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Abstract

This paper applies machine assisted formal methods to explore insider threats for auctions. Auction
systems, like eBay, are an important problem domain for formal analysis because they challenge
modelling concepts as well as analysis methods. We use machine assisted formal modelling and
proof in Isabelle to demonstrate how security and privacy goals of auction protocols can be formally
verified. Applying the costly scrutiny of formal methods is justified for auctions since privacy and
trust are prominent issues and auctions are sometimes designed for one-off occasions where high
bids are at stake. For example, when radio wave frequencies are on sale, auctions are especially cre-
ated for just one occasion where fair and consistent behaviour is required. Investigating the threats
in auctions and insider collusions, we model and analyze auction protocols for insider threats using
the interactive theorem prover Isabelle. We use the existing example of a fictitious cocaine auction
protocol from the literature to develop and illustrate our approach. Combining the Isabelle Insider
framework with the inductive approach to verifying security protocols in Isabelle, we formalize the
cocaine auction protocol, prove that this formal definition excludes sweetheart deals, and also that
collusion attacks cannot generally be excluded. The practical implication of the formalization is
demonstrated by code generation. Isabelle allows generating code from constructive specifications
into the programming language Scala. We provide constructive test functions for cocaine auction
traces, prove within Isabelle that these functions conform to the protocol definition, and apply code
generation to produce an implementation of the executable test predicate for cocaine auction traces
in Scala.

Keywords: Insider Threats, Auctions, Formal Methods, Code generation

1 Introduction

We provide a logical reasoning framework for insider threats of auctions by combining earlier work
on the formal modelling and analysis of auctions [1], the Isabelle insider framework [2], as well as a
framework for the modelling and analysis of security protocols using Isabelle’s inductive definitions
[3]. Since these previous works are all based on the Isabelle theorem prover, the integration of these
techniques naturally provides a single framework for the rigorous mathematical modelling and machine
supported proof of auction insider threats.

When eBay became a popular internet phenomenon, Stajano and Anderson [4] raised the question of
privacy and anonymity issues by publishing a fictitious cocaine auction protocol that maximizes the trust
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issues apparent in eBay. In their paper, they further propose physical radio broadcast as an anonymous
implementation for this auction. We provide instead an anonymity layer based on cryptography and adapt
it to public and private key pairs instead of the originally suggested Diffie-Hellman key establishment.
Inspired by this protocol, we use it as a running example to exhibit major insider threats in auctions. We
first show that the so-called sweetheart deal can be excluded. A sweetheart deal prevents participants
from having a real chance in the auction because the seller and one of his friends have already agreed
before the auction that this friend, the sweetheart, will get the goods. The auction is merely used to
determine the price. In our approach, we can formally specify the protocol using an inductive definition
and proof within Isabelle interactively that no sweetheart deal is possible in faithful implementations.
Another insider threat to auction is the collusion of the bidders, also known as “ringing”. The collusion
of bidders leads to the seller only getting the lowest bid, the “reserve price”. To model this attack, we
can employ concepts from the Isabelle insider framework [2] that enable expressing the impersonation
of actors by others and extend it by a notion of rational agent, the “homo oeconomicus” assumption.
Given these, we can formally prove that collusions are always possible, that is, the bidder may only get
the reserve price.

To test our formal Isabelle based analysis techniques, we propose a formalization, implementation,
and security analysis of the cocaine auction protocol within the interactive theorem prover. Furthermore,
we can show the practical value of the approach by formally refining the specification into a constructive
one from which we can then generate executable code for the testing of cocaine auctions.

In summary, this paper provides the following technical contributions: (a) a formalization of the
cocaine protocol using Isabelle’s inductive approach including the formalization and proof of the absence
of the sweetheart deal and the impossibility of excluding collusion of insiders; (b) the extension of
the inductive approach to auctions by expressing arbitrary numbers of rounds, broadcast messages, an
anonymity layer, and by merging with the Isabelle insider framework; (c) a practical solution by defining
a constructive test predicate that implements the protocol, applying the code generation mechanism of
Isabelle to generate Scala code from that, and proving correctness of the test predicate with respect to
the specification within Isabelle. These technical contributions lead to a deeper understanding of the
relationship between auctions and security protocols with regard to insider threats paving the way for a
more substantial Isabelle insider framework integrating relevant parts of the inductive approach to model
and verify auction systems in the presence of insider threats. This paper is an extension of a previously
published workshop paper [5]. It is substantially extended by the above construction (c) which is mainly
contained in Section 6 and the Appendix.

Overview: Section 2 first reviews the auction literature focusing on security attacks involving col-
lusions. Furthermore, we summarize how the insider threat literature handles the collusion of insiders.
Section 3 introduces the cocaine auction protocol as our running example, before we present its for-
malization in the Isabelle inductive approach in Section 4. Next, we discuss to what extent the formal
approach is useful to express possible insider threats to auctions, whether the threats exhibited in the case
study are representative and complete. The extension by the constructive test predicate, code generation,
and correctness proofs are subject of Section 6 and the generated code is contained in the Appendix. To
finalize, we summarize challenges for future research (Section 7).

2 Auction Attacks and Colluding Insiders

In this section, we want first to give a very brief introduction to auctions and then discuss one of the
biggest problem of auctions, collusion.

Auctions come in different forms, for instance, there are so-called first price and second price auc-
tions. In first price auctions, the winner is the bidder with the highest bid and has to pay the value of
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his or her bid1. In second price auctions, the winner is again the bidder with the highest bid, but has to
pay the value of the second highest bid. The latter is in some ways more complicated than a first price
auction.2 So why is there interest in second price auctions? Since it makes matters much easier for the
bidders. Vickrey’s theorem states that in a second price auction a bidder cannot do better than bidding
what the object is actually worth to her. If a bidder bid more than the object is worth to her she would
make a loss on winning. If she bid less than the object is worth to her then potentially she would not
realize a gain. If, however, she bids exactly how much she values the object all this cannot happen.

In addition to the distinctions between first price and second price auctions, auctions come in single
round auctions, or auctions with several rounds (either ascending or descending). New auctions are still
designed, for instance, recently for mobile phone licenses in different countries.

According to one of the leading auctions designers [6, p.152] “the two issues that really matter [in
auction design] are attracting entry and preventing collusion.” The first issue is that if not sufficiently
many agents attend an auction then this is bad news for the seller. In the preface, Klemperer mentions the
case of “a German auction of three blocks of spectrum [for which only three bidders had turned up and]
which therefore sold only at a tiny reserve price.” The second issue is more interesting for the purpose
of this paper (albeit related to the first. If the bidders collude it only looks as if there were many bidders,
but actually all the colluding bidders should count only as one). [6, p.152]: “Ascending auctions allow
bidders to use the early rounds to signal each other how they might ‘collusively’ divide the spoils, and
if necessary, use later rounds to punish any rivals who fail to cooperate.[. . .] By contrast, a (first-price)
sealed-bid auction provides no opportunity for either signalling or punishment to support collusion.”

While it is not possible to send signals, it is still possible to collude in such an auction as well, be it
a first price or second price auction.

Krishna [7, p.152] describes collusion in second price auctions. Assume you have a number of agents
and a bidding ring (or cartel) among those. The cartel would determine the one among them who values
the object most and only the high bidder would submit a serious bid, all the others would either submit
nothing or something that is so low that there is no danger that it will bring the price up. The bidders
outside the cartel are not affected by this. ‘A bidding ring generates profits for its members, of course, by
suppressing competition.’ In the extreme case all bidders are part of the cartel and the object will be sold
at the reserve price at the expense of the seller, who without the existence of the cartel would achieve a
higher price.

A separate issue does occur in a scenario in which the auctioneer cannot be trusted, for instance, since
he is on the side of one of the participants and abuses his privileged position, for instance, to provide
information to some participants but not to others.

Vice versa within the insider threat community, the collusion of insiders has been recognized as a
main pattern of insider threats. The CMU-CERT Insider Threat Guide [8] names the Ambitious Leader
pattern as one of the four main patterns of insider threats. This pattern describes an outsider – the
ambitious leader – that works together with (at least) two insiders in separate infrastructures thereby
realizing an attack that would not normally be possible for any of the involved insiders on their own.
This pattern is a collusion of insiders. We used this pattern to show that the Isabelle insider framework
[2] is capable of expressing all known insider threats.

1In case of two or more bidders with the same highest bid certain tie breaking rules apply.
2In case of combinatorial auctions when several goods are auctioned at the same time, the determination of the winners and the
prices to pay may be computationally very complex.
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Figure 1: Illustration of the cocaine auction as imagined by the first author.

3 Cocaine Auction Protocol

In this section we will first summarize the cocaine protocol as described in [4], then look at potential
formalizations, formalize the protocol, and discuss possible attacks.

3.1 Protocol

“Several extremely rich and ruthless men are gathered around a table. An auction is about to be held
in which one of them will offer his next shipment of cocaine to the highest bidder. The seller describes
the merchandise and proposes a starting price. The others then bid increasing amounts until there are no
bids for 30 consecutive seconds. At that point, the seller declares the auction closed and arranges a secret
appointment with the winner to deliver the goods” [4] (see Figure 1). This is the short introduction to
the cocaine auction protocol given in the original paper. This example serves as a model for eBay-like
auctions where trust is an issue. In the eBay model, the auction house could drive up the sale price since
it asks the bidders to reveal their maximum amount they are prepared to pay. The users simply have to
trust that eBay will not exploit that knowledge to drive up the price (which would be profitable for the
auction house because it takes a commission which is a percentage of the sale’s price). The eBay “peer
review” system in which users give each other reliability ratings has proven to be a quite successful
method to guarantee trust between sellers and buyers. However, trusting the auction house remains a
problem. The cocaine auction protocol has been designed as an “exaggerated case that makes the trust
issue unambiguous” [4]. There are several assumptions imposed on the cocaine auction protocol in order
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to minimize trust.

• Nobody trusts anybody else more than is strictly necessary.

• The people that take part in the auction all know each other (otherwise one of them could be a
police agent).

• Nobody that makes a bid wants to be identified to the other bidders nor to the seller.

• Nobody apart from the seller and the buyer should know who won the auction; even the seller
should only find out the identity of the buyer when committing to the sale, that is, at the time of
exchanging the goods at the secret appointment.

• Nobody of the participants should have to trust any of the other participants; in particular there
should not be an independent judge or policeman. The protocol must be self-enforcing.

3.2 Possible Implementations

For the context of this paper, we just assume an anonymous broadcast: a mechanism for broadcasting
messages to participants without revealing the identity of the sender. This represents an anonymity layer
that can be implemented by cryptographic techniques, for example, using the dining cryptographers
algorithm [9], or by using physical broadcast short-range radio networking facility, e.g., Piconet. In fact,
the latter possibility is the main point of Stajano’s and Ross’ paper [4] to advocate the use of physical
broadcast to implement the anonymity layer. For the context of this paper, we abstract from the concrete
implementation of this anonymity layer. In the formal description of the protocol in Section 4, we will
instead rely on the inductive approach to protocol verification and use address spoofing as a means for
the senders to hide their identity from the receivers. There are two important details that we need to keep
in mind when considering the practical implementation of the protocol.

1. The seller needs a mechanism to identify the winner.

• A potential problem with this is that anyone can come later and claim to have said “yes” (that
is, made a bid) in the winning round.

• A solution to this is that such a “yes” message (bid) contains a one-way function of a secret
nonce.

