
QoS-based Routing over Software Defined Networks

Andrew Kucminski, Ahmed Al-Jawad, Purav Shah, Ramona Trestian

School of Science and Technology,

Middlesex University

London, UK

{MK1629, AA3512}@live.mdx.ac.uk, {p.shah, r.trestian}@mdx.ac.uk

Abstract—Quality of Service (QoS) relies on the shaping of

preferential delivery services for applications in favour of

ensuring sufficient bandwidth, controlling latency and reducing

packet loss. QoS can be achieved by prioritizing important

broadband data traffic over the less important one. Thus,

depending on the users’ needs, video, voice or data traffic take

different priority based on the prevalent importance within a

particular context. This prioritization might require changes in

the configuration of each network entity which can be difficult in

traditional network architecture. To this extent, this paper

investigates the use of a QoS-based routing scheme over a

Software Defined Network (SDN). A real SDN test-bed is

constructed using Raspberry Pi computers as virtual SDN

switches managed by a centralized controller. It is shown that a

QoS-based routing approach over SDN generates enormous

control possibilities and enables automation.

Keywords—Quality of Service, Software Defined Networks,

Prioritized Routing, Networking.

I. INTRODUCTION

Nowadays, it is hard to imagine end-user devices without
Internet connection. Similarly, all the big organizations have
their own computer network connected to other organizations
networks. As this network of networks is growing in recent
years with a truly incredible speed, several trends are driving
users, organizations or network providers to develop new
network architectures. According to 0, these trends could be
devised into three main categories: increasing demand,
increasing supply and complex traffic patterns. Increasing
demands refer to trends that increase load on enterprise
networks as well as the Internet such as: Internet of Things
(IoT), Big Data, cloud computing and mobile data traffic.
Increasing supply is caused by rising demands which leads to
capacity expansion of network technologies, such as 4G or 5G
over Wi-Fi. If an organization requires specific network
behavior, an application can be developed according to specific
needs. These applications can be specific to common
networking functions like traffic engineering and security,
Quality of Service (QoS), routing, switching, monitoring,
virtualization and load balancing. QoS requirements forced on
the network are extended as a result of the multitude of
applications, and then network traffic load must be orchestrated
in an increasingly sophisticated and agile way.

In a traditional network, operators configure each node
individually by using Command-line Interface, but this option
can be limited to the functionality already installed. Large
networks can contain many nodes to configure or reconfigure
to implement new routing policies and any single network

entity is not aware of the whole network topology. Moreover,
the traditional networking industry has been dominated by
vendors with their proprietary management and solutions that
sometimes fail to satisfy their customers’ needs. In this context,
the main goal for Software Defined Networks (SDN) and the
OpenFlow technology is to separate the hardware from the
control software layer enabling the network operators to build
cheaper and easier to manage networks by allowing the
network to be open and programmable. This implies that
network automation as data traffic can be manipulated,
diverted and adjusted regardless of routing protocols.

Fig. 1. OpenFlow Network

 A traditional Ethernet switch consists of : data path – which
represents the part dedicated to the hardware, responsible for
packet forwarding; and the control path – which represents the
part dedicated to the software, responsible for taking decisions,
similar to an operating system.

In order to provide more control over the network, the
OpenFlow enabled switch separates the control plane from the
data plane. The control plane is moved outside the switch
enabling remotely control of the data plane through a secure
channel, as seen in Fig. 1. The control functions reside on the
OpenFlow Controller, making them independent of the
hardware they control. OpenFlow provides an abstraction of
the data plane through the use of flow table that can be
controlled over the secure channel by the OpenFlow
Controller. By making use of OpenFlow controllers, the
network administrators will be able to define flows and
policies.

TABLE I. RELATED WORKS SUMMARY

Ref Objective Performance Metric Evaluation Environment Findings

[8] Validate OpenFlow and test

maximum throughput

Validate OpenFlow function.

Maximum throughput with
different segment sizes.

SDN testbed with Open vSwitch

on Raspberry Pi

Similar performance to net-FGPA.

OpenFlow functionality successfully
operated.

[9] Open vSwitch design and

implementation.

High performance and

optimization, flow caches

Hypervisor Virtualization and flows controlling

resulted with gradual optimatization

for datacenters requirements
workload.

[10] Flow reconfiguration and

efficient response to service
demands through SDN.

Link up latency and link down

latency.

SDN testbed called Pi Stack

Switch

Network Administrator can recognize

link state and topology changes in less
than one second.

[11] SDN management and

configuration tasks across

different network types.

