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Abstract. A system to coordinate the movement of a group of un-
manned aerial vehicles that provide a network backbone over mobile
ground-based vehicles with communication needs is presented. Using evo-
lutionary algorithms, the system evolves flying manoeuvres that position
the aerial vehicles by fulfilling two key requirements; i) they maximise
net coverage and ii) they minimise the power consumption. Experimental
results show that the proposed coordination system is able to offer a de-
sirable level of adaptability with respect to the objectives set, providing
useful feedback for future research directions.

Keywords: Evolutionary algorithms, unmanned aerial vehicles, coordi-
nation strategies.

1 Introduction

This paper presents an initial investigation into the coordination of multiple
unmanned aerial vehicles (UAVs) that provide network coverage for multiple
independent ground-based vehicles, when imperfect connectivity is experienced.
Imperfect communication can be due to the mobility of ground-based vehicles
thus leading to long distances between them and the aerial vehicles, limited
radio frequency (RF) power, and other communication failures. Under these
conditions, defining flying strategies able to react to topological changes and
ensure relaying of data between ground-based vehicles is a complex problem.
Fig. 1 is an illustration of a scenario of a group of 3 aerial vehicles that provide
network coverage to a number of ground-based vehicles.

Rapid, unexpected changes to the topology require a coordination system of
a high level of adaptability. It has to be able to generate flying manoeuvres and
formations according to the movement patterns of the ground-based vehicles and
their communication needs. Power consumption plays a key role in the success of
such a demanding mission. The aim of this research work is to design a decision
unit that generates flying manoeuvres that offer network coverage to support as
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Fig. 1. Communication links are provided to ground-based vehicles. The overlap cov-
erage is found at intersections.

many ground-based vehicles as possible, while the power management follows a
reasonable trend. Two objectives are identified. Firstly, to maximise the net cov-
erage by decreasing the overlaps between two or more aerial vehicles. Secondly,
as the power consumption is related to the distance between the antennae of the
transmitter and the receiver, it is important to control the vertical flying of the
aerial vehicles such that the slant distances between them and the ground-based
vehicles are minimised. The proposed system employs evolutionary algorithms
(EAs) [2] as the adaptable decision unit. The results of a first series of simulation
experiments are presented in this paper, illustrating the effectiveness of EAs in
solving the problem by relocating the groups of aerial vehicles. The outcome of
the study indicates that EAs are an efficient way of coordination that fulfils the
two research objectives.

The rest of the paper is structured as follows. Examples of related works is
presented in section 1.1, followed by a brief discussion of the aerial vehicle models
in terms of performing feasible manoeuvres and communication link budget in
section 2 and 3, respectively. Experimental results and their discussion is given in
section 4, and in section 5 the paper concludes by addressing the future research
directions.

1.1 Background

Researchers have explored the possibility of using evolutionary computation to
solve path planning and coordination problems for single or groups of aerial
vehicles. In [12], a flyable path plan for multiple UAV systems using genetic
algorithms (GAs) is presented, suitable for controlling a specific mission area
with vehicles flying at a constant altitude via a number of control points. The
Bézier curves technique is used to smooth flying trajectories, resulting in a flight
that allows each UAV to move very close to the control points.

[1] considers the coordination of multiple permanently flying (in small cir-
cles) UAVs in order to support an ad hoc communication network over multiple
ground-based users. The authors propose an EA-based solution that allows each
UAV agent to adjust its output power levels and antenna orientation, such that
the download effectiveness to the end users will be maximised. The ground area
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covered by each UAV is determined by the gain of the vehicles antenna. Low
boresight gain allows a wider area to be covered but with a lower signal, whereas
high gain antenna transmits with higher signal power in the centre of line-of-sight
target, but covers a smaller area.

In [8], the authors employ a GA-based approach for a UAV path planning
problem within dynamic environments. The authors define a good solution as
the path that optimises three components (distance, obstacles, and path length).
The genetic representation consists of a series of manoeuvres that are planned
according to a maximum turn rate as well as an acceleration/deceleration max-
imum value, corresponding to the UAV flight.

The work described in [11] proposes the use of B-Spline curves [7] as the way
to represent the trajectory of a UAV flight. Generally, the continuous curve of a
B-Spline is defined by control points, which delimit the smoothly joined B-Spline
curve’s segments. The authors argue that unlike Bézier curves, B-Spline curves
are more suitable to represent a feasible UAV route, as an update in one of the
control points changes only its adjacent segments due to its local propagation.