• The seller will ask the winner to exhibit the original nonce.

2. At finish of the auction, the seller prefers to give a secret appointment to the winner.

• “See you on Tuesday at 06:30 in the car park of Heathrow terminal 5” (rather than exchanging
suitcases of cocaine for cash under the noses of all the losing bidders).

• On the other hand, the identity of the buyer should not be revealed to the seller until the latter
commits to the sale (in order to protect the winner from not getting the bid for other biases,
for instance, since he is from the “wrong family”).

3.3 Protocol in Alice-Bob notation

Assuming an anonymity layer in a first approximation, the protocol can be described as follows:

• The identity of the seller is known to buyers.

• Buyers’ messages are anonymous; seller’s are not; all messages are broadcast.
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• The protocol is a succession of rounds i of simple bidding.

– The seller announces bid price bi of round i.

– Buyers have up to 30 seconds to say “yes”.

– As soon as a buyer says “yes”, he is winner of the round, wi.

– A new round starts.

– If 30 seconds elapse in round i with no bid, winner of the auction is wi−1.

The implementation of this protocol is given informally [4] based on the use of the Diffie-Hellman
key-establishment algorithm [10]. For convenience, we briefly summarize the main idea of the Diffie-
Hellman key-establishment algorithm here. This algorithm uses a prime number modulus p and a gen-
erator g ∈ Zp known to sender and receiver A and B. In addition, A keeps a secret number a ∈ N and
B a secret number b ∈ N. The algorithm works in two phases, establishing the shared secret gabmod p
between A and B without them ever exchanging their secrets a and b in clear. In the first phase, A calcu-
lates gamod p and sends it to B; B calculates gbmod p and sends it to A. It is computationally unfeasible
for large prime numbers p to get a or b from these because of the Discrete-Logarithm-problem. In the
second phase, A calculates (gbmod p)amod p; B calculates (gamod p)bmod p. Now, both have the shared
secret because modular arithmetic gives

(gbmod p)amod p = gbamod p = gabmod p = (gamod p)bmod p.

The security of the algorithm depends on the high complexity of calculating gabmod p given g, p and the
sent messages gamod p and gbmod p. This problem is known as the Diffie-Hellman-problem and seems
intuitively related to the computationally intractable Discrete-Logarithm-problem. The Diffie-Hellman-
problem has been proved to be equivalent (for certain cases) to the Discrete-Logarithm-problem [11].

To formalize the protocol in the semi-formal “Alice-Bob” notation we first give the assumptions.

• Generator g and modulus p are public auction parameters.

• Anonymous “yes” message of winner wi is gxi .

• Seller uses his (random) secret y to send the secret appointment to final winner wi encrypted with
Diffie-Hellman key gxiy.

• Possible variants for disambiguation and conciseness are possible.

– Succession of bid prices bi is pre-specified (conciseness).

– At beginning of round i, seller broadcasts the “yes” message gxi−1 of winner of previous round
to arbitrate races.

– Bidders should include the bi in their “yes” messages.

Some extensions to the standard point-to-point messaging that is common in Alice-Bob-notation are
needed to express the anonymous communication. Stajano and Ross introduce a dedicated notation,
which we adapt here for simplicity slightly.

• D is the set of auction principals including the seller S with secret y.

• ?Ai represents an anonymous principal in round i = 1, . . . ,n−1 with secret number xi.

• Winning round n−1.
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The cocaine auction protocol can then be specified using Diffie-Hellman and the notations {a,b} for
message concatenation and {m}K for encryption of message m with key K.

0. S→D : gy mod p

i. ?Ai→D : {gxi mod p, bi}

n. S→D : {bi,MeetingAppointment}K , K = gxn−1ymod p

3.4 Insider/Collusion Attacks

Stajano and Anderson state “[t]here are limits what can be achieved on the protocol level. It is always
possible, [. . . ], to subvert an auction when an appropriate combination of participants colludes against
others”. This collusion attack is known as “ringing”. The colluding bidders can, for example, keep the
price low and then share the profit. It is a strong statement that this is always possible but the statement
is relative to the protocol level. In the formal modelling and analysis of the auction protocol using the
inductive approach we will see that they are right. The challenge is to extend the usual protocol model
with context information so that it becomes feasible to express this kind of collusion and consequently
formalize and prove stronger security properties.

The second attack on the cocaine auction protocol is the so-called “sweetheart deal”: the collusion
between the seller and one of the bidders, that is, “seller not selling to the highest bidder” in [4, p. 4]. If
this attack is attempted within the limits of the protocol, that is, the seller sends the secret appointment
not to wn−1, that is, the winner of the winning round n− 1, but instead to one of the earlier bidders
wi for i < n− 1, then the protocol in the above implementation with Diffie-Hellman fails. That is, if S
sends message n encrypted with key gxiy mod p instead of gxn−1y, the real winner wi will not be able to
decrypt the message. This failure of the protocol means that the attack is unfeasible if the protocol is
implemented correctly. Formalizing the protocol should enable proving that this is the case. We will see
how this can be formally proved even on our own implementation with public keys in Section 4.

The attacks on the cocaine auction protocol involve bidders and sellers. They are attacks on the
auction that are only possible because they exploit privileges, like knowledge of keys, certificates, and
access rights of roles, granted to peers in the protocol. Therefore, they can be categorized as insider
attacks.

4 Formal Model

The Diffie-Hellman key exchange is a very efficient implementation of this protocol. However, we aim
at using the established inductive approach to formally verify the protocol. Unfortunately, the inductive
approach uses an abstract specification of symmetric or asymmetric keys and the Diffie-Hellman keys
do not fall in those categories. In fact, the established Diffie-Hellman key gxiy mod p is a symmetric key
while the so-called ephemeral keys gy mod p and gxi mod p are no encryption keys rather intermediate
computations encrypting the secrets y and xi for public exchange. Therefore, we provide here another
possible implementation of the cocaine auction protocol using standard public-key cryptography.

The cocaine auction protocol can then be specified using the public key KS of the seller S and its
secret counterpart K−1

S for decryption and public encryption keys KAi of the bidders with corresponding
secret decryption keys K−1

Ai
.

0. S→D : KS

i. ?Ai→D : {KAi ,bi}KS
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n. S→D : {bn−1, MeetingAppointment}KAn−1

This asymmetric version of the protocol works as follows.

• In Step 0, the seller sends to all bidders in the set D a public key KS enabling them to send secret
message to the seller.

• In each of the rounds i for i = 1, . . . ,n−1 the bidder sends anonymously using the sender address
?Ai his public key for the round KAi together with the prearranged bid bi for the round encrypted
with the public key of the seller KS to the seller. The contents of this message are only visible to
the seller since only he holds K−1

S .

• In the final round (after the timeout has happened) the seller S broadcasts to all bidders in D the
highest bid bn−1 and the secret message with the MeetingAppointment. This broadcast message is
encrypted with the public key KAn−1 of the winner of round n−1 that the seller could retrieve from
the message in the winning round n−1.

In comparison to the version using Diffie-Hellman key-exchange, this second implementation of the
cocaine auction protocol seems slightly more complex. Although the latter implementation abstracts
from a concrete public-key algorithm, Step i requires an encryption of the entire message {KAi ,bi},
whereas the Diffie-Hellman version requires only the computation of one ephemeral key gxi mod p. For
example, if we consider RSA to be the concrete algorithm used in the second public key version, the key
length, that is, the size of the modulus p would be roughly the same for RSA and Diffie-Hellman for
equal strengths of security. At a closer look, however, computing gxi mod p corresponds roughly to the
same computation effort as computing (#{KAi ,bi})KAi mod n (following the RSA-algorithm [12] where
the # is the transformation of the message into a number for exponentiation with the RSA encryption
key KAi modulo the public modulus n = p∗q). The two implementations, or more precisely Steps i are
of similar complexity, because, the ps and qs are of similar size (currently 1024 bits are still considered
safe, although 2048 are recommended after the successful factorization of a 1024 prime equivalent to
breaking of 700 bit RSA key and the Logjam attack on Diffie-Hellman [13]).

4.1 Isabelle’s Inductive Approach to Security Protocol Verification

The interactive theorem prover Isabelle/HOL [14] implements classical higher order logic (HOL) for
the modelling of application logics. Inductive definitions and datatype definitions can be written in a
way close to programming languages. Semantic properties over datatypes can be formalized in a simple
equation style by primitive recursion and are strongly supported by automated proof procedures based
on rewriting, automated simplification, as well as externally coupled dedicated provers.

The inductive approach to security protocol verification by Paulson [3], the designer of the Isabelle
system, picked up on the hype generated by the earlier model checking approach to security by Lowe
[15]. In comparison, the inductive approach is more laborious as it requires human interaction, but it
is unrivalled in its expressiveness which allows proofs beyond the ones that are usually done in model
checkers. Although proofs in Isabelle/HOL are not performed automatically but have to be provided by
the user, the increased expressiveness allows modelling protocols less abstractly than in a model checker.
A protocol’s definition is given as an inductive definition of the set of all “traces” that are allowed by the
protocol. A trace is a list of events representing the sending and receiving of messages that happen in
a possible run of the protocol. The inductive definition defines all possible behaviours of a protocol as
the minimal set of traces described by the inductive rules corresponding to the protocol’s communication
steps.
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Paulson’s inductive approach is only a starting point for the modelling of insider threats to auction
protocols. We see in this paper that the classical inductive approach needs to be extended with concepts
developed for the Isabelle insider framework [2] in order to fully support reasoning about insiders. Since
an Isabelle framework, like the inductive approach to Security Protocol Verification, is nothing other than
a number of theory files containing a set of tailor-made definitions and related theorems, it can be easily
extended and also integrated with other approaches like the Isabelle insider framework [2].

For the sake of self-sufficiency, we briefly present the main features of Isabelle’s inductive approach
concentrating on the parts we use.

4.1.1 Cryptography, Keys, and Messages

Security protocol specifications are constituted as sequences of communication steps between principals
possibly adding abstract cryptographic functionality. For example, in the so-called “Alice-Bob”-notation
a typical protocol step like

A 7→ B : {M}K

would read as: “A sends to B message M encrypted by key K”. The key could be specified more precisely
as a symmetric key or the private K−1

A or public KA key of an agent A.
The function invKey maps a public key to its matching private key, and vice versa.

type synonym key = nat

consts invKey :: key ⇒ key

Nonces are a means to avoid replay attacks. A nonce is a large random number. A message that requires
a reply can incorporate a nonce. The reply then must include that same nonce to prove that it is not a
replay of a past message.

Protocol messages can then be defined as a recursive datatype msg building over the simple message
constituents agents, numbers, nonces, and keys. Protocol messages usually consist of more than just
one component. For the recursive cases, a msg can be a combination of other messages or a message
encrypted with a key.

datatype msg = Agent agent

| Number nat

| Nonce nat

| Key key

| MPair msg msg

| Crypt key msg

Isabelle offers a sophisticated pretty printing syntax facility. This allows us to define the notation
{x1, . . . ,xn−1,xn} for the nested pairing MPair x1 . . .(MPair xn−1 xn) making the specifications of proto-
cols very close to the on-paper notation.

The way datatypes are implemented in Isabelle provides the property that all of datatype constructors
are injective functions. Therefore, the above definition msg implicitly entails the following theorem.