Various types of policies such

as: time, data usage,

authentication status, and
traffic flow.

Deployed in a campus network

and a home network.

Procera is feasible for network

policies, reduces the complexity of

network management considerably for
a range of network settings and

various network policies.

[12] Build and test OpenFlow based

mirroring switch.

Throughput Open vSwitch installed on laptop

and on Raspberry Pi as mirroring

switch.

OpenFlow-based laptop mirroring

switches are more useful then

Raspberry Pi for port mirroring.

[13] Analytic Hierarchy Process

(AHP) to select the best SDN

controller.

Top five SDN controllers

considering their current

deployment and utilization.

Using Analytic Hierarchy Process

(AHP) to select the best open

source SDN controller.

Ryu is the best SDN controller taking

into account the specific requirements.

[14] SDN Controllers Performance

Testing

Round Trip Time (RTT), TCP

bandwidth

Mininet tree topology simulation POX is not recommended for

environments where performance is
crucial.

 In this context, the control of network traffic flows is
moved from the infrastructure (switches and routers) to
administrators.

 Because evidently there are more and more users, devices
and services on the network, imposing changes in the network
infrastructure paves the way for new technologies such as
SDN. In the industry, the benefits of SDN technologies can be
seen in several networking sectors including: service
providers, Enterprise Campus Infrastructure, Data Centre and
Clouds and Wide Area Networks.

This paper investigates the use of QoS-based routing over

SDN. A real experimental SDN test-bed using Raspberry Pi

computers was built. The experiments demonstrate that QoS

can be delivered not only by prioritizing some data traffic

(e.g., multimedia streams) but also by redirecting particular

traffic flows through different links aiming at optimal

bandwidth utilization and fulfilling requirements based on

valid policies.

II. RELATED WORKS

SDN has already produced remarkable interest from both,
academia and industry. SDN with OpenFlow was first
introduced by McKeown et al. in [2] as a promising way to
enable innovation in production networks. Even though its first
purpose was for researchers to run experimental protocols
within their campus network, its advantages made it suitable
for commercial networks, being adopted by major players in
the market. For example, Google is using SDN with OpenFlow
technology since 2010 in order to reduce the backbone network
complexity and improve performance [3].

 The SDN architecture can enable the dynamic QoS
provisioning for various applications such as voice, video and

even real-time communications. Its main advantage is that it
simplifies monitoring and troubleshooting problems because it
provides a high level of visibility of the service quality
indicators, transmission of multimedia in real time and efficient
and effective traffic management. Caba et al. [4] investigated
QoS in the context of SDN showing a significant evaluation
improvement and increase in traffic utilization in network
throughput over bandwidth allocation and fairness among
various traffic classes. The evaluation results also proved that
actual QoS Config API is satisfying performance to enable
dynamic configuration QoS on forwarding devices. SDN as
relatively new technology is attractive to researches for tests
under various environments. Araniti et al. [5] investigated the
performance of SDN over wireless environments and
concluded that the use of OpenFlow introduces benefits in
terms of end-to-end delay, throughput, and jitter. Bayes'
theorem and Bayesian network model were used in [6] to find
the most feasible path that satisfies the QoS constraint.
Whereas in [7], the authors propose a compression-based
technique for SDN that aims at decreasing the link usage for
QoS applications while increasing the network observability.

 However, despite of testing SDN using virtual machines
such as well know network emulator Mininet

1
, test-beds that

utilize low cost tiny computer machines with embedded open
source Linux software can also be explored.

 Kim et al. [8] tested the OpenFlow functionality over an
experimental test-bed created using two Raspberry Pi with
OpenVSwitch [9] and Floodlight

2
 as the SDN controller. The

authors highlighted the many benefits of the low complex
experiment including effective performance comparable to

1 Mininet - http://mininet.org/

2 Floodlight - http://www.projectfloodlight.org/floodlight/

much more expensive devices, low cost and easy
programmable. However, they assessed that Raspberry Pi with
only one Ethernet interface is not sufficient to process multiple
connection individually. Thus, Han et al. [10] developed
another SDN experimental test-bed based on Raspberry Pi,
created on Pi Stack Switch using the Network – Hypervisor
called OpenVirteX. They addressed the issue of one Ethernet
device by making use of USB to Ethernet adapters. This way
the authors managed the network architecture with four
Raspberry Pi computers, where one Raspberry Pi acted as a
controller and three others as OpenFlow protocol supported
switches. By use of OpenVirteX hypervisor with virtualization
functionality they created Pi Stack Switch with 10 ports. The
tests included topology changes latency, amount of time
reaction due to a network failure and state changes of links.