In [3], the authors investigate a search method for multi-UAV missions re-
lated to surveillance and searching unknown areas, using EAs. Their work allows
several UAVs to dynamically fly throughout a search space and autonomously
navigate by avoiding unforeseen obstacles, without a priori knowledge of the
environment. Although the proposal assumes central administration and user
control from take-off time to the end of the mission, the authors employ an
EA-based approach to generate appropriate coordinates for UAV relocation.

After studying the evolutionary path planner for single UAVs in realistic
environments, [5] propose a solution to the coordination of multiple UAV flying
simultaneously, while minimising the costs of global cooperative objectives. As
long as the UAVs are able to exchange some information during their evaluation
step, the proposed system is able to provide off-line as well as on-line solutions,
global and local respectively.

2 The UAV kinematics and communication models

The main methodological aspects with respect to the kinematics of the aerial
vehicles and the link budget that characterises the communication links, are
briefly described in this section. A more detailed description of the methods
used for this study can be found in [9].

In the simulation model, an aerial vehicle is treated as a point object in
the three-dimensional space with an associated direction vector. At each time
step, the position of an aerial vehicle is defined by a latitude, longitude, altitude
and heading (φc, λc, hc, θc) in the geographic coordination system. A fixed-wing
aerial vehicle flies according to a 6DOF model with several restrictions, ranging
from weight and drag forces to atmospheric phenomena, that affect its motion.
However, as this work focuses on the adaptive coordination of a group of aerial
vehicles with respect to the communication network, a simplified, decoupled,
realistic kinematics model based on simple turns is considered for the restrictions
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Fig. 2. A manoeuvre of 3 segments of different durations and bank angles, from a
starting point A and the finishing point B. Direction of flying is dictated by the bank
angle.

of both horizontal and vertical motions [4]. For security and safety reasons, the
model is designed to allow flight within a pre-defined corridor, such that the
model denies altitude additions or subtractions in cases where the maximum or
minimum permitted altitude is reached.

As the flying vehicle is fixed-wing, it may either perform a turn circle manoeu-
vre with a tight bank angle in order to keep its current position, or implement
a manoeuvre generated by the EA decision unit. Taking inspiration from the
Dubins curves and paths [6], when implemented, a manoeuvre will generate a
trajectory consisting of 3 segments, as depicted in figure 2. Each segment can be
a straight line, turn left or turn right curve, depending on the given bank angle.

The EA is free to select the duration for any of the segments as long as
the overall duration remains equal to the time of one revolution circle manoeu-
vre. This strategy ensures synchronisation between all aerial vehicles within the
group. With a bank angle of 75 degrees and a constant speed of 110 knots, one
revolution time is approximately 6 seconds. The aerial vehicles perform 2 turn
circle manoeuvres before they are allowed to implement the latest generated
solution from the EA. This time window ensures that the artificial evolution
will have reached a result, while at the same time the aerial vehicles will fly in
a controlled and synchronised way, keeping their previous formation. Further-
more, the time window ensures that the aerial vehicles will have enough time to
exchange fresh GPS data and ultimately communicate the resulting solution on
time.

Networking is achieved by maintaining communication links between the
aerial backbone and as many ground-based vehicles as possible. The commu-
nication links are treated independently and a transmission is considered suc-
cessful when the transmitter is able to feed its antenna with enough power, such
that it satisfies the desirable quality requirements. It is assumed that aerial ve-
hicles are equipped with two radio antennae. One isotropic able to transmit in
all directions, and a horn-shaped one able to directionally cover an area on the
ground. It is also assumed that all vehicles are equipped with a GPS and can
broadcast information about their current position at a reasonable interval (de-
fault 3 seconds). In this section, focus is primarily given to the communication
between aerial vehicles and ground-based vehicles using the former horn-shaped
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Fig. 3. Slant distance d and angle h of a communication link.

antennae, as it dictates the effectiveness of the communication coverage of the
mission and the power consumption of a flying mission.

In order for a ground-based vehicle to be covered, it needs to lie within
the footprint of at least one aerial vehicle. As shown in figure 3, a footprint is
determined by the altitude of the aerial vehicle as well as its antenna’s half-
power beamwidth angle. The higher the aerial vehicle flies, the wider its foot-
print is on the ground, the greater the area covered. The slant angle h of the
ground-based vehicle with respect to the aerial vehicle is calculated by applying
spherical trigonometry on the available GPS data that each network participant
broadcasts. The following piecewise function is then used to decide whether a
ground-based vehicle lies within the footprint.

