

of grey). Role-foraging requires a robot to move back

Table 1 Summary of similarities and differences between our
and Quinn [20]’s task.

Similarities Differences

The number of robot The task

The robot model
The evaluation

function

The number of roles The neuro-controller

Means of interac-

tion/communication

between the robots

The robot sensory

apparatus

The robots’ initial

relative orientations

The clonal and

aclonal approaches
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Fig. 3 Kheperas’ body-plan. The black circles refer to the
position of infra-red (IR), ambient-light (AL), and floor sen-
sors (FS). The dotted lines indicated view with the three
camera’s sectors.

and forth between the nest and any of the two foraging

sites located in the environment. The robots are re-

quired to execute both roles simultaneously. Therefore,

they should go through a role-allocation phase in which

they autonomously decide who is doing what, and then

execute their role.2

The environment is a boundless arena with a light

bulb positioned 6 cm above the floor, and two red cylin-

drical objects (2.7 cm radius, and 10 cm height) posi-

tioned at 40 cm on the left and on the right of the light,

respectively, and referred to as L-site, and R-site. The

colour of the arena floor is white except for a circular

area (15 cm radius), centred around the lamp, within

which the floor is in shades of grey. The inner part of

the circular area (up to 5 cm from the light) is black,

the middle part (from 5 cm to 10 cm from the light)

is dark grey, and the outer part (from 10 cm to 15 cm

from the light) is light grey. The area in shades of grey
represents the nest and the cylindrical objects represent

the foraging sites (Figure 2).

Our simulation models a Khepera robot, a 2.7 cm

radius cylindrical robot. It is provided with eight infra-

red sensors (IRi with i = 0, .., 7), which give the robot

a noisy and non-linear indication of the proximity of an

obstacle (in this task, an obstacle can be another robot

or a foraging site); four ambient light sensors (ALi with

i = 0, .., 3) to detect light; a simple camera; and a floor

sensor (FS) positioned facing downward on the under-

side of the robot (Figure 3). The IR and AL sensor val-

ues are extrapolated from look-up tables provided with

the Evorobot simulator [15]. The IR sensors’ range is

approximately 4 cm. AL sensors have an angle of ac-

ceptance of 120◦. Light levels change as a function of

the robot’s distance from the lamp. The floor sensor

can be conceived of as a IR sensor capable of detecting

2 See also http://users.aber.ac.uk/elt7/suppPagn/

TA2013/suppMat.html for further methodological details,
pictures, and videos.

Fig. 4 (a) The neural network. Continuous line arrows indi-
cate the efferent connections of the first neuron of each layer.
Neurons on the same layer share the same type of efferent
connections. Underneath the input layer, the correspondences
between sensors, the notation used in equation 2 to refer to
them, and the input neurons are shown.

the level of grey of the floor. It returns 0 if the robot

is on white floor, 0.5 on light grey floor, 0.75 on dark

grey floor, and 1 on black floor. The robots camera has

a receptive field of 30◦, divided in three equal sectors,

each of which has three sensors (CBi for blue, CGi for

green, and CRi for red, with i = 1, 2, 3, indicating the

sector). Each sensor returns a value in between [0, 1].

The camera can detect coloured objects up to a distance

of 60 cm. The robots can not see each other through the

camera. The robots kinematics are simulated using the

Differential Drive Kinematics equations, as illustrated

in [6]. The robot has left and right motors which can be

independently driven forward or in reverse, allowing it

to turn fully in any direction. The robot is assumed to

have negligible mass, so that the motor output can be

taken as the tangential velocity of the robot to the mo-

tor mount point. The robot maximum speed is 8 cm/s.

High levels of noise are applied to motor outputs, to

guarantee that the simulated controller will transfer to

a physically realised robot with no loss of performance.

6 Robot controllers and the Evolutionary

Algorithm

The robot controller is a continuous time recurrent neu-

ral network (CTRNN) with 10 input neurons, 6 hidden

neurons, and 4 output neurons [2]. Each hidden neuron

is connected to all the other hidden neurons including

itself. Additionally, each hidden neuron receives one in-

coming synapse from each input neuron. Each output

neuron receives one incoming synapse from each hid-

den neuron. There are no direct connections between

input and output neurons (Figure 4). The states of the
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output neurons are used to control the speed of the

left and right wheels. The states of input, hidden and

output neurons are updated using equations (1), (2),

and (3).

yi = gIi; for i ∈ {1, .., 10}; (1)