 As there is still a lot of on-going work within the OpenFlow
technology, understanding its performance limitations is
crucial before using it in large-scale deployments. A summary
of related works is listed in Table I.

III. QOS-BASED FRAMEWORK FOR SDN

A. System Architecture

 The general QoS-based framework for SDN is illustrated in
Fig. 2. The framework consists of a SDN controller integrating
custom modules to manage routing, SDN Switch implementing
the flow tables, and the end-host running the applications. The
interaction between the SDN Controller and the SDN Switch is
done using the OpenFlow Protocol.

Fig. 2. System Architecture

The SDN controller consists of the following functional blocks:

 Topology block is used to store information about all
devices, ports and the links currently up in the network.
The topology discovery is done by generating link
events using the Link Layer Discovery Protocol
(LLDP) packets.

 Stats Collector block is used to keep track of the links
load by periodically collecting load information from
the switch ports counter.

 Path Weight block is used to compute a weight for
each path in the topology. The weight is computed
based on the available link capacity.

 QoS Path Compute block is used to compute the paths
the flows could take to reach the destination and enable
QoS provisioning.

 Set of Rules and Path Install block sends the computed
paths and rules to the switch.

 Network Map block is used to store a map of the
network.

B. QoS Path Computation

The QoS Routing is done based on a weighted routing
algorithm as the one proposed in [15]. When the controller
receives a packet of a new flow, it computes all the possible
paths the flow might take to reach the destination. For each
path, a weight is computed based on the current load. The path
with the highest weight is selected as the target. The switch
port counters are used to collect information about the load for
each link, identify the imbalances in the traffic load and
compute the paths weight.

Thus, assuming the network topology represented by a
connected graph G = (V, E), with the set of nodes V and the

directed set of edges E. Given F⊂V
2

as the set of source-

destination flows, a set N(s,d) of shortest paths between any
source-destination pairs (s, d) ϵ F is computed. Furthermore,
we assume that for any node v ϵ V, any path i ϵ N(s,d) has a
number of Mi subpaths and each subpath j ϵ Mi has a number of
Sij segments. We denote with λkji and ckji the traffic link load,
which is taken from the SDN switch port counters by polling
the switch port using standard OpenFlow mechanisms, and the
link capacity on segment k, of subpath j, of path i, respectively.
Thus, the Link Utilisation Ratio (LUR) is defined as in (1) [15].

 (1)

Furthermore, at each node v ϵ V, and for any path the flow
could take to reach the destination, a weight is computed. Thus,
for any path i ϵ N(s,d) the weight wi is computed using (2) [15]
where wi ϵ [0,1] and . The highest the path weight,
the less loaded the path is. The path is is selected as the target
path and the set of rules and path install instructions are sent to
the SDN switches on the path.

 (2)

IV. EXPERIMENTAL SETUP

A. Experimental Test-Bed Setup

 A real experimental test-bed was setup, as illustrated in Fig.
3, consisting of four Raspberry Pi running the Open vSwitch
(OVS), two host PCs, a Server and the Open Network
Operation System (ONOS)

3
 Controller. Each Raspberry Pi is

equipped with several USB to Ethernet adapters to enable
multiple Ethernet ports on the OVS SDN switches and create a
multi-path environment. The four OVS devices are managed
by one centralized SDN controller ONOS installed on an
Apple MacBook Pro machine running El Captian operating
system. Table II presents a list with the hardware specification
used for the experimental setup.

3 ONOS - http://onosproject.org/

Fig. 3. Experimental Test-Bed

TABLE II. LIST OF HARDWARE COMPONENTS FOR EXPERIMENTAL TEST-BED

Hardware Version Specification

Raspberry Pi 2 Model B

Quad Core CPU 900

MHz, 1GB RAM, 16GB

ROM

USB 2 Fast Ethernet

Adapter
VK-QF970 RJ45 10

USB Fast Ethernet

Adapter
D Link RJ45 10/100

Network Cables Cat 5e Up to 100Mbps

Sony VAIO

workstation
VPCJ 12 LOE

HP Laptop ProLiant Gen8 G1610T

Apple Laptop MacBook Pro 13

Switch
NETGEAR GS305-

100UKS
5-Port Gigabit

B. Experimental Scenarios

Several experimental scenarios are considered to test the
performance of QoS-based routing over the real experimental
test-bed, such as: continuous UDP traffic is generated between
the PC0 host and the Server considering four data rates: 0.5
Mbps, 1Mbps, 2Mbps and 3Mbps. Whereas, TCP traffic is
generated between the PC1 host and the Server. iPerf version 3
was used for generating traffic. In this case, we investigate the
use of QoS-based routing and shortest path routing.
Additionally, a link failover scenario is considered where the
shortest path link is disturbed while PC1 host is transmitting
data to the Server.