L(p) =

{
1 : h <HPBW /2
0 : h ≥HPBW /2

Similarly, the slant distance d can be calculated. The greater the distance be-
tween the transmitter and the receiver, the higher the signal power required to
support the communication.

3 The evolutionary algorithm and fitness function

A centralized, on-line, EA-based approach is considered for the coordination of
the group of aerial vehicles. The decision making for the next set of manoeuvres

Fig. 4. At the completion of a turn circle manoeuvre, the master aerial vehicle queries
the EA for the next set of manoeuvres for the whole group. The solution is then
communicated to the rest of the group using the network. If the EA is not ready to
generate a solution due to lack of up-to-date information, the returned solution is a set
of turn circle manoeuvres, forcing the group to maintain its current position.
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for the group is made by a single aerial vehicle, nominated as master. Taking
advantage of the underlying network, it is assumed that every 3 seconds the
master aerial vehicle is able to receive messages carrying the last known positions
and direction vectors of the group as well as the ground-based vehicles. Data
updates may be received from relaying aerial vehicles and directly from the
ground-based vehicles within the master’s footprint, and are tagged such as the
master aerial vehicle and in turn the EA decision unit is fed with up-to-date
knowledge of the topology. Once the EA has evolved a new set of manoeuvres,
the master aerial vehicle is responsible for broadcasting the solutions to the
whole group, using the network. As this work mainly focuses providing network
coverage to ground customers, it is assumed that there is no packet loss and that
a dynamic routing protocol allows flawless data relaying within the topology.
The process flow of receiving, generating and distributing solutions amongst the
group members is depicted in figure 4. Notice that the EA runs independently
from the controller of the master aerial vehicle (threaded), which in practice
allows the master aerial vehicle to complete its turn circle manoeuvre, while
waiting for a solution.

As described in section 2, a flying manoeuvre is described by a Dubins path
of 3 segments. Each segment comprises a bank angle and the duration for which
the segment’s manoeuvre is to be performed. Furthermore, a Dubins path may
request a change to the vertical plane, thus require an alteration to the current
aerial vehicle altitude. The information is stored to the chromosome’s genes, as
shown below.

β1 δt1 β2 δt2 β3 δt3 b δh

The first six genes describe the horizontal motion and the duration of each
of the 3 segments of the Dubins path and are stored as floating point values.
The seventh gene b, as well as the last ∆h, control the vertical behaviour of the
aerial vehicle. When the former is set to 0, the aerial vehicle flies at the same
altitude (level flight). If it is set to 1, then the vertical motion is considered and
the aerial vehicle is expected to change its altitude by ∆h within the duration
of the Dubins path,

∑3
i=1(δti).

An evolutionary algorithm using linear ranking is employed to set the param-
eters of the paths [10]. We consider populations composed of M = 100 teams,
each consisting of N = 4 individuals (the number of aerial vehicles in the flying
group). At generation 0 each of the M teams is formed by generating N random
chromosomes. For each new generation following the first one, the chromosomes
of the best team (“the elite”) are retained unchanged and copied to the new
population. Each of the chromosomes of the other teams is formed by first se-
lecting two old teams using roulette wheel selection. Then, two chromosomes,
each randomly selected among the members of the selected teams are recom-
bined with a probability of 0.3 to reproduce one new chromosome. The resulting
new chromosome is mutated with a probability of 0.05. This process is repeated
to form M − 1 new teams of N chromosomes each.

The fitness function f is designed to optimise two objectives. Firstly, it max-
imises the net coverage by minimising overlap (i.e., the footprints’ intersections).
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This is in favour of supporting as many ground-based vehicles as possible using
the available number of aerial vehicles. Secondly, it minimises the average alti-
tude of the group. Reducing altitude also reduces the slant distances between
the supporting aerial vehicle and the supported ground-based vehicles which in
turn lowers the power consumption. The fitness f is used to compute the per-
formance of a group, thus the fitness score of a set of flying manoeuvres, and is
expressed as:

f =
Cnet − Coverlap

G
×
(

1 − norm

( U∑
i=0

(hi)

U

))
(1)

where U is the number of aerial vehicles or genomes per group, G the number
of ground-based vehicles, and hi the resulting altitude of the ith aerial vehicle.
Finally, norm returns the normalised mean of the altitudes within the permitted
flying corridor, and is a value between 0 and 1.