Crypt K M = Crypt K’ M’ =⇒ K = K’ ∧ M = M’

This theorem says that a message M encoded with a key K yields only one ciphertext Crypt K M and
no other message M’ can be mapped onto this ciphertext – not even with a different key. The model is
an oversimplification: in reality decryption with a wrong key K’ would actually yield a result although
quite likely pure rubbish. The oversimplification is justified as in reality checksums are introduced on
the plaintext to exclude decryption with wrong keys.
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4.1.2 Attacker Model, Events, and Traces

The principals are expressed by a datatype definition guaranteeing their distinctiveness. We assume
a server, a number of friendly principals, and a spy. That is, in our model the attacker is explicitly
modelled.

datatype agent = Server | Friend nat | Spy

The attacker can forge messages using all components he can derive from previous traffic. The inductive
operators characterize the constituents of a protocol’s messages (set parts), messages the attacker can
extract from a protocol trace (set analz), and messages that the attacker can build (set synth).

Protocols are defined by inductive definitions describing the behaviour of principals taking part in
the protocol. Behaviours are sets of possible event traces. A trace is a list of communication events, such
as interleaved protocol runs.

Compared to the inductive definitions for synth and analz, protocol definitions are thus of a dif-
ferent type: rather than specifying a message set, they specify the behaviour of the communicating
principals as traces of events defined as a datatype comprising different cases (represented as datatype
constructors) of protocol communication events. The main case of an event is that an agent sends a mes-
sage to another agent: the constructor Says takes three arguments of types agent, agent, and msg and
returns one result of type event. The other constructors of the datatype event are Gets and Notes to
specify the reception and storing of messages. Defining a protocol in the inductive definition consists of
defining a set of traces of events representing all possible runs of the specified protocol. The attacker’s
behaviour is added by including Fake messages into traces. The analysis first derives the knowledge he
can extract from the protocol (analz) and the messages he can synthesize (synth). This characterizes
the attacker’s behaviour and allows verification of security properties. Following the Dolev-Yao model
[16], the Spy gets to know everything that is communicated along any channel. To this end, the inductive
approach models a function spies that effectively deconstructs event traces into sets of messages.

We omit this definition because we concentrate on insider threats, that is, we cannot assume to have
a clear distinction into “good” and “bad”. Our attacker could be any agent. Besides insider threats, the
cocaine auction protocol reveals other requirements to the inductive approach that go beyond classical
security protocols.

1. In general, auctions necessitate an arbitrary number of rounds;

2. we need to represent broadcast communication;

3. we need to enable anonymous sending of messages.

4.2 Cocaine Protocol in Isabelle

Our formalization of the cocaine auction protocol resides in the theory file CocaineAuction.thy which
is available online [17]. We provide next the inductive definition before we illustrate it by a simple
example trace.

Formally, the inductive definition starts by introducing a constant cocaine auction.

inductive_set cocaine_auction :: event list set

Following this introduction of the inductive set constant, a series of rules determines exactly which traces,
i.e., lists of events, are in the set defining the semantics of the protocol. First, the rule Nil describes that
the empty set is a possible trace, representing the beginning of each protocol run.

Nil: [] ∈ cocaine_auction
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Similar to the specification of other protocols, we specify that Spy (see its specification in Message.thy

[17]) can analyze and synthesize from what he “spies”, that is, the set of things he knows (see also
Event.thy [17]). Spy can then say all these things since he is an agent as well. The symbol =⇒ is the
right associative implication of Isabelle’s meta logic, that is, the first two sub-formulas below have to be
read as a conjunction. The symbol # is the list constructor. Altogether, the following rule reads as “if a
trace evsf is a (possible behaviour of a) cocaine auction and X is a message that can be synthesized from
what can be analyzed from all the events in the trace that the spy can see, then a possible continuation is
the sequence evsf extended by the event in which the spy utters to any principal RR this message X”.

Fake: evsf ∈ cocaine_auction =⇒ X ∈ synth (analz (spies evsf))

=⇒ Says Spy RR X # evsf ∈ cocaine_auction

Initially at the beginning of every cocaine auction, the Server (equal seller) sends his public key out
to all agents that are present (all Friends). This definition uses list comprehension to produce a list of
Says events for all i < friends setting it as the beginning of any run of the cocaine auction.

CA0: [Says Server (Friend i) (Key(pubK Server)). i ← [0..<friends]] ∈ cocaine_auction

In each round i, a Friend (bidder) can make an offer by saying “yes” corresponding to broadcasting a
public encryption key encrypted with the Server key. Together with this public encryption key the bidder
sends also the current price of that round (bid i) assumed to be given in advance by the function bid
applied here to the round number i. We use the Isabelle specification device that allows to define
an abstract function bid specifying that it should be injective, strongly monotonically increasing, and
bid(0) = 0. A witness has to be given and the properties must be proved for a specification to be
accepted by Isabelle. Authentication of the bidder is omitted here since later the bidder authenticates
himself at the meeting point which he would not have been able to find without decrypting the message
of the Server (see below – the final message of the Server is encrypted with the public key of the bidder
transmitted here). The bidder uses the sender address Friend(friends) which is the “anonymous”
address. That is, the bidders use “spoofing” to anonymize their messages. The public key they send is
here formalized as pubK(Friend j) (see the theory file Public.thy [17]) but the owner of the key
Friend j is assumed to be not visible – not even to the intended receiver of this broadcast message (the
Server). The precondition on hd(evs) ensures that either

• this is the first round indicated by the last message (first in event list) being one of the initial
messages of the Server with his pubK, or

• the previous event has been a message in which a bidder different from Friend j has made a bid
and won the round. This is indicated in the last message being a bid similar to the current one but
from Friend k with the previous bid(i - 1). Friend j now can increase the price to bid i.

CAi: evs ∈ cocaine_auction =⇒ j < friends =⇒
hd(evs) = Says Server (Friend l)(Key(pubK Server)) ∧ i = 1 ∨
hd(evs) = Says (Friend friends) Server

(Crypt(pubK Server) {Key(pubK(Friend k)), Number(bid (i-1))}) ∧ i > 1

=⇒ Says (Friend friends) Server

(Crypt (pubK Server) {Key(pubK(Friend j)), Number(bid i)})

# [Says (Friend friends) (Friend k)

(Crypt (pubK Server) {Key(pubK(Friend j)), Number(bid i)})).

k ← [0..<friends]]

@ evs ∈ cocaine_auction
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Timeout can take place at any time. We simply do not model time in the protocol and it is not necessary.
Since we keep all possible traces as the semantics of a protocol in the inductive approach, any occur-
rence of timeouts is modelled. For the next rule of the auction protocol, we assume that timeout has
just happened. Now, in this final round, the Server sends out the message with the secret appointment
(encoded as a natural number for simplicity) and signs it with the public key of “some friend”. This is
the bidder that has won the previous round n-1. In this refined version, we enforce this by the precon-
dition on hd(evs). The winner of the previous round is represented in this most recent message by its
public encryption key pubK (Friend j). For the final message, this key of Friend j is chosen and
the message with the secret appointment mtng3 is sent encrypted with this public encryption key pubK

of Friend j so that only he can decrypt it.

CAn: evs ∈ cocaine_auction =⇒
evs = Says (Friend friends) Server

(Crypt (pubK Server) {Key(pubK(Friend j)), Number(bid i)})

# [Says (Friend friends)(Friend k){Key(pubK(Friend j)), Number(bid i)}.

k ← [0..<friends]]

@ evsf

=⇒ [Says Server (Friend k)(Crypt (pubK(Friend j)){Number(bid i), Number mtng}.

k ← [0..<friends]]

@ evs ∈ cocaine_auction

This specification of the cocaine auction protocol establishes a few particular solutions extending the
inductive approach to represent the peculiar requirements of the application (see previous section).

1. Arbitrary numbers of rounds in an auction are enabled and yet inconsistent traces are excluded
since the rule CAi can be chained up any number of times but using a natural number counter i
their interleaving can be controlled. The use of i and i-1 is based on the mathematical library
of Isabelle showing yet again the advantage of using this expressive, complete and consistent
approach.

2. Broadcast communication is modelled explicitly using lists of messages to all principals. Again
we see here the use of Isabelle libraries – this time for lists using the list comprehension in Haskell-
like syntax: the formalization of a broadcast of a message m from a principal A to a community of
principals D is [Says A (Friend j) m. j ←[0 ..<friends]. This is simple and concise
and corresponds quite closely to the specification using Alice-Bob notation as specified in the
original paper [4] (also see Section 3.3).

3. Anonymous sending is implemented in our above protocol specification by spoofing. This term
corresponds to a classical vulnerability of the TCP/IP protocol whereby the sender field in IP-
packets can be freely replaced by an attacker to impersonate a principal. In order to hide his real
identity, here in our inductive definition, the legitimate sender inserts (spoofs) the sender Friend
friends in rule CAi using an identity that is out of bounds (only addresses strictly less than
friends are admitted for Friends).

Although we stated above that we “abstract from a concrete implementation of the anonymity layer” the
implementation by spoofing discussed in Point 3 comes very close to a technical solution of an anonymity
layer. However, it does implicitly use the context assumptions of Paulson’s inductive approach, here
specifically, that keys remain unbroken, and that no attacker has a complete view of the network, but also
others than the attacker can intercept, eavesdrop, and insert fabricated messages. These assumptions are

3The message is for simplicity embedded into the given message type msg provided in the inductive approach. It may be
thought of as “encoded” as a number.
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common as global assumptions for security protocol verification. They are mainly due to the Dolev-Yao
model but are also inspired by common properties of the Internet protocol TCP/IP, like the spoofing
property used. Clearly, in the context of insider threats we would need a slightly more global view
as we consider not only the networking layer but also higher layers of infrastructures, like physical
architectures, organizational policies, and even socio-technical system aspects [2].

4.2.1 Simple Example Trace

In order to illustrate the inductive definition of the cocaine auction protocol we consider here a sim-
ple example. Assume there are only 2 bidders, i.e., friends = 2. The following subset of traces of
cocaine auction step-by-step grows traces representing an auction in which each bidder makes just
one offer before timeout appears after Friend 1 bids finishing the auction. In the following set lists
are postfixes of their successors, i.e., the traces repeat the previous trace. To make the exposition more
succinct, we put “...” as much as possible omitting repetitions but their last element and highlighting the
messages in the traces by different colors for each step of the protocol. There are precisely two rounds.
We omit in particular all traces interleaved by Fake events.
{

[],

[ Says Server (Friend 0)(Key(pubK Server)), Says Server (Friend 1)(Key(pubK Server)) ],

[ Says (Friend friends) Server

(Crypt(pubK Server) {Key(pubK(Friend 0)), Number(bid 1)}),

Says (Friend friends) (Friend 0)

(Crypt(pubK Server) {Key(pubK(Friend 0)), Number(bid 1)}),

Says (Friend friends) (Friend 1)

(Crypt(pubK Server) {Key(pubK(Friend 0)), Number(bid 1)}),

Says Server (Friend 0)(Key(pubK Server)), Says Server (Friend 1)(Key(pubK Server)) ],

[ Says (Friend friends) Server

(Crypt (pubK Server) {Key(pubK(Friend 1)), Number(bid 2)}),

Says (Friend friends) (Friend 0)

(Crypt(pubK Server) {Key(pubK(Friend 1)), Number(bid 2)}),

Says (Friend friends) (Friend 1)

(Crypt(pubK Server) {Key(pubK(Friend 1)), Number(bid 2)}),

Says (Friend friends) Server

(Crypt(pubK Server) {Key(pubK(Friend 0)), Number(bid 1)}),

... ],

[ Says Server (Friend 0) (Crypt(pubK(Friend 1)) {(Number(bid 2)), Number 42)},

Says Server (Friend 1) (Crypt(pubK(Friend 1)) {(Number(bid 2)), Number 42)},

Says (Friend friends) Server

(Crypt (pubK Server) {Key(pubK(Friend 1)), Number(bid 2)}),

... ]

}

Clearly this is just an illustrative small example given by a selected subset of traces following the pro-
vided inductive rules in the given order CA0, CAi, CAn. The message that the Server sends in the final
step encoding the meeting appointment as a number is randomly chosen to be 42; uniquely encoding a
real appointment message like “meet me at 6.30am in the car park of Heathrow Terminal 5” would result
in a much larger number.