V. RESULTS AND DISCUSSIONS

A. Test-Bed Limitations

The overall test-bed setup was tested in order to determine
the capacity and the maximum available resources. This was
done using iPerf. The Raspberry Pi 2 model B is equipped with
one RJ45 10/100 network socket and four USB ports. Thus, to
enable us to create a mesh topology network four USB to
Ethernet adapters were used for each Raspberry Pi. Although,
Raspberry Pi has sufficient processing power to handle the
connected USB to Ethernet adapters, the tested speed of the
adapters turned out to achieve 4Mbps only, which limited the
overall test-bed capacity. Thus, the maximum generated traffic
in case of UDP was set at 3 Mbps.

B. System Throughput

 The overall test-bed is monitored and managed by the
ONOS controller which also enables us to view the network
topology with all the devices and the active flows through the
ONOS GUI. We investigated the maximum throughput that
can be achieved by the system when using the shortest path and
the QoS-based path. In the first case, all the traffic is routed
over the shortest path following the OVS4-OVS2 link (see Fig.
3). In the case of QoS-based routing, as UDP starts first, it will
occupy the shortest path. When the TCP traffic starts, the SDN
controller will route it through the next less congested path,
using the OVS4-OVS3-OVS2 links. In this way, the imbalance
in the traffic load over the experimental test-bed is avoided.
Fig. 4 illustrates the achieved throughput from the ONOS GUI
for various data rates of the UDP traffic (i.e., 0.5Mbps, 1Mbps,
and 3Mbps) and the TCP traffic between PC1-Server in case of

a) Shortest path – UDP 0.5Mbps

b) QoS-based path – UDP 0.5Mbps

c) Shortest path – UDP 1Mbps

d) QoS-based path – UDP 1Mbps

e) Shortest path – UDP 3Mbps

f) QoS-based path – UDP 3Mbps

Fig.4. Throughput for Shortest path and QoS-based path for UDP 0.5Mbps, 1Mbps, and 3Mbp

.

Fig. 5. Achieved Throughput PC1-Server under the four UDP data rates

shortest path and QoS-based path. The achieved throughput for
all the UDP data rates is illustrated in Fig. 5. It can be noticed
that in case of the shortest path, where the traffic flows are
sharing common links, for the first scenario with UDP data rate
of 0.5Mbps, the TCP traffic reaches as high as 2.79Mbps.
However, as the UDP data rate increases the throughput for the
TCP traffic decreases significantly, reaching as low as
0.88Mbps when the UDP data rate of 3Mbps is streamed. In

the case of QoS-based path, as the UDP traffic increases it has
a negligible impact on the TCP throughput. For example, when
the UDP stream data rate is 0.5Mbps the TCP throughput goes
as up as 3.11Mbps, whereas when the UDP stream data rate is
3Mbps the TCP traffic throughput goes as low as 2.6Mbps.

C. System Packet Loss

In order to investigate the overall system performance in terms
of packet loss in case of shortest path and QoS-based path,
UDP traffic was generated between PC1-Server at the
maximum link capacity. The UDP traffic between PC0-Server
was set at 1Mbps, 2Mbps and 3Mbps. In this way, the two
paths containing the OVS4-OVS2 link and the OVS4-OVS3-
OVS2 links are over utilized. Thus, in the case of shortest path
all the traffic is going through the OVS4-OVS2 link, whereas
in the case of QoS-based path, the PC0-Server UDP traffic is
passing through the OVS4-OVS2 link and the PC1-Server
UDP traffic is going through the OVS4-OVS3-OVS2 links.
The results are illustrated in Fig. 6. As the test-bed is also
limited by the capacity and processing of the USB to Ethernet
adapters, this causes increased packet loss especially when the
setup is used at its maximum capacity. Additionally, the

packet loss when the shortest path is used is much higher than
when the QoS-based path is used.