τiẏi = −yi +

16∑
j=1

ωjiσ(yj + βj); for i = {11, .., 16}; (2)

yi =

16∑
j=11

ωjiσ(yj + βj); for i = {17, .., 20}; (3)

where, σ(x) = (1 + e−x)−1. In these equations, us-

ing terms derived from an analogy with real neurons,

yi represents the cell potential, τi the decay constant,

g is a gain factor, Ii with i = {1, .., 10} is the ac-

tivation of the ith input neuron, ωji the strength of

the synaptic connection from neuron j to neuron i,

βj the bias term, σ(yj + βj) the firing rate (hereafter,

fi). All input neurons share the same bias (βI), and

the same holds for all output neurons (βO). τi and βi
with i = {11, .., 16}, βI , βO, all the network connec-

tion weights ωij , and g are genetically specified net-

work parameters. At each time step, the output of the

left motor is ML = f17 − f18, and the right motor is

MR = f19 − f20, with ML,MR ∈ [−1, 1]. Cell poten-

tials are set to 0 when the network is initialised or re-

set. Equation 2 is integrated using the forward Euler

method with an integration time step ∆T = 0.1.

A generational genetic algorithm is employed to set

the network parameters [8]. At generation 0, a random

population of 100 vectors is generated by initialising

each component of each vector to a value chosen uni-

formly random in the range [0, 1]. Each vector com-

prises 135 real values (120 connections ωji, 6 decay con-

stants τi, 8 bias terms β, and a gain factor g shared by

all the input neurons). Hereafter, a vector is referred to

as genotype and its components as genes.

Generations following the first one are produced by

a combination of selection with elitism and mutation.

At each new generation, the three highest scoring geno-

types (“the elite”) from the previous generation are re-

tained unchanged. The remainder of the new popula-

tion is generated by fitness-proportional selection from

the 70 best genotypes of the old population. New geno-

types, except “the elite”, are produced by applying mu-

tation. Mutation is a random Gaussian offset applied to

each gene, with a probability of 0.07. The mean of the

Gaussian is 0, and its standard deviation is 0.1. During

evolution, all genes are constrained to remain within the

range [0, 1]. That is, if mutations cause a gene value to

fall below zero, its value is fixed to 0; if it rises above

1, its value is fixed to 1.

Fig. 5 The robots initial relative orientations and position
with respect to the light. α and β are the parameters defining
the set of 15 different initial team positions.

Genes are linearly mapped to produce network pa-

rameters with the following ranges: βI ∈ [−4, 4], βO ∈
[−5, 5], βi ∈ [−5, 5], with i ∈ {11, .., 16}, ωji ∈ [−8, 8],

with j ∈ {1, .., 10}, and i ∈ {11, .., 16}, ωji ∈ [−10, 10],

with j ∈ {11, .., 16}, and i ∈ {11, .., 20}, gain factor

g ∈ [1, 13]. Decay constants τi with i ∈ {11, .., 16}, are

firstly linearly mapped into the range [−1.0, 1.7] and

then exponentially mapped into τi ∈ [10−1.0, 101.7]. The

lower bound of τi corresponds to the integration step-

size used to update the controller; the upper bound,

arbitrarily chosen, corresponds to about 8% of the max-

imum length of a trial. A trial is an evaluation sequence

of up to 400 simulation cycles. All mapping ranges were

chosen on the basis of having proved useful in other

CTRNN experiments [25].

7 Evaluation Regime and Fitness Function

At the beginning of each trial, the robots are placed in

the nest, located symmetrically on the left and on the

right of the light, at 1.8 cm away from each other (Fig-

ure 5). Their controllers are reset. The initial relative

orientation of the two robots is sufficiently described by

a vector of two variables (α, β, see Figure 5). A sample

set of starting configuration is chosen such that α, β

∈ (0, 2π5 ,
4π
5 ,

6π
5 ,

8π
5 ), leading to 25 combinations. From

these combinations, 10 have been removed because they

are rotational duplicates. This leaves the set of 15 rela-

tive starting orientations that have been used. For each

orientation pair, uniform noise randomly chosen in the

range ±5 cm is added to the robots’ initial distance,

and uniform noise randomly chosen in the range ±5◦ is

added to α and β. The 15 orientation pairs include 5

symmetrical conditions in which α = β. In symmetrical

orientation pairs, in spite of the noise, the robots share

the same perception at the beginning of the trial. Asym-

metrical orientation pairs are those in which α 6= β.
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Each trial differs from the others in the initialisation

of the random number generator, which influences the

robots’ initial distance and orientation, and the noise

added to motors and sensors. See [11] for further details

on sensors and motor noise. Within a trial, the team

life-span is 40s (T=400 simulation cycles). Trials are

terminated earlier if either one of the robots exceeds

the arena limits (i.e., a circle of 120 cm radius, centred

on the light), or the team exceeds the maximum number

of collisions (i.e., 10), or a robot completes two foraging

trips (i.e., two trips between any of the food sites and

the nest).