4.3 Specification and Proof of Insider Threats

The insider attacks on auctions we investigate on the running example of the cocaine auction protocol
are the sweetheart deal and the collusion of bidders known as “ringing” because they build a bidding ring
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or cartel (see Section 2).

4.3.1 Sweetheart Deal

Our hypothesis is that the formal specification of a security protocol is sufficient to exclude the sweetheart
deal. That is, the way we defined the rules for the cocaine auction should forbid that the seller announces
the wrong bidder as the winner (his “sweetheart” – someone he has made a deal with outside the auction).

As a first observation, this attack is clearly an insider attack, as it it only possible because an insider
– here the seller – colludes with another insider – a bidder. Together they use their privileges given by
the policy – here, the auction – to achieve the attack goal – here, winning the auction.

The second observation is that the two final steps of the protocol – the way we defined it – prohibit
that this insider threat may occur. In our formal specification, the second to last step of any protocol
run (not counting interspersed Spy actions) is an application of CAi (see also the example given in
the previous section to illustrate that point). The second to last message is a broadcast message of
the bidder Friend j to the Server and all other bidders using the anonymous sender address Friend
friends but containing an own public key pubK(Friend j) encrypted with the Server’s public key.
A list of events corresponding to this broadcast message must be starting the trace if the last rule CAn

is invoked. When applying the rule, the last broadcast messages thus automatically use the key (Crypt

(pubK(Friend j)) for the encryption of the meeting appointment for that same Friend j as specified
in the precondition. Therefore, no other Friend k for j 6= k can be chosen by the Server.

Informally, this argument seems clear. But how can we prove this formally? The first step is the
statement of the property which just formalizes the above observation. If any cocaine auction ends
with a broadcast by the Server that the bidder Friend j is the winner, then the trace evs prior to this
must have been a broadcast of this bidder. The additional assumption 0 < friends in the theorem just
excludes the empty set of bidders and generalizes the property for any finite number of bidders.

theorem no_sweetheart_deal:

0 < friends =⇒
[Says Server (Friend k) (Crypt (pubK (Friend j)) {Number(bid i), Number mtng}.

k ← [0..<friends]]

@ evs ∈ cocaine_auction

=⇒ ∃ evsf. evs =

Says (Friend friends) Server

(Crypt (pubK Server) {Key(pubK(Friend j)), Number(bid i)})

# [Says Server (Friend k)

(Crypt (pubK Server) {Key(pubK(Friend j)), Number(bid i)}).

k ← [0..<friends]]

@ evsf

Isabelle is an interactive theorem prover, that is, statements of theorems, like the above, need to be proved.
This proof is supported by the fact that the rules for defining the protocol are an inductive definition. In
Isabelle, and also in general, inductive definitions define the least set that is closed by a given set of rules.
The principle of rule inversion allows us for a given element in this set to make a case analysis according
to the cases defined by the rules of the inductive definition. In our case, the elements of the inductive set
are traces, i.e., lists of events. Applying rule inversion technically in Isabelle is provided by the command
inductive cases which provides us with a case analysis rule that reduces a property statement about
trace sets of cocaine auctions, like the theorem no sweetheart deal to 6 subgoals corresponding to
the premises of each of the rules of the inductive definition.

For the proof of the theorem, luckily, the first empty case is trivially true, while 4 other cases can be
easily excluded. In Isabelle, elements of a datatype, here the datatypes of events, message, and agents,
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are distinct if their arguments or constructors differ. Thus, two traces starting say with Says Server

X y and Says (Friend j) Z U can never be equal because the arguments Server and Friend j are
distinct therefore the application of constructor Says renders distinct elements. Consequently, the only
real case that remains to be shown is the one that actually corresponds to the precondition of the theorem.

∃ evsf. evs =

Says (Friend friends) Server

(Crypt (pubK Server) {Key (pubK(Friend j)), Number(bid i)})

# [Says (Friend friends)(Friend k)

(Crypt (pubK Server) {Key(pubK(Friend j),Number(bid i)})).

k ← [0..<friends]]

@ evsf

This case can be easily solved by instantiating the existential quantifier and applying simplification.

4.3.2 Intermediate Analysis

An important observation from the previous attack is that the main attack analysis device of the inductive
approach – the Dolev-Yao attacker Spy and the related infrastructure – play almost no role in it: possible
injections of Spy-events into successful, i.e., finishing, traces of the cocaine protocol are merely those
where the Spy feeds messages after Step 0 of the cocaine protocol. Even though Spy is able to play in
Fake messages at any point of a partially finished trace this will lead to this trace ending unsuccessfully
without reaching the goal of the auction. In the formal model, this is due to the fact that all latter steps
require as a precondition that the previous message was one either originating from the Server or one
from one of the Friends j for j < friends. Now, since Spy, Server, and Friend j are elements
of the datatype agent that are created by different constructors, they are pairwise distinct. In particular,
Spy cannot match either Server or Friend j for any j and the preconditions for any of the rules, CAi
or CAn cannot become true any more once Spy has interspersed a trace by sending a fake message.

This limitation of the inductive approach is not surprising since modelling the agents as constructors
of a datatype feeds into the global view (already discussed above) that agents are firmly divided into
“bad” and “good”.

Surprisingly, this does not impede the analysis of the sweetheart deal. On the contrary, for an analysis
of insider threats in general, the fixed distinction of attackers and “good” principals is generally an
inadequate modelling decision. As already observed in earlier papers on the formal analysis of insider
threats [18], one of the major tricks to find attacks on security protocols is to consider insiders: the
classic attack on the Needham-Schroeder attack is performed by the insider Eve4. This man-in-the-
middle attack (or mirror-attack) uses impersonation which has motivated the Isabelle insider approach
of using a sociological model inspired by Max Weber supported with Hempel and Oppenheim’s logic of
explanation to model and analyze insider threats in Isabelle with logic and proof.

Therefore, at this point we extend the inductive approach with the Isabelle insider framework that
has been especially designed for the purpose. We only introduce the minimally necessary parts of that
framework in order to illustrate how it can be used to model ringing. For more detail, the interested
reader is referred to the main paper [2] and application examples to IoT insider threats [19] and insider
threats to Airplane safety and security [20]. The following section recapitulates the parts of the Isabelle
insider framework that are used to extend the inductive approach because they are needed to express
collusion (see theorem Insider homo oeconomicus below).

4Eve uses her own legal credentials (a public key) to get Alice’s nonce sent to Eve when Alice wants to communicate with her.
This nonce is used as an authentication token to Bob. Eve next uses the first protocol run with Alice as an oracle to decrypt
Bob’s Nonce sent back to Eve encrypted with Alice’s public key to challenge her presumed identity.
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4.3.3 Isabelle Insider Framework

The Isabelle insider framework uses a taxonomy of insider threats [21]. This taxonomy is based on a
thorough survey on results from counterproductive workplace behaviour, e.g., [22, 23] and case studies
from the CMU-CERT Insider Threat Guide [8]. The insider framework simply models the taxonomy in
HOL as datatypes, a concept of HOL that resembles the concept of taxonomy classes. As an example,
consider the formal representation of Psychological State [21] as a datatype.

datatype psy_states = happy | depressed | disgruntled | angry | stressed

The element on the right hand side are the five injective constructors of the new datatype psy states.
They are simple constants, modelled as functions without arguments. Another example is Motivation
[21].

datatype motivations = financial | political | revenge

| fun | competitive_advantage | power | peer_recognition

In the Isabelle insider framework, we combine the characteristics about the actor in a combined state.

datatype actor_state = State motivation psy_state

The Precipitating Event or Catalyst can be any event that has the potential to tip the insider over the edge
into becoming a threat to their employer. It has been called the ‘tipping point’ in the literature. This
catalyst is encoded as a tipping point predicate describing the psychological state and motivation of an
actor to become an insider.

definition tipping_point :: actor state ⇒ bool

tipping_point a ≡ motivation a 6= {} ∧ happy 6= psy_states a

Insider threat case studies show that a recurring scheme in insider attacks lies in role identification as
described in [18]. The Isabelle insider framework uses this role identification in the definition of the UasI
predicate. It expresses that the insider plays a loyal member of an organization while he simultaneously
acts as an attacker. Note, that in order to integrate the Isabelle insider framework with the inductive
approach, we use the agent constructor Friend here.

UasI a b ≡ (Friend a = Friend b)

Insider attacks link the insider characterization of psychological disposition with the above insider be-
haviour UasI. This is defined by the following rule Insider a C for the attacker a. The parameter C is
a set of identities representing the members of an organization that are to be considered as safe.

Insider a C ≡ tipping_point (astate a) −→ (∀ b ∈ C. UasI a b)

Although the above insider predicate is a rule, it is not axiomatized. It is just an Isabelle definition, that
is, it serves as an abbreviation. To use it in an application, like the auction protocol, we can use this
rule as a local assumption in theorems (see below theorem Insider homo oeconomicus) or using the
assumes feature of locales [24]).

4.3.4 Homo Oeconomicus and Ringing Attack

The principle of homo oeconomicus defines agents to be rational. In general, this economic principle
captures the idea that any agent a will not spend more than necessary to get an asset, that is, if a can get
the asset for price X , he will not pay price Y > X to get it.
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Without explicitly introducing the additional concept of “price” and buying assets, we can simply
formalize the principle homo oeconomicus for the context of the cocaine protocol, by stating that an
agent that is currently the winner of round i will not make another bid in the next round. Technically, as
a general property this states that for all traces t representing (intermediate) runs of the cocaine protocol
no bidder will make a bid in the current round, if he is the highest bidder in the trace leading up to the
current round. This is represented by the function CAtl applied to cocaine auction trace t. We define
this function CAtl as a primitive recursive function that cuts off from any trace t all leading events if
these exist at the front of t corresponding to (a) the Server’s final broadcast according to rule CAn, (b)
the last bid, i.e., the anonymous broadcast by some Friend j according to rule CAi, (c) all initial Server
messages according to rule CA0 leaving the empty trace. Excluding that the currently highest bidder
will make the next bid, corresponds to saying that the head of any trail t cannot be an event in which
this bidder broadcasts his “yes”. We can simply use the Isabelle list function hd since literally the first
element of that list of “yes” broadcast events corresponding to rule CAi is the message to the Server. The
auxiliary functions highest bidder and cur round are also defined as primitive recursive functions
over traces in Isabelle in the intuitive way (for details see the Isabelle files [17]).

homo_oeconomicus ≡
∀ t ∈ cocaine_auction. ∀ j < friends.

highest_bidder (CAtl t) (Friend j) −→
hd t 6= Says (Friend friends) Server

(Crypt (pubK Server) {Key(pubK(Friend j)), Number(bid(cur_round t))})