Fig. 6. Packet Loss Rate PC1-Server under three UDP data rates

D. Link Failover

 In this scenario we test the reaction of the system to the link
failover. To emulate the link failure, the cable connecting two
switches that connect the hosts was removed, during data
transmission as illustrated in Fig. 7. Initially the traffic is
following the shortest path (see Fig. 7a) when the link drops.
The ONOS controller detects the link failure and reroutes the
traffic over a different path (see Fig. 7b). The latency
introduced by the controller for link down is 3ms and for link
up is 8ms. This latency is due to the time it takes for the switch
to respond to OpenFlow request and replay messages.

a) Shortest Path Routing

b) Re-routing in case of Link Failover

Fig. 7. Link Failover Example

VI. CONCLUSIONS

This paper investigates the use of QoS-based routing over

a controlled SDN environment. A real experimental test-bed

was setup using Raspberry Pi computers running virtual SDN

switches and enabling a multi-path SDN environment

managed by the ONOS controller. The results show that

compared to the shortest path routing, a QoS-based routing

approach enables optimal bandwidth utilization by redirecting

some data traffic through less congested links and avoiding the

network traffic imbalances. However, the small scale test-bed

is limited in performance by the USB to Ethernet adapters

used which reduces in turn the overall system capacity.

Future works will consider creating a more stable test-bed

setup and faster USB to Ethernet adapters will be used to

improve the overall performance of the test-bed. A scalability

scenario will also be considered.

REFERENCES

[1] W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE,
IoT, and Cloud. Addison-Wesley Professional, 2015.

[2] N. McKeown et al., ‘OpenFlow: enabling innovation in campus
networks’, ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, p. 69, Mar. 2008.

[3] L. Faughnan, ‘Software Defined Networking’, TechCentral.ie, 01-May-
2013. [Online]. Available: http://www.techcentral.ie/pro/22. [Accessed:
07-Jan-2017].

[4] CM. Caba, J. Soler, ‘SDN-based QoS Aware Network Service
Provisioning’ in S Boumerdassi, S Bouzefrane & É Renault (eds),
Mobile, Secure, and Programmable Networking. Springer, pp. 119-133.
Lecture Notes in Computer Science, vol. 9395, DOI: 10.1007/978-3-
319-25744-0_11

[5] G. Araniti, J. Cosmas, A. Iera, A. Molinaro, R. Morabito, and A. Orsino,
‘OpenFlow over wireless networks: Performance analysis’, in 2014
IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting, 2014, pp. 1–5.

[6] A. Al-Jawad, R. Trestian, P. Shah, and O. Gemikonakli, ‘BaProbSDN:
A probabilistic-based QoS routing mechanism for Software Defined
Networks’, in Proceedings of the 2015 1st IEEE Conference on Network
Softwarization (NetSoft), 2015, pp. 1–5.

[7] A. Al-Jawad, P. Shah, O. Gemikonakli, and R. Trestian, ‘Compression-
based technique for SDN using sparse-representation dictionary’, in
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium, 2016, pp. 754–758.

[8] H. Kim, J. Kim, and Y.-B. Ko, ‘Developing a cost-effective OpenFlow
testbed for small-scale Software Defined Networking’, Advanced
Communication Technology (ICACT), 2014 16th International
Conference on, 2014, pp. 758–761.

[9] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J.
Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, M. Casado, “The
Design and Implementation of Open vSwitch.” USENIX NSDI 2015.

[10] S. Han and S. Lee, ‘Implementing SDN and network-hypervisor based
programmable network using Pi stack switch’, 2015, pp. 579–581.

[11] H. Kim and N. Feamster, ‘Improving network management with
software defined networking’, IEEE Communications Magazine, vol. 51,
no. 2, pp. 114–119, Feb. 2013.

[12] K. Ohira, ‘Performance Evaluation of an OpenFlow-based Mirroring
Switch on a Laptop/Raspberry Pi’, in Proceedings of The Ninth
International Conference on Future Internet Technologies, New York,
NY, USA, 2014, p. 20:1–20:2.

[13] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, ‘Feature-based
comparison and selection of Software Defined Networking (SDN)
controllers’, in 2014 World Congress on Computer Applications and
Information Systems (WCCAIS), 2014, pp. 1–7.

[14] A. L. Stancu, S. Halunga, A. Vulpe, G. Suciu, O. Fratu, and E. C.
Popovici, ‘A comparison between several Software Defined Networking
controllers’, in 2015 12th International Conference on
Telecommunication in Modern Satellite, Cable and Broadcasting
Services (SIKS), 2015, pp. 223–226.

[15] R. Trestian, G.-M. Muntean, and K. Katrinis, ‘MiceTrap: Scalable traffic
engineering of datacenter mice flows using OpenFlow’, in 2013
IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), 2013, pp. 904–907.