The parameters of the evolutionary algorithms (i.e.,

clonal and aclonal approach) are identical to those illus-

trated in [20]. In clonal runs, the fitness of a genotype

is its average team evaluation score after it has been as-

sessed twice for each of the 15 starting configurations,

for a total of E = 30 trials. The fitness of a genotype

in an aclonal run is the average evaluation score of the

team in which it participates. In aclonal runs, a geno-

type is evaluated four times for each starting configu-

ration, twice from each of the robots positions (i.e., po-

sition L and position R, see Figure 5) comprising each

configuration, for a total of E = 60 trials. Each one of

an aclonal individual 60 trials is undertaken with a dif-

ferent, randomly chosen, partner. Note that, hereafter,

we refer to the agent initialised in position L and R as

robot r = 0 and r = 1, respectively.

Contrary to the approach of Quinn [20], we de-

signed an evaluation function which rewards groups

based on how the single individuals contribute to each

sub-role. We first compute for each robot the perfor-

mance in both roles—role-foraging and role-patrolling—

independently from each other. Then, we compute a

team performance considering the two possible role al-

locations, that is, robot 0 as patroller and robot 1 as

forager and the other way round. We then consider

the maximum team score between the two role alloca-

tions. Additionally, two group penalties are considered

accounting for collisions and for exceeding the arena

limits.

More precisely, the average team evaluation score is

given by the following function:

F =
1

E

E∑
e=1

arg max
r∈[0;1]

(CP re × CF 1−r
e )× Zae × Zbe ;

where, for each trial e, CP re ∈ [0, 1] rewards robot r =

{0, 1} for staying in the nest; CF re ∈ [0, 4] rewards robot

r for travelling twice the distance from the nest to any

of the two food sites; the team collision penalty Zae is

inversely proportional to the number of collisions, with

Zae = 1 if no collisions are recorded, and Zae = 0 if

10 collisions are recorded; Zbe is the team penalty for

exceeding the arena’s limits, with Zbe = 1 if none of

the robots exceeds the limits, Zbe = 0.3 otherwise. The

maximum value of the average team evaluation score F

is 4.

For each robot r and for each trial e, the fitness

components for playing role-patrolling and role-foraging

are computed using the following:

CP re = 1.0−
√
Sr
T

; (4)

CF re = AT FOOD +AT NEST ; (5)

AT FOOD = min[V food + (1− D̄food); 2] (6)

AT NEST = min[V nest + (1− D̄nest); 2]; (7)

where, Sr is the number of time steps a robot spends

outside the nest. min[V food+(1−D̄food); 2] rewards for-

aging behaviour. V food is the number of visit to food

sites, D̄food the normalised distance to the nearest food

site. A food site is considered visited by a robot when

Dfood < 4.6 cm. D̄food is set to zero if the robot is

inside the nest or is looking for the nest after a visit to

a food site. min[V nest + (1− D̄nest); 2] rewards homing

behaviour. V nest is the number of visits to the nest fol-

lowing a visit to a food source; D̄nest is the normalised

distance to the nest. D̄nest is set to zero if the robot is

inside the nest or is currently foraging.

8 Results

Each experiment (i.e., clonal and aclonal) consisted of

20 evolutionary runs, each using a different random ini-

tialisation. Each run lasted 3000 generations. Recall

that our objective is to compare the performances of

the clonal and aclonal approach for the evolution of

homogeneous two-robot teams capable of dynamically

allocating and simultaneously executing role-patrolling

and role-foraging. Following the procedure illustrated

in [20], at the end of the evolutionary phase, we run a

first set of re-evaluations consisting of 60 trials per team

(i.e., 4 times for each of the 15 starting orientation men-

tioned in section 2.3). As in [20], the 7 fittest genotypes

of each generation of both clonal and aclonal runs are

re-evaluated in a homogeneous setup. The average re-

evaluation score of each genotype is measured using the

metrics F illustrated in section 2.3. The highest aver-

age re-evaluation score recorded during a given run is

assumed to be an adequate measure of the success of

that run.