As a first illustration for the use of this definition, we can use it to show that if there is only one
bidder, the seller will only get the reserve price bid 1.

theorem homo_economicus_one_bidder:

friends = 1 =⇒ homo_oeconomicus

=⇒ ∀ t ∈ cocaine_auction.

t = [Says Server (Friend k) (Crypt(pubK(Friend j)){Number(bid i), Number msg}).

k ← [0..<friends]] @ evs

−→ i = 1

The above property is a useful stepping stone on the way to proving that if there is a collusion
amongst all bidders, the Server will only get the reserve price. We cannot prove that a collusion between
players glues them together to become physically one Friend corresponding to showing that the con-
stant friends must be equal to 1. However, we can prove that the same conclusion as in the previous
theorem follows as well. We assume that one bidder, Friend 0 is an insider and at the tipping point,
and all bidders act as one agent, that is, the insider can impersonate them. From that we show the same
conclusion as in the previous theorem follows: the seller only gets the reserve price.

theorem Insider_homo_oeconomicus:

homo_oeconomicus =⇒ tipping_point(astate 0) =⇒ Insider 0 {i. i < friends}

=⇒ ∀ t ∈ cocaine_auction.

t = [Says Server (Friend k) (Crypt (pubK(Friend j)) {Number(bid i), Number msg}).

k ← [0..<friends]] @ evs

−→ i = 1

In the proof of this theorem, the insider assumption is used to show that the prerequisite highest bidder

(CAtl t) (Friend j) of the hypothesis homo oeconomicus can be made true for any bidder as soon
as one of them, here Friend 0, is the highest bidder, because he can impersonate anyone. Invoking the
assumption homo oeconomicus, we can then prove that any continuation of the trace containing a first
bid cannot continue, since it would be a bid of the same bidder contradicting the principle. So all traces
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end with the highest bid bid 1 which corresponds intuitively to a “reserve price” (bid 0 is specified to
be 0, see Section 4.2).

We have thus formally shown that the insider assumption in fact enforces that the cocaine protocol
can generally be corrupted by the collusion of all bidders.

5 Usefulness and Limitations

In the protocol we make several assumptions. We share the view of the authors of the original paper [4]
“We do not believe that all such attacks can be detected, let alone stopped, by any particular auction
protocol”.

One problem is inherent in the set-up of the auction. In order to avoid that the other participants see
who has made a bid at a particular time, the authors of [4] discuss that the participants have a clicker in
their pockets and can press them without the others noticing. Then there are some problems with this,
since once a bid has been made another press of a button would mean to bid for the next higher price. For
example, assume that in each step the price goes up by 1000 and that the current high bid is at 49,000.
Assume furthermore that both bidder b1 and b2 are willing to bid up to (inclusively) 50,000. They both
decide to press, but b1 is a split second faster and makes the bid for 50,000. The click by b2 is still
registered but would count as 51,000, an amount b2 would not want to pay. Practically it would make
sense that after a click any further clicks are disabled by a fixed amount of time (e.g., 10 seconds) and the
amount of the current high bid is announced (e.g., on a display). In this scenario b1’s bid would initially
disable the bidding process and after the display of 50,000 b2 would have to press again before a further
bid is registered. We assume that this process cannot be manipulated, since otherwise the auctioneer
could always broadcast the acknowledgement of the bid with his sweetheart’s key and all other bidders
assume that they had been too slow to win the round, although actually one of them should have won the
round and the sweetheart did actually not bid. The participants could not detect the manipulations since
the actually generated trace is a legal trace of the protocol.

The proof guarantees only that the key used by the winner of the penultimate round – after the 30
seconds have lapsed without a bid – is used for the broadcast with the secret location, so that only
the winner can decrypt the location. If, however, the true winner did not know that he had won the
penultimate round, he would not expect to be sent the location and would not be in the position to detect
foul play.

It is not surprising that without any assumptions only very little can be said about possible traces.
In this case, it can be said that it can be detected if different keys are used in the penultimate and in the
ultimate rounds. Obviously, the protocol cannot rule out that the seller sends a wrong MeetingAppoint-
ment to the true winner and uses communication channels outside the protocol to communicate the true
MeetingAppointment to his sweetheart.

In summary, our model abstracts from some implementation details and inherently assumes the fol-
lowing:

• The implementation of the auction needs to provide a mechanism to avoid racing conditions and
give unambiguous feedback to the successful bidder, for instance, some notice board and time
delays between bids.

• The veracity of the meeting point is assumed and the post-procedure of the cocaine-money ex-
change is beyond the protocol model.

In fact, the part of the Isabelle insider framework that has not been used here provides the possibility to
express infrastructures in which agents act and could thus be used to address the second point. However,
that would be beyond the limits of this paper.
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An interesting question is, how in the inductive approach, the attack on the Needham-Schroeder
asymmetric protocol (NS-protocol) has been modelled. This man-in-the-middle attack can be considered
as the first insider attack [18]. However, in the inductive approach the attacker is always only the agent
Spy, and Spy is different from all other agents by construction. So, how could the NS-protocol be
modelled when the attacker is Friend i for some i in n? The answer is that the protocol definition
deliberately allows any agent in the rules for the inductive definition. In the rules of the definition of
the NS-protocol in the inductive approach, letters A and B are used to suggest agents Alice and Bob.
Consider, for example the crucial rule NS1 from the NS-protocol formalization in the inductive approach
where the initiator sends a nonce to the intended recipient.

NS1: evs1 ∈ ns_public =⇒ Nonce NA /∈ used evs1 =⇒
Says A B (Crypt (pubEK B) { Nonce NA, Agent A})

# evs1 ∈ ns_public

The important point for the NS-protocol attack to work is that this intended recipient can be an attacker.
That is, a legal participant of the network of peers is malicious and abuses a connection request by the
initiator to impersonate this initiator. Although in the above rule, the capital letters A and B seem to
indicate that these are the agents Alice and Bob, they are variables fixed only in the context of the rule.
When the rule is applied they can be freely instantiated to any agent, also to Spy.

Summarizing, the inductive approach allows for different “kinds” of specification of a protocol:
one where the actors are explicitly made distinct using different constructors of datatype agent in the
specification (this is how we used it for the cocaine auction protocol) and one where agents are all abstract
within the protocol (either as higher order variables as in the NS-application above or all represented as
Friend j.) If we were to redefine the cocaine auction protocol in the latter way with abstract actors
for all roles, then we would replace the seller also by Friend k. In this case, we would not be able to
exclude the sweetheart deal: if we assume that the Server, say Friend 0, is an insider and at tipping
point, he can impersonate a bidder and can then make his own bids using another role, say Friend j. This
would enable the Server to provide a suitable bid for his sweetheart. In addition, it would enable another
attack in which the Server, acting like a bidder, just drives the price up.

The formalization and proofs presented in this paper provide in summary the following results:

• Formal model of the cocaine auction protocol using the inductive approach proving the absence of
sweetheart deals and the impossibility to exclude collusion.

• Formalization of arbitrary numbers of rounds, broadcast, and anonymous message sending for the
inductive approach.

• The inductive approach can only deal with insider threats by abstracting from its agent datatype
that prevents good agents from behaving badly.

• Integrating (parts of) the Isabelle insider framework with the inductive approach enables reasoning
about collusion of insiders for auctions.

• The collusion exhibits that the assumption homo oeconomicus suffices to prove that rational insid-
ers may use collusion to force the reserve price.

6 Moving to Reality

An approach based on formalized reasoning and code extraction allows for the generation of systems
that brings the assurance that they have the required properties to an unprecedented level. The fact that
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any system has limitations and that there may be ways to work around it does not mean that there is no
benefit. In this section we want to discuss aspects of this and argue that the threshold for workarounds
are so high that they are practically not viable.

Assumed we wanted to realize the approach practically. In this case, the auction would run on a
new computer and the different systems for running the cocaine auction are installed in the presence
of experts in the employment of the different parties concerned. For instance, an operating system is
installed that is digitally signed, likewise a Scala environment, and the most recent Isabelle system. The
parties convince themselves that the specification in Isabelle corresponds to a high-level description of
what they expect. Then in the presence of the experts Isabelle is used to extract the code on the new
computer, the code is compiled, and then used to run the auction.

6.1 Overview of Practical Solution

For a practical solution, the inductive definition of the cocaine auction protocol represents the specifi-
cation of a practically applicable protocol. Following general software engineering principles, a formal
specification is implemented correctly if a program in an executable programming language, like Scala,
meets the specification – we say the implementation conforms to the specification. We apply this princi-
ple using Isabelle in a completely rigorous way by executing the following steps:

• We provide an Isabelle definition of a constructive test predicate for correct cocaine auction traces.

• We generate executable code for this test predicate in the programming language Scala using
Isabelle’s code generation mechanism [25]. Note that Scala is a functional programming language
which runs on the Java virtual machine. As such Scala is a language that is particularly interesting
for industrial applications, since it shares the property of Java that it is platform independent;
furthermore it is compatible with Java in that it is possible to integrate Scala programs with Java
programs. The extraction mechanism in Isabelle allows to transform computational definitions in
Isabelle to functions in Scala. As a consequence, the Scala code shares its properties with the
corresponding definitions in Isabelle and these properties are formally guaranteed by the proofs in
the Isabelle system.

• We prove correctness of the test predicate: we additionally provide proofs that a trace of events
that is accepted by the test function is also in the set of all cocaine auction traces defined in its
specification in Section 4.2. This proves that our test predicate identifies only correct traces of
cocaine auctions.

We next give the specification of the test predicate in Isabelle and show how Isabelle’s code generation
features are evoked. The generated Scala code is contained in an Appendix. Finally, we introduce the
proved correctness properties, explaining their significance and the abstract proof ideas but omitting the
Isabelle proofs scripts. The entire development including the code generation definition and correctness
proofs is available online [17].

6.2 Definition of Test Predicate CA n and Code Generation

The inductive definition of the cocaine auction protocol in Section 4.2 specifies a fairly concrete predi-
cate5 which identifies all traces of events that constitute possible executions of the protocol. However,
this predicate is in itself not executable nor can Isabelle generate code from it. One technical impedi-
ment for generating code is that any trace of a cocaine auction uses the pubK function of the inductive

5Any set in HOL is equivalent to its defining predicate.

63



Insider Threats and Auctions Kammüller, Kerber, and Probst

package. This function assigns public keys to agents and is formalized abstractly as a constant with no
definition. Isabelle cannot generate code from an abstract definition. An executable test predicate must
be able to check whether the natural numbers contained at the corresponding position within the events
representing a round bid i of bidding in a trace is equal to the public key pubK(Friend j) of the
bidder Friend j. This check could be achieved by assuming that the inverse of the pubK function is
known. The inverse of the public key is the private key so this is deemed to be insecure. Instead, we
may safely assume for the practical realization of a test predicate that all bidders enter their public keys
anonymously to a list of known keys kl. The constructive function CA i’’’ below checks in each round
i whether the public key used is contained in this list of all public keys of bidders. For reasons of clarity
of the proof structure, we use an additional intermediate definition of the check predicate for each round
– called CA i – that uses an existential quantifier over j to allow referring to Friend j.

In summary, the definition of the test predicate CA n uses a refinement from non-constructive func-
tion CA i over to the constructive CA i’’’. The conformance of CA i’’’ to CA i and in turn to the
specification cocaine auction is subject of the correctness proofs in the subsequent section.