In order to measure power consumption, an abstract network traffic model is
implemented. As previously stated, it is assumed that the communication link
between a aerial vehicle and a supported ground-based vehicle is successful when
the former is able to feed its antenna with enough power to satisfy the desired
link quality. That is, at each time step the transmission of 3 UDP datagrams
from each aerial vehicle down to any ground-based vehicle it currently covers is
simulated, using a downline data rate of 2Mbit/s and frequency of 5GHz to finally
ensure Eb/N0

of 10db. Ultimately, the number the available communication links
that can be accessed depends on the position of the aerial backbone and the
number of ground-based vehicles being currently covered. In this way, the power
consumption per time step is measured.

4 Experiments and results

The experiments presented in this paper target aerial missions where both aerial
vehicles and ground-based vehicles are placed randomly around a centre point of
pre-defined latitude and longitude. All ground-based vehicles move according to
a biased Random Way Point model (see [9] for details). Biases in the movements
are introduced according to the following strategy. Each time a ground-based
vehicle has to generate a new random bearing, there is a 75% chance of moving
towards a bounded range of angles. Hence, although individual ground-based
vehicles travel randomly in different directions, as a cluster they move in a biased
fashion towards a random direction, which is selected in every interval. For the
experiments presented in this paper, this interval is set to the duration of the
simulation divided by 3. All aerial vehicles start with an initial available power
of 250 Watts and fly within the flying corridor of altitudes between 1500 and
22000 ft. An angle of 75° is defined as a turn circle manoeuvre bank angle.
Simulations last for 1800 seconds, enough time for the EA to produce a number
of manoeuvres that lead to formations of interesting behaviours.
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(a) (b)

Fig. 5. Fitness of the best solutions after 200 generations for 69 generated consequence
sets of flying manoeuvres are shown, for (a) Exp Aand (b) Exp B. Each segment repre-
sents the averaged fitness scores (over 20 simulation experiments) and its growth from
the first to the last generation.

Two sets of simulation experiments targeted to slightly different scenarios
designed to illustrate the adaptability of the system are presented. In Exp A,
all aerial vehicles start by flying at low altitude and support a small number
of ground-based vehicles. In this scenario, the aerial vehicles are expected to
increase their altitude in order to subsequently increase the net coverage. In
Exp B, all aerial vehicles start by flying at high altitude and support a big num-
ber of ground-based vehicles with increased overlaps between the aerial vehicles
footprints. The system is expected to push the aerial vehicles to decrease their
altitude, saving power and reducing the number of ground-based vehicles that
lie within the overlapping footprint areas.

Table 1 summarises the configuration parameters of the experiments in terms
of initial positions and manoeuvres. For each scenario, 20 differently seeded sim-
ulations experiments were conducted. Fig. 5 summarises the dynamics observed
in both scenarios from an evolutionary algorithm point of view. In particular,
the figures depict the fitness trend for each set of flying manoeuvres over 200
generations. Each segment represents the average fitness of the best solution (i.e.,
the set of manoeuvres), averaged over 20 simulation runs, for Exp A (Fig. 5a),
and Exp B (Fig. 5b) respectively. For each scenario, the aerial vehicles are asked
to execute a sequence of 69 flying manoeuvres, generated by the EA decision

Table 1. Initial configuration of the two experiments.

Parameter Exp A Exp B
Aerial Ground Aerial Ground

No. of units: 4 300 4 300
Radius: 6 km 6 km 3 km 3km

Altitude: 2000-2300 ft 0 ft 6000-6500 ft 0 ft
Heading: 80° 0-360° 80° 0-360°

Speed: 110 kts 5-20 mph 110 kts 5-20 mph
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(a) (b)

(c) (d)

Fig. 6. Average coverage and power consumptions are depicted, for Exp A (Fig. a and
b) and Exp B (Fig. c and d) respectively. Coverage is expressed in term of number of
ground-based vehicles that are covered by at least one aerial vehicle.

unit. The starting point of each segment refers to the average fitness of the best
solution at generation 1. The end point of each segment refers to the average
fitness of the best solution at generation 200.