The results of our re-evaluations are summarised in

Table 2, which shows a comparisons of mean, median

scores, and the mean ranking of both approaches. Each

measure shows the clonal out-performing the aclonal,

and the difference between the two set of results is sta-

tistically significant (Mann-Whitney U test, p < 0.01).
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Fig. 6 The histogram shows the distributions of the high-
est average re-evaluation scores achieved by each run of the
clonal (black bars) and aclonal approach (grey bars). Values
represent normalised average evaluation scores F .

In particular, eight runs of the clonal approach pro-

duced high-scoring teams exceeding 95% of the opti-

mal score, with six of them 100% successful (see Fig-

ure 6, black bars). In contrast, only four out of twenty

of the aclonal runs generated a homogeneous team that

exceeds 95% of the optimal score, with two of them

capable of completing the 60 re-evaluation trials with

the highest score. From a statistical point of view,

there is enough evidence to prefer one approach over

the other for the evolution of homogeneous multi-robot

teams engaged in this dynamic role allocation scenario.

Moreover, from the point of view of generating opti-

mal controllers, the clonal approach does better than

the aclonal one. That is, 6 teams generated with the

clonal approach yielded a 100% success rate (see Fig-
ure 6, black bars). Only 2 aclonally generated teams

yielded the same result (see Figure 6, grey bars).

Our results clearly show that the clonal approach

outperforms the aclonal approach in generating homo-

geneous teams. This evidence not only diverges from

what was shown in [20], but also questions the hypoth-

Table 2 Table showing, for clonal and aclonal approaches,
mean ranking, median, mean and standard deviation of the
trials’ scores obtained at the re-evaluation test. Recall that
the maximum score in a trial is 4.

mean

ranking median
mean

(s.d.)

clonal 25.8 3.51
3.35

(0.79)

aclonal 15.2 2.26
1.99

(1.52)

esis formulated by Quinn to account for the superiority

of the aclonal over the clonal approach in dynamic task-

allocation scenarios. Recall that our original hypothe-

sis, motivating this study, was that the results shown

by [20] where determined by task-specific elements. The

analysis we illustrate in the next sections indicates to

what extent the type of evaluation function affects the

evolutionary dynamics in both approaches. In view of

the results of our tests, we revise the argument formu-

lated by [20].

8.1 The simultaneity argument

In this section, we investigate the relationships between

the characteristics of the evolutionary scenario and the

evolutionary dynamics observed in successful groups

generated clonally. Recall that, according to what il-

lustrated in [20], the clonal approach is penalised by

the fact that the mechanisms to play the roles and the

mechanisms to allocate them have to evolve simulta-

neously. Since in our scenario, clonal runs outperform

aclonal runs, we first question the simultaneity argu-

ment to account for the difference between our results

and those shown in [20]. The tests illustrated in the

next paragraphs aim to verify to what extent the simul-

taneity argument concerns successful groups generated

clonally.

We analyse the evolutionary trajectory of the best

six evolved groups generated clonally from different evo-

lutionary runs and we re-evaluated all their ancestors

four times for each of the 15 orientation pairs. This

phylogenetic analysis is made possible by the fact that

we did not use recombination during evolution, mean-

ing that every genotype has only one parent. Figure 7

shows the results of this analysis only for two best clon-

ally generated groups, indicated as run 1 and run 2.

This is because the other four successful runs produced

evolutionary dynamics very similar to either the one

produced by run 1 or by run 2. Moreover, in Figure 7,

the performances in symmetrical (i.e., α = β) and

asymmetrical (i.e., α 6= β) trials are plotted separately.

This is due to the fact that, from previous tests, we no-

ticed that all successful groups, generated both clonally

and aclonally, employ different behavioural strategies

for symmetrical and asymmetrical trials. In asymmet-

rical conditions, the robots use the differences in the ini-

tial perceptual states to break the system homogeneity

(i.e., the controllers are in the same initial state) and to

allocate roles. In symmetrical conditions, random fluc-

tuations are integrated over time and lead to breaking

the initial perceptual symmetries and the homogene-

ity condition, and thereby resulting in the allocation

of roles (data shown in the supplementary materials,
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(a) (b)

Fig. 7 Graph (a) refers to a successul homogeneous group generated by clonal run n. 1; graph (b) to a different successful
homogeneous group generated by clonal run n. 2. Both graphs show various aspects of the evolutionary history of these
two different groups. In both (a) and (b), the top graph shows, for each generation, the ancestors’ fitness measured on
symmetrical trials (black line) and on asymmetrical trials (grey line). The middle and the bottom graph show, for each
ancestor, the normalised average values of two fitness components in asymmetrical and symmetrical trials, respectively. The
first component rewarding role-patrolling (C̄P ), is indicated with the black line, and computed using C̄P = 1

E

∑E
e=1 CP

r
e .