We present the definition of the test predicates top down starting from the global test predicate CA n

and its constructive refinement CA n’’’. Both functions return true if their first argument is a trace t that
represents a “transcript” of a correct cocaine auction. In fact, the toplevel definitions of the test functions
CA n and CA n’’’ only differ in that the former uses CA i.

definition CA_n :: [event list, nat, nat, nat, nat ⇒ nat, nat, nat] ⇒ bool

where CA_n t pF f pS b n mtng ≡ (CA_fn (take f t) pF f (b n) mtng) ∧ 0 < n ∧
(CA_i (drop f t) pF f b pS n)

and the latter uses CA i’’’ instead.

definition CA n’’’:: [event list, nat, nat, nat, nat ⇒ nat, nat, nat, nat list] ⇒ bool

where CA_n’’’ t pF f pS b n mtng kl ≡ (CA fn (take f t) pF f (b n) mtng) ∧ 0 < n ∧
(CA i’’’ (drop f t) Pf f b pS n kl)

Both of these test predicates use the sub-predicate CA fn that implements the check of the nth step CAn

of the protocol by comparing to a list of events that represents the last broadcast message of the Server
announcing the winner and sending the meeting place confidentially.

definition CA_fn :: [event list, nat, nat, nat, nat] ⇒ bool

where CA_fn t pF f bi mtng ≡
(t = [Says Server (Friend i) (Crypt pF { Number bi, Number mtng }). i ← [0..<f]])

As seen in its application within CA n and CA n’’’ the test function CA fn is meaningfully applied only
to an initial segment of length friends of an event trace t (which is cut off using the list operation
take). The remainder of any trace t after cutting off f elements is produced by the complementary
expression drop f t. It allows invocation of the test predicates for the i rounds on the rest of a trace
conjoining the resulting predicate test results of type bool by the logical “and” operator ∧.

The non-constructive version CA i is represented as the following primitive recursive function defi-
nition. In summary, its role is to check in each round i whether the initial trace segment of length Suc

friends is a bid by one of the bidders represented by the public key of a friend. This checking of a
round is given by the sub-predicate CA fi (see below) in CA i step n and continues recursively until
the round counter reaches 0. This final case is defined by CA i step 0 which maps to the constructive
predicate CA f0 checking the base step (see below).

primrec CA_i :: [event list, nat, nat, nat ⇒ nat, nat, nat] ⇒ bool

where

64



Insider Threats and Auctions Kammüller, Kerber, and Probst

CA_i_step_0: CA_i l pF f b pS 0 = CA_f0 l pS f |

CA_i_step_n: CA_i l pF f b pS (Suc i) =

((CA_fi (take (Suc f) l) pF f (b (Suc i)) pS) ∧
(∃ j. j < friends ∧ CA_i (drop (Suc f) l) (pubK (Friend j)) f b pS i))

The predicate CA f0 signifies that a sequence of events corresponds to the initial segment of any cocaine
auction in which the Server sends out his key to all bidders as specified in the rule CA0 in Section 4.2.

definition CA_f0 :: [event list, nat, nat] ⇒ bool

where CA_f0 t pS f ≡ (t = [Says Server (Friend i) (Key(pS)). i ← [0..<f]])

The predicate CA fi represents a check that in each round i during the cocaine auction its prefix starts
with a sequence of messages from one of the bidders to the server and all other bidders containing the
bidder’s public key and the current bid.

definition CA_fi :: [event list, nat, nat, nat, nat] ⇒ bool

where CA_fi t pF f bi pS ≡
(t = Says (Friend f) Server

(Crypt pS {Key pF , Number bi}) #

[Says (Friend f) (Friend i) (Crypt pS {Key pF, Number bi}). i ← [0..<f]])

Note, that all the above definitions apart from CA i are constructive, i.e., Scala code can be gener-
ated from them. The function CA i uses the function pubK and is thus not constructive. Moreover,
CA i step n uses an existential quantifier to identify the public key coming next in the trace. Since
public keys are natural numbers, this existential quantifier ranges over a potentially infinite domain. For
both reasons, code cannot be generated from this definition. Fortunately, as discussed initially, we can
refine this test predicate into a constructive one CA i’’’ which is used in the constructive global test
function CA n’’’ above.

primrec CA_i’’’:: [event list, nat, nat, nat ⇒ nat, nat, nat, nat list] ⇒ bool

where
CA_i’’’_step_0: CA_i’’’ l pF f b pS 0 kl = CA_f0 l pS f |

CA_i’’’_step_n: CA_i’’’ l pF f b pS (Suc i) kl =

((CA_fi (take (Suc f) l) pF f (b (Suc i)) pS) ∧
(case (winner_i (drop (Suc f) l)) of

Some K => List.member kl K ∧
(CA_i’’’ (drop (Suc f) l) K f b pS i kl)

| _ ⇒ False))

As the non-constructive predicate CA i, the above recursive definition uses the same predicate CA fn in
each round to assess that the first elements correspond to the specification of step CAi of the protocol.
However, the existential part of the recursion is replaced by a constructive choice that uses a function
winner i that computes the winner of the current trace, i.e., the public key that is in the top segment
of the current trace. In addition, it checks that this winner is represented by a public key from the list
kl of all public keys of all friends. The definition of the winner function is a “partial” function6: only
if the event list given as input to winner i contains an event of the form Says Server (Crypt SK

{Key(K), N}) for suitable values of SK, K, N, it returns the key K.

primrec winner_i :: event list ⇒ key option

where undef: winner_i [] = None

| step : winner_i (X # evs) =

(case X of (Says A Server M) ⇒
6All function in HOL are total. Nevertheless, the option type used here allows explicit modelling of partial functions.
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(case M of (Crypt SK { Key(K), N }) ⇒ Some K

| _ ⇒ None)

| _ ⇒ None)

Note, how the additional use of the parameter kl allows to get rid of the existential quantifier making the
predicate CA i’’’ constructive but necessitating the additional assumption that the parameter kl is the
list of all public keys of all bidders. Since CA i’’’ is constructive we can now generate code from it and
also from the constructive global predicate CA n’’’. The following single line urges Isabelle to generate
Scala code for the list of functions provided.

export code CA_f0 CA_fi CA_fn CA_i’’’ CA_n’’’ in Scala

This automatically creates executable Scala code also for all library definitions used for cryptographic
protocols. The code is fully contained in the Appendix.

6.3 Correctness of Test Predicate

The thorough implementation of the Isabelle framework guarantees us that the code that is automatically
generated from the definitions presented in the previous section correctly implements these definitions.
Apart from the informal argument presented in the previous section, we do not know whether the pred-
icates CA n and CA n’’’ correctly implement the cocaine auction protocol. By correct implementation,
or short “correctness” of the test functions, we mean that any list of events that is positively identified
by the test predicates is in fact a trace of a cocaine auction in the sense of its definition by the inductive
definition cocaine auction in Section 4.2. Formally, we want to prove for all traces of events evs the
following correctness property.

CA n’’’ evs ... =⇒ evs ∈ cocaine auction

It now also becomes clear why we kept the definition of the non-constructive predicate CA n’’’ as an
intermediate refinement step: practically, we prove correctness for the definition of CA f0 and CA i

which quite straightforwardly implies the same property for CA n. We then prove that CA i’’’ evs

implies CA i evs for all rounds i which in turn allows us to immediately infer correctness for CA n’’’

but the proof for CA i is much simpler and more elegant.
More precisely, we first prove the following lemma for the test predicate CA f0 that identifies traces

according to step CA0 of the cocaine auction.

lemma CA_f0_CA0: CA_f0 t (pubK Server) friends =⇒ t ∈ cocaine_auction

The proof is a simple unfolding of the definition of CA f0 followed by applying rule CA0.
Next we prove that if the predicate CA i returns true for a trace evs this implies that the trace has

been produced by an arbitrary number of rounds according to rule CAi and is thus a cocaine auction
trace.

lemma forall_CA_i_imp_CA:

∀ i. ∀ j. ∀ evs.

j < friends ∧ CA_i evs (pubK (Friend j)) friends bid (pubK Server) i

−→ evs ∈ cocaine_auction

The proof is a natural number induction over the number of rounds i. Correctness of the test function
CA i needs now only to be combined with that of CA fn testing the last step of the cocaine auction
protocol as expressed in the following lemma.
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lemma CA_fn_CAn:

CA_fn t (pubK (Friend j)) friends (bid i) mtng =⇒ j < friends =⇒ 0 < i =⇒
evs = t @ evsf; CA_i evsf (pubK (Friend j)) friends bid (pubK Server) i =⇒
evs ∈ cocaine_auction

From there, we can derive rather straightforwardly the correctness property for the non-constructive
predicate CA n.

theorem CAn_CA: CA_n evs (pubK (Friend j)) friends (pubK Server) bid i mtng =⇒
j < friends =⇒ evs ∈ cocaine_auction

After unfolding the definition of CA n, the proof essentially applies the previous lemma.
Finally, it remains to show that CA i’’’ implies CA i. To this end, we need to construct a proof

by induction. Within the induction the invocation of the induction hypothesis necessitates the following
lemma showing that if CA i’’’ holds for round Suc i then also for round i. The first assumption
defines the set kl as the set of all public keys of all bidders: our main assumption for constructiveness.

lemma CA_i’’’_Suc_i_i: kl = [(pubK (Friend k)). k ← [0..<friends]] =⇒
j < friends =⇒ CA_i’’’ l (pubK (Friend j)) f b pS (Suc i) kl =⇒
∃ ja < friends. CA_i’’’ (drop (Suc f) l) (pubK (Friend ja)) f b pS i kl

Applying induction for natural numbers again over i, the number of rounds allows now a straightforward
proof of the key lemma.

lemma CA_i’’’_CA_i: kl = [(pubK (Friend k)). k ← [0..<friends]] =⇒
∀ j < friends. ∀ l. CA_i’’’ l (pubK (Friend j)) f b pS i kl =⇒

CA_i l (pubK (Friend j)) f b pS i

This now allows reducing the correctness for the constructive test predicate CA n’’’ to that of the non-
constructive intermediate function CA n. Thus, we can prove correctness of the cocaine auction test
predicate CA n’’’ from which the Scala code in the Appendix is generated automatically by Isabelle.

theorem CAn’’’_CA: kl = [(pubK (Friend k)). k ← [0..<friends]] =⇒
CA_n’’’ evs (pubK (Friend j)) friends (pubK Server) bid i mtng kl =⇒
j < friends =⇒ evs ∈ cocaine_auction

6.4 Discussion of Practical Solution

In the following we look at potential weaknesses of the approach and conclude that although each system
has limitations, workarounds are now so difficult and expensive that they are not practically viable.

If we are extremely sceptical then even for such a scenario attacks cannot be completely ruled out
but may occur on different levels:

• The computer hardware has been tempered with and whatever kind of operating system we try to
install, the system just pretends to install the system, and whatever kind of program we compile
another program will actually run.

• The Scala compiler has been changed so that it does not actually compile the Scala code in a way
that we expect.

• The Isabelle system has been changed so that the extracted code is not accurate.