Looking at the segments in both figures, it can be clearly shown that at each
new solution, the EA tends to progressively find a better set of manoeuvres. This
indicates that the decision unit is able to efficiently relocate the aerial vehicles in
order to find good positions with respect to the current status of the system (i.e.,
the distribution of ground-based vehicles, the current coverage and the current
relative positions of the aerial vehicles). Notice that the initial score of each
segment is always lower than the final point of the previous. This is reasoned
due to the fact that by the time the aerial vehicles reached the desired position,
the ground-based vehicles have already changed theirs, unexpectedly altering the
dynamics of the system. This leads to the conclusion that the previously best
solution yields less fitness than that predicted by the EA. However, it is shown
that the EA tends to increase the fitness score for the sequence of solutions
and thus is shown to progressively return better results during the cruise flight
of the aerial vehicles. This important observation is made when looking at the
general trends in both figures, as they reason about the strategies that aerial
vehicles exploit to perform the task. In Exp A, the best solution at the end of
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(a) (b)

Fig. 7. Individual and total coverage as a function of time. The horizontal segment line
in the total bars shows the overlapping number of ground-based vehicles. Error bars
show the standard deviation from the means over 20 runs.

the 200 generations for each consequence solution (i.e., set of manoeuvres) is
progressively better than the previous best (Fig. 5a).

In Fig. 6a and 6b, where the average coverage and average power consump-
tion are depicted, it is seen that the increase in coverage indicates that the aerial
vehicles gradually build better formations and keep them to fulfil the two ob-
jectives. Initially, when starting from relatively low altitudes (Exp A) the group
of aerial vehicles tends to fly higher in order to support more ground-based ve-
hicles (Fig. 6a). As expected, better coverage comes with a small increase in
power consumption (Fig. 6b). After starting from high altitudes (Exp B) the EA
returns solutions that tend to fly lower (Fig. 6c) with a consequent decrease in
the power required to provide the communication links (Fig. 6d). The behaviour
of minimising the altitude seems to last for the first 20 solutions (Fig. 5b), after
which the group of aerial vehicles has reached optimal flying altitudes and forma-
tion that offer the possibility of a good coverage to power consumption trade-off.
Furthermore, the solutions after the first 20 tend to optimise only the relative
positions of aerial vehicles, in order to track the movement of the ground-based
vehicles and minimise overlap. This seems to have a minor effect on the power
consumption which tends to be constant after the first 400s of simulation time
(Fig. 6d).

Network coverage management is clearly shown in Fig. 7a and 7b, for Exp A
and Exp B respectively. The results complement the previous observations as
they depict an increment to the group’s net coverage (marked as “T”). It is seen
that the latter is rather insensitive to the rapid changes of the flying formation.
Particularly in Exp B the overlap coverage is found to decrease even though the
aerial vehicles are asked to decrease their altitude.

Finally, Fig. 8 shows the trajectories of aerial vehicles and ground-based
vehicles in terms of their average positions. The centroids of the ground-based
vehicles cluster as well as the one of the group of aerial vehicles are shown to
follow a similar trend and move closely, highlighting the success of the algorithm
in adapting according to the movement and needs of the ground-based vehicles.
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Fig. 8. Continuous line represents the trajectory of the centroid of the ground-based
vehicles (as estimated by the whole cluster), whereas the dotted line refers to the move-
ment of the centroid of the airborne group. Letters “G” and “U” indicate the starting
points of the two centroids, ground-based vehicles and aerial vehicles respectively.

This figure refers to a single experimental run in Exp A. The ground-based
vehicles change their overall direction twice during the simulation, as defined by
their biased random waypoint mobility model described in previous sections.

5 Conclusion

This paper proposes a coordination system for a group of aerial vehicles de-
signed to form a communication network backbone that connects ground-based
vehicles in an ad hoc, highly dynamic fashion. An EA is used as the decision
unit responsible for generating relocation information for the group. The EA’s
fitness function aims to optimise two objectives. Namely, to maximise the net
coverage by reducing the overlap between the footprints of each aerial vehicle,
whilst minimising the average power consumption to support the communication
network. Altitude is strongly related to the power required to provide a link of
a satisfactory quality. First developments and experimental results are reported,
illustrating promising adaptive behaviour.

There are two future directions that are considered for this research work.
Due to the strong dependence on the underlying network, a fully decentralised
approach is required. Although several communication and decision protocols
may be added to the system to reduce the risk of losing the master aerial vehicle
(use of cluster heads, token, etc.), the system should be able to minimise inter-
aerial vehicle control overhead communication and thus maximise utilisation of
the links for data payload transmissions.

In addition, the use of multi-objective evolutionary algorthm (MOEA) in
the system is undoubtedly expected to try to increase the efficiency of the group
evaluation within the EA, by allowing multiple objectives to be clearly defined
and optimised simultaneously based on the desired flying strategies subject to
mission-related, group-based, and individual-based constraints.
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