The second component rewarding role-foraging (C̄F ), is indicated with the grey line, and computed with C̄F = 1
E

∑E
e=1 CF

r
e .

The role that an ancestor plays in a trial is determined by how it contributes to the team fitness in that trial. For example,
robot 0 plays role-patrolling and robot 1 plays role-foraging if, in a trial e, CP r

e × CF 1−r
e is bigger than CF r

e × CP 1−r
e , or

vice versa. E = 30 in the symmetrical condition, and E = 60 in the asymmetrical condition.

see footnote 2). In view of the the above mentioned be-

havioural differences, and of the causal relationship that

links the conditions during evaluation and the evolu-

tionary dynamics observed, we decided to consider the

symmetrical and asymmetrical trials as two distinctive

cases in the evolutionary analysis of successful groups

generated clonally.

The graphs at the top in Figure 7 shows, for run

1 and 2, their evolutionary history through the nor-

malised average fitness in symmetrical (black line) and

asymmetrical trials (grey line). The middle and the bot-

tom graphs in Figure 7 show for asymmetrical and sym-

metrical trials, respectively, the evolutionary trend of

the two main fitness components that contributed to

generate the evolutionary trajectories shown in the top

graphs of Figure 7. For middle and bottom graphs, the

black lines refers to the fitness component that rewards

agents for playing role-patrolling. The grey lines refers

to the fitness component that rewards agents for play-

ing role-foraging (see the caption of Figure 7 for a de-

tailed description of these graphs).

If we look at the top graphs, we notice that while

run 2 reaches the maximum fitness in less then 200 gen-

erations, run 1 takes about 2500 generations to reach

a similar performance. In spite of this marked differ-

ence, both runs are characterised by similar evolution-

ary trends for what concerns asymmetrical trials, where

the neural machinery required to solve the task appears,

for both runs, relatively early during evolution (see Fig-

ure 7, middle graphs). For asymmetrical trials, in both

runs, the mechanisms required to play role-patrolling

appear before the mechanisms required to play role-

foraging (see Figure 7, middle graphs, black and grey

lines). In other words, the oldest ancestors in both runs,

are robots that, in asymmetrical trials, tend to remain

in the proximity of their initial position. This means

that the group fitness, in the very early stages of the

evolution, is largely determined by the component that

rewards nest patrolling behaviour (see Figure 7, mid-

dle graphs, black line). The mechanisms required to
play role-foraging are progressively acquired in subse-

quent evolutionary times (see Figure 7, middle graphs,

grey line).

For what concerns symmetrical trials, in run 1 suc-

cessful groups emerge after a quite long evolutionary

process, while in run 2 evolution finds quite quickly

the way to successful strategies (see Figure 7, bottom

graphs). In spite of this difference, we notice that in

both runs the mechanisms required to play each role

appear at different evolutionary times. Particularly in-

teresting is the trend observed in run 1, where, contrary

to what happens in run 2, solutions in symmetrical and

asymmetrical trials evolve in a completely different way.

In asymmetrical trials, the robots are able to get very

quickly to the maximum score in role-patrolling (see

Figure 7a, middle graph, black line). In symmetrical

trials, role-patrolling appears to be a slightly more com-

plex response that takes longer time to be optimally

developed (see Figure 7a, bottom graphs, black line).

The mechanisms to play role-foraging also take longer
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to develop in symmetrical then in asymmetrical trials

(see Figure 7a, middle and bottom graphs, grey line).

Other two successful clonal runs produced evolutionary

dynamics similar to those observed in run 1, where solu-

tions for symmetrical trials take longer to appear then

for asymmetrical trials. Seemingly, the combination of

the initial perceptual symmetry and the homogeneity

condition can make the task particularly challenging

for the evolutionary process.