67



Insider Threats and Auctions Kammüller, Kerber, and Probst

Let us assume that each of these steps produces something that is close enough to what we all expect
but changes the behaviour substantially without the experts noticing. This requires substantial amounts
of efforts, designing a chip, getting hold of the production/delivery line of the computer, building a new
compiler and penetrating into a certification agency to falsify a certificate, hijacking the Isabelle system.
All this is thinkable, but will typically be very difficult to achieve and very expensive. To look at a
historic precedent for instance, in case of the Stuxnet worm [26] it is assumed that the USA and Israel
were behind the attack and that it required a substantial amount of work. Still most of these attacks can
be made even more difficult in that each expert brings their own trusted system and all these are run in
parallel and matters proceed only if all systems agree.

The situation is in some way analogous to reinforcing a house against burglaries. There is a big
difference between leaving the door wide open and having a special door and other reinforcements that
can be penetrated only under great difficulty, causing a lot of work and taking considerable time. From
a certain point on, the work and the increased risk make a burglary look unattractive and poor value for
money. Likewise in the case of the cocaine auction, the effort to practically cheat the system looks very
high compared to the potential gain.

We should also note that practically we assume that all the critical software is written in Isabelle
and their formal properties are proved in Isabelle. The properties need human inspection in order to
check that they actually are the desired properties. The proofs, however, need no human inspection.
The Isabelle system guarantees their correctness and the proofs are checked by Isabelle after starting the
system before the code is extracted. This way, the most significant amount of work is done by the Isabelle
system (of course only after the proofs were interactively generated, in this case by the first author of this
paper).

A practical system would contain other non-critical parts such as its graphical user interface which
are not generated via Isabelle. These parts could typically be kept small and simple and would need
thorough inspection by the experts of the parties involved.

7 Conclusions

In this paper, we have investigated the vulnerability of auctions to insider attacks in particular different
forms of collusion. We used the cocaine auction protocol as a case study that takes mistrust to an
extreme. Using modelling and analysis in Isabelle we experimented with two different approaches, the
inductive approach to security protocols and the Isabelle insider framework. We were able to model
the protocol in the inductive approach and show that its formal specification excludes a possible insider
attack, the “sweetheart deal”. Integrating the inductive approach with the Isabelle insider framework
enabled showing that collusion between all bidders, so-called “ringing”, cannot be excluded. In order
to prove the latter theorem, we formalized a notion of “homo-oeconomicus” for the cocaine auction
protocol.

In addition to the earlier paper [5], we provided a practical implementation of a constructive test
predicate that realizes the protocol in Scala. The code has been generated by a mechanism of Isabelle to
generate Scala code from constructive definitions. Moreover, we proved correctness of the constructive
test predicate in Isabelle with respect to the inductive definition of the protocol.

Isabelle is a very general and very powerful tool that has been successfully applied in a broad range
of applications. The application areas include advanced pure mathematics (for instance, some properties
relevant in the proof of the Kepler conjecture [27]), economic applications such as proofs of Arrow’s
theorem [28], properties of algorithms (such as Dijkstra’s shortest path algorithm [29]) and many more
areas as found in the Archive of Formal Proofs7. More specifically relevant to the current work are proofs

7See, https://www.isa-afp.org/.
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on auctions [1], proofs on verifying cryptographic protocols [30], and proofs on Insider threats [2]. The
current work reuses those previous works integrating them to enable the formalisation of an auction
protocol that uses broadcasting to enable anonymity. While some of the issues around broadcasting have
been addressed in more recent extensions of the inductive approach [31] for group protocols, we provide
our own solutions tailored to the specific needs of insider threats.

An important alternative approach to our approach to machine supported verification of security
protocols is the use of specialised model checkers, for example, Avispa [32], Proverif [33], or the earlier
Casper [15]. The main advantage of model checking is the full automation of the verification process:
model checking is a “push-button” technique of analysis. The immediate disadvantage of this approach is
the limitation to finite models – and the accompanying “state explosion problem” – which requires strong
abstraction when modelling security protocols. From a protocol modelling and analysis point of view,
we believe that the bigger problem with model checking is that predefined implemented abstractions
need to be used when modelling protocols. For example, witness or authentication on are fixed
predicates that have the quality of keywords in Avispa allowing the specification of assertions within
protocols and in properties to be verified but their semantics is practically in the eye of the beholder:
there is a clear semantics but does it match the intuition of the user who defines the specification? And
is it also clear to the user who reads the specification and needs to take these keywords as guarantees of
security properties?

The Isabelle approach, by comparison, comes with more effort on the side of proofs of security
properties but the expressive and flexible modelling capabilities of Higher Order Logic enable a better
understanding of models since the basis is common logical and mathematical language.

Limitations of our model are discussed in the previous section showing that – despite the formality
introduced and frameworks used – all guarantees depend on the abstraction we chose when modelling.
Any formalization and proof of system properties depends always on the model we consider. This is
also true for the system abstractions of protocols and auctions. Therefore, the implicit assumptions about
real world participants are crucial. The use of the insider framework makes role impersonation explicit
in models and therefore helps to understand in more detail how insider attacks work in auctions. The
additional assumption homo oeconomicus could be a beneficial extension to enrich the Isabelle insider
framework by a notion of a rational insider although its general assumption as part of an Insider definition
is disputable.

Future research includes exploring whether the additional assumptions we encountered here are more
generally valid for comparable insider attack scenarios. We are currently interested in applying the Is-
abelle insider framework to IoT system scenarios in particular for cost effective health care systems, for
example, using smart phones and other smart devices for monitoring for the diagnosis of Alzheimer’s
disease [34]. In this context, insider threats at the organisational level are challenging but also protocols
that are in use to communicate sensitive data to servers for different purposes: anonymised data col-
lected for research purposes, complete patient data to hospital servers for monitoring and diagnosis, but
also partially sanitized data to health insurers. Another avenue for research could be to generalise the
combination of security protocol formalisation and code generation in Isabelle. The current additional
move to reality appears quite successful. So it seems promising to extract the tricks applied for refining
the abstract inductive protocol specification to constructive test predicates. Those mechanisms might
constitute a generic mechanism for producing code from (security) protocol specifications.

Acknowledgement

Part of the research leading to these results has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement no. 318003 (TRESPASS). This publi-

69



Insider Threats and Auctions Kammüller, Kerber, and Probst

cation reflects only the authors’ views and the Union is not liable for any use that may be made of the
information contained herein.

References

[1] M. B. Caminati, M. Kerber, C. Lange, and C. Rowat, “Sound auction specification and implementation,” in
Proc. of the 16th ACM Conference on Economics and Computation (EC’15), Portland, Oregon, USA. ACM,
June 2015, pp. 547–564.

[2] F. Kammüller and C. W. Probst, “Modeling and verification of insider threats using logical analysis,” IEEE
Systems Journal, pp. 1–12, August 2015.

[3] L. C. Paulson, “The inductive approach to verifying cryptographic protocols,” Journal of Computer Security,
vol. 6, no. 1-2, pp. 85–128, September 1998.

[4] F. Stajano and R. Anderson, “The cocaine auction protocol: On the power of anonymous broadcast,” in Proc.
of the 3rd International Workshop Information Hiding (IH’99), Dresden, Germany, ser. Lecture Notes in
Computer Science, vol. 1768. Springer, Berlin, Heidelberg, September 1999, pp. 434–447.

[5] F. Kammüller, M. Kerber, and C. Probst, “Towards formal analysis of insider threats for auctions,” in Proc. of
the 8th ACM CCS International Workshop on Managing Insider Security Threats (MIST’16), Vienna, Austria.
ACM, October 2016, pp. 23–34.

[6] P. Klemperer, Auctions: Theory and Practice. Princeton University Press, 2004.
[7] V. Krishna, Auction Theory. Academic Press, 2002.
[8] D. M. Cappelli, A. P. Moore, and R. F. Trzeciak, The CERT Guide to Insider Threats: How to Prevent, Detect,

and Respond to Information Technology Crimes (Theft, Sabotage, Fraud). Addison-Wesley Professional,
February 2012.

[9] D. Chaum, “The dining cryptographers problem: Unconditional sender and recipient untraceability,” Journal
of Cryptology, vol. 1, no. 1, pp. 65–75, January 1988.

[10] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions in Information Theory,
vol. 22, no. 6, pp. 644–654, November 1976.

[11] U. Maurer and S. Wolf, “The Diffie-Hellman protocol,” Designs, Codes and Cryptography, vol. 19, no. 2,
pp. 147–171, March 2000.

[12] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryp-
tosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126, February 1978.

[13] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger, D. Springall,
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A Generated Scala Code

This appendix contains the Scale code automatically generated from the definitions in Section 6.2. Rather
than inlining comments into the code, we document it altogether here in the beginning. Most of the code
is generated from the underlying theories on cryptography and protocol primitives: objects HOL, Nat,
Message, Event contain class definitions for the datatypes in those theories and method (or function)
definitions for the functions defined in the respective Isabelle theories over those datatypes. Interesting
parts of the generation process can be observed in the definitions of functions, for example, equal agent

and equal msg that are due to the semantics of datatype definitions in Isabelle. Constructors of dataypes
in Isabelle are injective functions and they are distinct. For example, if Number(x2) = Number(y2),
then x2 = y2 because constructor Number is injective. Similarly, Spy = Friend j => false, that
is, they are unequal for all j since both are constructors of dataype agent, hence distinct. Since these
properties are not generally the case in Scala, those implicit properties of datatypes lead to a list of
properties spelling out the corresponding formulas for all combinations of data type constructors.

Object Lista contains the portion of list functionality of Isabelle that we use in our specification of
the cocaine auction protocol. For example, we compare lists using the generic Isabelle equality “=” but
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since this is applied to a list type in our test predicate the code generator needs to create the corresponding
“higher order” predicate equal list in Scala.

Finally, the object CocaineAuction contains the code of the test predicates for which we requested
code generation by adding the line

export code CA_f0 CA_fi CA_fn CA_i’’’ CA_n’’’ in Scala

to our Isabelle theory (see Section 6.2). For each of the listed test predicates, Isabelle generates the
correspondingly named Scala functions. They correspond very closely to their Isabelle counterparts now
that the underlying “machinery” has been provided. Note that the quotes behind the predicate name
CA n’’’ are omitted in the generation.

object HOL {

trait equal[A] {

val ‘HOL.equal‘: (A, A) => Boolean

}

def equal[A](a: A, b: A)(implicit A: equal[A]): Boolean = A.‘HOL.equal‘(a, b)

def eq[A : equal](a: A, b: A): Boolean = equal[A](a, b)

} /* object HOL */

object Nat {

abstract sealed class nat

final case class zero_nat() extends nat

final case class Suc(a: nat) extends nat

def equal_nata(x0: nat, x1: nat): Boolean = (x0, x1) match {

case (zero_nat(), Suc(x2)) => false

case (Suc(x2), zero_nat()) => false

case (Suc(x2), Suc(y2)) => equal_nata(x2, y2)

case (zero_nat(), zero_nat()) => true

}

implicit def equal_nat: HOL.equal[nat] = new HOL.equal[nat] {

val ‘HOL.equal‘ = (a: nat, b: nat) => equal_nata(a, b)