In summary, we have shown that, for what con-

cerns the six successful groups generated clonally, the

mechanisms required to play role-patrolling and role-

foraging evolve at different evolutionary times, both

for symmetrical and asymmetrical conditions. Although

we do not have any direct evidence of the evolution-

ary history of the mechanisms to allocate the roles, we

can indirectly infer that these mechanisms progressively

emerged thanks to the capabilities of the ancestors to

improve their performances in one role without losing

fitness on the other. We claim that such dynamics are

enormously facilitated by the nature of our fitness func-

tion which, by rewarding the group based on the best

combination of individual-per-task generates alterna-

tive evolutionary paths to those described in [20]. In

other words, the results of these tests show that under

particular evolutionary conditions, the clonal approach

can generate successful homogeneous groups engaged

in task allocation scenario by going through alternative

path to the simultaneous emergence of the mechanisms

to play the role and those to allocate them. The use

of an individual oriented rather than a group oriented

fitness function creates the conditions for the gradual

and diachronic evolution of mechanisms for playing the

roles. The independent and progressive improvement of

the groups in both roles is automatically linked to the

emergence of the mechanisms for allocating them.

8.2 The specialisation argument

In this section, we focus on the role of specialisation

in aclonal runs. According to what was claimed in [20],

in the aclonal approach the evolution of homogeneous

solutions is preceded by an intermediate evolutionary

step in which populations are composed of specialised

agents. These are agents capable of playing one role or

the other, but not both. Whenever two complementary

specialised agents meet in a group, they successfully

complete the collective task. The author in [20] claims

that specialisation paves the way to the following evo-

lution of generalist or homogeneous solutions, and this

is what makes the aclonal approach more effective than

the clonal approach in a dynamic role-allocation sce-

nario. Since in our scenario aclonal runs did not per-

form as well as the clonal runs, we question the sig-

nificance of specialisation. In particular, we investigate

to what extent aclonally generated successful homoge-

neous solutions exploit the evolutionary path described

by Quinn [20].

To carry out this analysis, we re-evaluate for 90 tri-

als (i.e., six times in each of the 15 orientation pairs)

all the ancestors of five homogeneous solutions, gener-

ated from five different aclonal runs, whose scores were

higher than 85% of the optimum. The ancestors are re-

evaluated in three different conditions: 1) Test Homo,

homogeneous groups; 2) Test Hete-A, heterogeneous

groups, with a partner specialised in role-patrolling; 3)

Test Hete-B, heterogeneous groups, with a partner spe-

cialised in role-foraging. Each specialised partner is a

robot whose controller is generated by a genotype cho-

sen from all the genotypes produced by the 20 aclonal

evolutionary runs. Specialised partners have been se-

lected because, when repeatedly evaluated both in ho-

mogeneous and heterogeneous conditions, they showed

a strong preference for one or the other role. That is, the

robot controlled by the neural network generated by a

specialised genotype systematically plays one of the two

roles. These tests should help us to clarify whether, and

during which evolutionary time, the ancestors of suc-

cessful aclonally generated homogeneous groups were

specialists. The rationale is that, if ancestors are gen-

eralists, they will play, both in Test Hete-A and in Test

Hete-B, the complementary role to the one played by

the specialised partner. If ancestors are specialist, then

in either Test Hete-A or Test Hete-B, they will play the

same role of the specialised partner.

Figure 8 shows the results of these tests for a par-

ticular successful aclonally generated group, and only

for a particularly interesting evolutionary time window

when we observed the appearance of the mechanisms

for the dynamic allocation of roles. Figure 8a refers to

the results of Test Homo, in which the ancestors are

evaluated in homogeneous groups. The graph shows the

fitness of the aclonal ancestors, re-evaluated in a homo-

geneous setup. We clearly notice that around generation

200, there is a marked increment in the group fitness.

That is, around generation 200, ancestors of a success-

ful aclonally generated solution become capable of suc-

cessfully accomplishing the task in homogeneous con-

ditions. The fitness increment can only be determined

by the evolution of the mechanisms for the dynamic al-

location of the roles. The graphs in Figure 8b and 8c

tell us more about the behavioural capabilities of the

ancestors preceding generation 200.

Figure 8b refers to the results of Test Hete-A,

in which the ancestors of successful aclonally gener-

ated homogeneous solutions are evaluated in hetero-
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(a)

(b) (c)

Fig. 8 Graphs showing the results of three different tests on the ancestors of a successful homogeneous group generated
aclonally. The graph in (a) shows the fitness of the aclonal ancestors, re-evaluated in a homogeneous setup. In (b) and (c), the
graphs show the normalised average values of the fitness components C̄P rewarding role-patrolling (see black lines), and C̄F
rewarding role-foraging (see grey lines), for the aclonal ancestors (bottom graph), and for the specialised partner (top graph).
In (b), the partner is specialised in role-patrolling. In (c), the partner is specialised in role-foraging.

geneous conditions, with a partner that systematically

plays role-patrolling. As expected the specialised robot

is optimal in playing role-patrolling (see Figure 8b, top

graph, black lines). The ancestors, except from the ini-

tial 100 generations, proved to be capable of adjusting

to the preference of the partner by playing role-foraging.

This can be inferred by the fact that the average values

of the fitness component C̄F , rewarding role-foraging,

are higher than the average values of the fitness com-

ponent C̄P , rewarding role-patrolling (see Figure 8b,

bottom graph, grey line for C̄F , and black line C̄P ).

We conclude that, for a period of about 100 genera-

tions preceding the evolution of the mechanism for the

dynamic allocation of roles, the ancestors are capable

of successfully playing role-foraging when re-evaluated

with a partner specialised in role-patrolling.

Figure 8c refers to the results of Test Hete-B, in

which the ancestors of successful aclonally generated

homogeneous solutions are evaluated in heterogeneous

conditions, with a partner that systematically play role-

foraging. As expected the specialised partner is rather

effective in playing role-foraging (see Figure 8c, top

graph, grey line). The ancestors are not as good as the

partner in playing the complementary role-patrolling

(see Figure 8c, bottom graph, black line). For large

part of the evolutionary time preceding the appearance

of the mechanism for the dynamic allocation of role

(i.e., from generation 50 to generation 200), the aver-

age values of the fitness component C̄F , rewarding role-

foraging, are higher than the average values of the fit-

ness component C̄P , rewarding role-patrolling (see Fig-

ure 8c, bottom graph, grey line for C̄F , and black line

C̄P ). We also notice that, during the first 200 gener-

ation, the ancestors are not as good in playing role-

patrolling when re-evaluated with a partner that is spe-

cialised in role-foraging (see Figure 8c, bottom graph,

black lines) as they are in playing role-foraging, when

re-evaluated with a partner that is specialised in role-

patrolling (see Figure 8b, bottom graph, grey line). This

evidence indicates that the ancestors preceding the evo-

lution of the mechanisms for the dynamic allocation of

roles, show a strong preference for playing role-foraging,

regardless of the role played by the partner.

In other words, Figure 8 indicates that specialisa-

tion characterises the early part of the evolutionary his-

tory of solutions generated aclonally (i.e., from about

generation 50 to about generation 200). Generalist so-

lutions chronologically follow the evolution of special-

isation. Since qualitatively similar evolutionary trends

have been observed in all the evolutionary history of the

five successful homogeneous solutions generated aclon-

ally (data shown in the supplementary materials, see

footnote 2), we conclude that, as stated in [20], special-

isation precedes the emergence of generalist or homo-

geneous solutions in aclonal evolutionary runs. We will

further speculate on this in section 9.
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9 Discussion and conclusions

More than a decade ago, Quinn [20] discussed the dif-

ferences between the aclonal and the clonal approach

for the evolution of homogeneous multi-robot teams for

tasks which require robots to take specific roles, show-

ing that the former outperform the latter. Our study

described a similar robotic task. We designed a task-

allocation scenario where two robots, structurally iden-

tical to those used in [20], have to carry out a collective

task made of two distinctive activities: that is, foraging

and nest-patrolling. The robots have to autonomously

decide who is doing what and then carry out the sub-

tasks. As in [20], the robots can interact only through

the activation of the proximity sensors. Contrary to

what is illustrated in [20], the activities require different

behavioural skills (see section 5 for details). Moreover,

we used a individual oriented rather than a group ori-

ented evaluation function (see section 7 for details).

Contrary to the results of Quinn [20], we found that

the clonal approach outperforms the aclonal approach

in generating successful homogeneous teams capable of

solving the task. The analysis of the evolutionary tra-

jectories of clonal and aclonal runs produced evidence

that only partially support the reasoning put forward

by Quinn [20] to account for his results. As illustrated

in [20], we also found that aclonal runs exploit evo-

lutionary dynamics based on the early appearance of

specialised solutions, which, in our scenario, only in a

limited number of runs, have been followed by gener-

alist solutions. Additionally, in our study, the clonal

approach has found successful collective strategies by

travelling on alternative evolutionary paths than those

suggested by [20]. Clonal evolutions have searched the

space of possible solutions by capitalising on gradual

improvements on the execution of single behavioural

roles, and on the appearance of allocation mechanisms

(initially) bounded to specific ecological conditions.

That is, in our scenario, solutions tend to appear earlier

in asymmetrical than symmetrical trials (see section 8.1

for details).