}

def less_eq_nat(x0: nat, n: nat): Boolean = (x0, n) match {

case (Suc(m), n) => less_nat(m, n)

case (zero_nat(), n) => true

}

def less_nat(m: nat, x1: nat): Boolean = (m, x1) match {

case (m, Suc(n)) => less_eq_nat(m, n)

case (n, zero_nat()) => false

}

} /* object Nat */

object Message {
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abstract sealed class agent

final case class Server() extends agent

final case class Friend(a: Nat.nat) extends agent

final case class Spy() extends agent

abstract sealed class msg

final case class Agent(a: agent) extends msg

final case class Number(a: Nat.nat) extends msg

final case class Nonce(a: Nat.nat) extends msg

final case class Key(a: Nat.nat) extends msg

final case class Hash(a: msg) extends msg

final case class MPair(a: msg, b: msg) extends msg

final case class Crypt(a: Nat.nat, b: msg) extends msg

def equal_agent(x0: agent, x1: agent): Boolean = (x0, x1) match {

case (Friend(x2), Spy()) => false

case (Spy(), Friend(x2)) => false

case (Server(), Spy()) => false

case (Spy(), Server()) => false

case (Server(), Friend(x2)) => false

case (Friend(x2), Server()) => false

case (Friend(x2), Friend(y2)) => Nat.equal_nata(x2, y2)

case (Spy(), Spy()) => true

case (Server(), Server()) => true

}

def equal_msg(x0: msg, x1: msg): Boolean = (x0, x1) match {

case (MPair(x61, x62), Crypt(x71, x72)) => false

case (Crypt(x71, x72), MPair(x61, x62)) => false

case (Hash(x5), Crypt(x71, x72)) => false

case (Crypt(x71, x72), Hash(x5)) => false

case (Hash(x5), MPair(x61, x62)) => false

case (MPair(x61, x62), Hash(x5)) => false

case (Key(x4), Crypt(x71, x72)) => false

case (Crypt(x71, x72), Key(x4)) => false

case (Key(x4), MPair(x61, x62)) => false

case (MPair(x61, x62), Key(x4)) => false

case (Key(x4), Hash(x5)) => false

case (Hash(x5), Key(x4)) => false

case (Nonce(x3), Crypt(x71, x72)) => false

case (Crypt(x71, x72), Nonce(x3)) => false

case (Nonce(x3), MPair(x61, x62)) => false

case (MPair(x61, x62), Nonce(x3)) => false

case (Nonce(x3), Hash(x5)) => false

case (Hash(x5), Nonce(x3)) => false

case (Nonce(x3), Key(x4)) => false

case (Key(x4), Nonce(x3)) => false

case (Number(x2), Crypt(x71, x72)) => false

case (Crypt(x71, x72), Number(x2)) => false

case (Number(x2), MPair(x61, x62)) => false

case (MPair(x61, x62), Number(x2)) => false

case (Number(x2), Hash(x5)) => false

case (Hash(x5), Number(x2)) => false

case (Number(x2), Key(x4)) => false
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case (Key(x4), Number(x2)) => false

case (Number(x2), Nonce(x3)) => false

case (Nonce(x3), Number(x2)) => false

case (Agent(x1), Crypt(x71, x72)) => false

case (Crypt(x71, x72), Agent(x1)) => false

case (Agent(x1), MPair(x61, x62)) => false

case (MPair(x61, x62), Agent(x1)) => false

case (Agent(x1), Hash(x5)) => false

case (Hash(x5), Agent(x1)) => false

case (Agent(x1), Key(x4)) => false

case (Key(x4), Agent(x1)) => false

case (Agent(x1), Nonce(x3)) => false

case (Nonce(x3), Agent(x1)) => false

case (Agent(x1), Number(x2)) => false

case (Number(x2), Agent(x1)) => false

case (Crypt(x71, x72), Crypt(y71, y72)) =>

Nat.equal_nata(x71, y71) && equal_msg(x72, y72)

case (MPair(x61, x62), MPair(y61, y62)) =>

equal_msg(x61, y61) && equal_msg(x62, y62)

case (Hash(x5), Hash(y5)) => equal_msg(x5, y5)

case (Key(x4), Key(y4)) => Nat.equal_nata(x4, y4)

case (Nonce(x3), Nonce(y3)) => Nat.equal_nata(x3, y3)

case (Number(x2), Number(y2)) => Nat.equal_nata(x2, y2)

case (Agent(x1), Agent(y1)) => equal_agent(x1, y1)

}

} /* object Message */

object Event {

abstract sealed class event

final case class Says(a: Message.agent, b: Message.agent, c: Message.msg)

extends event

final case class Gets(a: Message.agent, b: Message.msg) extends event

final case class Notes(a: Message.agent, b: Message.msg) extends event

def equal_eventa(x0: event, x1: event): Boolean = (x0, x1) match {

case (Gets(x21, x22), Notes(x31, x32)) => false

case (Notes(x31, x32), Gets(x21, x22)) => false

case (Says(x11, x12, x13), Notes(x31, x32)) => false

case (Notes(x31, x32), Says(x11, x12, x13)) => false

case (Says(x11, x12, x13), Gets(x21, x22)) => false

case (Gets(x21, x22), Says(x11, x12, x13)) => false

case (Notes(x31, x32), Notes(y31, y32)) =>

Message.equal_agent(x31, y31) && Message.equal_msg(x32, y32)

case (Gets(x21, x22), Gets(y21, y22)) =>

Message.equal_agent(x21, y21) && Message.equal_msg(x22, y22)

case (Says(x11, x12, x13), Says(y11, y12, y13)) =>

Message.equal_agent(x11, y11) &&

(Message.equal_agent(x12, y12) && Message.equal_msg(x13, y13))

}

implicit def equal_event: HOL.equal[event] = new HOL.equal[event] {

val ‘HOL.equal‘ = (a: event, b: event) => equal_eventa(a, b)
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}

} /* object Event */

object Lista {

def upt(i: Nat.nat, j: Nat.nat): List[Nat.nat] =

(if (Nat.less_nat(i, j)) i :: upt(Nat.Suc(i), j) else Nil)

def drop[A](n: Nat.nat, x1: List[A]): List[A] = (n, x1) match {

case (n, Nil) => Nil

case (n, x :: xs) =>

(n match {

case Nat.zero_nat() => x :: xs

case Nat.Suc(m) => drop[A](m, xs)

})

}

def take[A](n: Nat.nat, x1: List[A]): List[A] = (n, x1) match {

case (n, Nil) => Nil

case (n, x :: xs) =>

(n match {

case Nat.zero_nat() => Nil

case Nat.Suc(m) => x :: take[A](m, xs)

})

}

def member[A : HOL.equal](x0: List[A], y: A): Boolean = (x0, y) match {

case (Nil, y) => false

case (x :: xs, y) => HOL.eq[A](x, y) || member[A](xs, y)

}

def map[A, B](f: A => B, x1: List[A]): List[B] = (f, x1) match {

case (f, Nil) => Nil

case (f, x21 :: x22) => f(x21) :: map[A, B](f, x22)

}

def equal_list[A : HOL.equal](x0: List[A], x1: List[A]): Boolean = (x0, x1)

match {

case (Nil, x21 :: x22) => false

case (x21 :: x22, Nil) => false

case (x21 :: x22, y21 :: y22) =>

HOL.eq[A](x21, y21) && equal_list[A](x22, y22)

case (Nil, Nil) => true

}

} /* object Lista */

object CocaineAuction {

import /*implicits*/ Nat.equal_nat, Event.equal_event

def CA_f0(t: List[Event.event], pS: Nat.nat, f: Nat.nat): Boolean =

Lista.equal_list[Event.event](t, Lista.map[Nat.nat,

76



Insider Threats and Auctions Kammüller, Kerber, and Probst

Event.event]((i: Nat.nat) =>

Event.Says(Message.Server(), Message.Friend(i),

Message.Key(pS)),

Lista.upt(Nat.zero_nat(), f)))

def CA_fi(t: List[Event.event], pF: Nat.nat, f: Nat.nat, bi: Nat.nat,

pS: Nat.nat):

Boolean

=

Lista.equal_list[Event.event](t, Event.Says(Message.Friend(f),

Message.Server(),

Message.Crypt(pS, Message.MPair(Message.Key(pF), Message.Number(bi)))) ::

Lista.map[Nat.nat,

Event.event]((i: Nat.nat) =>

Event.Says(Message.Friend(f), Message.Friend(i),

Message.Crypt(pS,

Message.MPair(Message.Key(pF), Message.Number(bi)))),

Lista.upt(Nat.zero_nat(), f)))

def CA_fn(t: List[Event.event], pF: Nat.nat, f: Nat.nat, bi: Nat.nat,

msg: Nat.nat):

Boolean

=

Lista.equal_list[Event.event](t, Lista.map[Nat.nat,

Event.event]((i: Nat.nat) =>

Event.Says(Message.Server(), Message.Friend(i),

Message.Crypt(pF,

Message.MPair(Message.Number(bi), Message.Number(msg)))),

Lista.upt(Nat.zero_nat(), f)))

def winner_i(x0: List[Event.event]): Option[Nat.nat] = x0 match {

case Nil => None

case x :: evs =>

(x match {

case Event.Says(_, Message.Server(), Message.Agent(_)) => None

case Event.Says(_, Message.Server(), Message.Number(_)) => None

case Event.Says(_, Message.Server(), Message.Nonce(_)) => None

case Event.Says(_, Message.Server(), Message.Key(_)) => None

case Event.Says(_, Message.Server(), Message.Hash(_)) => None

case Event.Says(_, Message.Server(), Message.MPair(_, _)) => None

case Event.Says(_, Message.Server(), Message.Crypt(_, a)) =>

(a match {

case Message.Agent(_) => None

case Message.Number(_) => None

case Message.Nonce(_) => None

case Message.Key(_) => None

case Message.Hash(_) => None

case Message.MPair(Message.Agent(_), _) => None

case Message.MPair(Message.Number(_), _) => None

case Message.MPair(Message.Nonce(_), _) => None

case Message.MPair(Message.Key(aa), _) => Some[Nat.nat](aa)

case Message.MPair(Message.Hash(_), _) => None

case Message.MPair(Message.MPair(_, _), _) => None

case Message.MPair(Message.Crypt(_, _), _) => None
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case Message.Crypt(_, _) => None

})

case Event.Says(_, Message.Friend(_), _) => None

case Event.Says(_, Message.Spy(), _) => None

case Event.Gets(_, _) => None

case Event.Notes(_, _) => None

})

}

def CA_i(l: List[Event.event], pF: Nat.nat, f: Nat.nat, b: Nat.nat => Nat.nat,

pS: Nat.nat, x5: Nat.nat, kl: List[Nat.nat]):

Boolean

=

(l, pF, f, b, pS, x5, kl) match {

case (l, pF, f, b, pS, Nat.zero_nat(), kl) => CA_f0(l, pS, f)

case (l, pF, f, b, pS, Nat.Suc(i), kl) =>

CA_fi(Lista.take[Event.event](Nat.Suc(f), l), pF, f, b(Nat.Suc(i)), pS) &&

(winner_i(Lista.drop[Event.event](Nat.Suc(f), l)) match {

case None => false

case Some(k) =>

Lista.member[Nat.nat](kl, k) &&

CA_i(Lista.drop[Event.event](Nat.Suc(f), l), k, f, b, pS, i, kl)

})

}

def CA_n(t: List[Event.event], pF: Nat.nat, f: Nat.nat, pS: Nat.nat,

b: Nat.nat => Nat.nat, n: Nat.nat, msg: Nat.nat, kl: List[Nat.nat]):

Boolean

=

CA_fn(Lista.take[Event.event](f, t), pF, f, b(n), msg) &&

(Nat.less_nat(Nat.zero_nat(), n) &&

CA_i(Lista.drop[Event.event](f, t), pF, f, b, pS, n, kl))

} /* object CocaineAuction */
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