The results of our study induce us to review the

simultaneity argument formulated in [20]. We showed

that, in a scenario in which the differences between

the roles is captured by an evaluation function that

multiply robot-based (instead of team-based) factors,

the simultaneous evolution of the mechanisms for role-

allocation and role-execution is not the only way to

the emergence of successful collective strategies. Our

results clarify that the clonal approach should be con-

sidered in view of the task-allocation scenario the robots

are required to solve rather then in view of the simul-

taneity argument formulated in [20]. Mechanisms for

role-allocation and role-execution can evolve at differ-

ent evolutionary time also in clonal runs. The simul-

taneity argument does not necessarily limit the effec-

tiveness of this evolutionary approach for the design of

two-robot teams engaged in task-allocation scenarios.

As far as it concerns the aclonal approach, we also

believe that there may be other circumstances to those

already shown by [20], in which the aclonal approach

may be more effective than the clonal one. For example,

we have observed that perceptual symmetries are better

handled in aclonal than in clonal evolution. We believe

that future comparative work is certainly required to es-

timate how useful the aclonal approach can be for the

evolution of homogeneous multi-robot teams engaged in

task-allocation scenarios. A step further on this direc-

tion may be represented by studies aimed to clarify how

aclonal populations make the transition from specialist

to generalist solutions. We found that the aclonal ap-

proach found specialist solutions in 8 out 20 runs. Only

5 of them produced sufficiently successful generalist so-

lutions (i.e., homogeneous groups with a performance

higher than 85% of the fitness optimum). If all the 8

aclonal runs had moved from specialist to generalist so-

lutions, the aclonal approach would have done better

than the clonal one. We speculate that the number of

genotypes against which each solution is evaluated can

be a crucial parameter to induce the specialist to gen-

eralist transition in aclonal runs. Recall that during the

phase in which agents are specialised, the populations

are characterised by agents with different preferences.

If a specialised agent is lucky enough to encounter only

agents that prefer complementary roles, it gets the high-

est fitness. In such case, its fitness would not be different

from the one of a generalist agent. Thus, it would not

be possible for evolution to favour the latter to the for-

mer. However, the higher the number of different agents

against which a single solution is evaluated, the higher

the probability to encounter agents with similar pref-

erences, the greater the difference between specialised

and generalist solutions. Ideally, evaluating every so-

lution against all the others in the population would

maximise the selective advantage of generalist over spe-

cialised solutions. However, such an approach may be

too computationally expensive, because it depends on

the population size, and its effects remain subject to

the influence of all the other evolutionary parameters.

In natural swarms, tasks are allocated to workers

not only on the basis of morphological structure (in

polymorphic species) and/or age of the agents, but also

on the basis of short-term or long-term emergencies [see

17]. It seems that genetic diversity in various eusocial

species is associated to the capability of “genetically re-

lated” workers to carry out multiple concomitant tasks
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in an efficient way [see 16]. In particular, various studies

show that division of labour in ants and bees may be, in

part, a consequence of genetic variation for the agents’

tendency to switch among different tasks. Workers in

a colony respond in different way to stimuli associated

to various tasks. These differences are the causal factor

that regulates the distribution of agents to tasks. The

process is guided by a combination of positive and neg-

ative feedback mechanisms. If the need for a particular

activity increases due to change in colony conditions,

the workers with a high response threshold for a task,

which in normal condition would not perform it, are

progressively attracted to the task in response to an in-

crease level of the stimulus associated to it. For exam-

ple, in Gordon [9], the author shows that in a species of

harvester ants (Pogonomyrmex barbatus), foragers can

be recruited from workers originally performing other

tasks (e.g., nest patrolling, nest maintenance) when the

quantity of food close to the nest is experimentally ma-

nipulated. These mechanisms can also underpin the in-

verse process. For example, if the increase in the num-

ber of agents performing a task decreases the stimulus

associated to the task, then those workers with a higher

response threshold are likely to abandon the task, re-

ducing the number of agents performing it.

The role of genetic variability in coordinating the

colony response to changing conditions is still under

scrutiny by entomologists. However, these biological

evidences suggest to roboticists that genetic variabil-

ity can be an effective mechanisms to generate dy-

namic task-allocation processes in group of cooperating

robots. This suggests that further research is needed to

provide effective solutions to the issues mentioned in the

previous paragraph, in order to make, within the con-

text of dynamic task-allocation, a more effective use of

heterogeneous groups with evolutionary design meth-

ods.
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