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Abstract—Quality of Service (QoS) relies on the shaping of 

preferential delivery services for applications in favour of 

ensuring sufficient bandwidth, controlling latency and reducing 

packet loss. QoS can be achieved by prioritizing important 

broadband data traffic over the less important one. Thus, 

depending on the users’ needs, video, voice or data traffic take 

different priority based on the prevalent importance within a 

particular context. This prioritization might require changes in 

the configuration of each network entity which can be difficult in 

traditional network architecture. To this extent, this paper 

investigates the use of a QoS-based routing scheme over a 

Software Defined Network (SDN). A real SDN test-bed is 

constructed using Raspberry Pi computers as virtual SDN 

switches managed by a centralized controller. It is shown that a 

QoS-based routing approach over SDN generates enormous 

control possibilities and enables automation.   

Keywords—Quality of Service, Software Defined Networks, 

Prioritized Routing, Networking.  

I.  INTRODUCTION 

Nowadays, it is hard to imagine end-user devices without 
Internet connection. Similarly, all the big organizations have 
their own computer network connected to other organizations 
networks. As this network of networks is growing in recent 
years with a truly incredible speed, several trends are driving 
users, organizations or network providers to develop new 
network architectures. According to 0, these trends could be 
devised into three main categories: increasing demand, 
increasing supply and complex traffic patterns. Increasing 
demands refer to trends that increase load on enterprise 
networks as well as the Internet such as: Internet of Things 
(IoT), Big Data, cloud computing and mobile data traffic. 
Increasing supply is caused by rising demands which leads to 
capacity expansion of network technologies, such as 4G or 5G 
over Wi-Fi. If an organization requires specific network 
behavior, an application can be developed according to specific 
needs. These applications can be specific to common 
networking functions like traffic engineering and security, 
Quality of Service (QoS), routing, switching, monitoring, 
virtualization and load balancing. QoS requirements forced on 
the network are extended as a result of the multitude of 
applications, and then network traffic load must be orchestrated 
in an increasingly sophisticated and agile way.  

In a traditional network, operators configure each node 
individually by using Command-line Interface, but this option 
can be limited to the functionality already installed. Large 
networks can contain many nodes to configure or reconfigure 
to implement new routing policies and any single network 

entity is not aware of the whole network topology. Moreover, 
the traditional networking industry has been dominated by 
vendors with their proprietary management and solutions that 
sometimes fail to satisfy their customers’ needs. In this context, 
the main goal for Software Defined Networks (SDN) and the 
OpenFlow technology is to separate the hardware from the 
control software layer enabling the network operators to build 
cheaper and easier to manage networks by allowing the 
network to be open and programmable. This implies that 
network automation as data traffic can be manipulated, 
diverted and adjusted regardless of routing protocols. 

 

Fig. 1. OpenFlow Network 

 A traditional Ethernet switch consists of : data path – which 
represents the part dedicated to the hardware, responsible for 
packet forwarding; and the control path – which represents the 
part dedicated to the software, responsible for taking decisions, 
similar to an operating system.   

In order to provide more control over the network, the 
OpenFlow enabled switch separates the control plane from the 
data plane. The control plane is moved outside the switch 
enabling remotely control of the data plane through a secure 
channel, as seen in Fig. 1. The control functions reside on the 
OpenFlow Controller, making them independent of the 
hardware they control. OpenFlow provides an abstraction of 
the data plane through the use of flow table that can be 
controlled over the secure channel by the OpenFlow 
Controller. By making use of OpenFlow controllers, the 
network administrators will be able to define flows and 
policies.  



TABLE I.  RELATED WORKS SUMMARY 

Ref Objective Performance Metric Evaluation Environment Findings 

[8] Validate OpenFlow and test 

maximum throughput 

Validate OpenFlow function. 

Maximum throughput with 
different segment sizes. 

SDN testbed with Open vSwitch 

on Raspberry Pi 

Similar performance to net-FGPA. 

OpenFlow functionality successfully 
operated. 

[9] Open vSwitch design and 

implementation. 

High performance and 

optimization, flow caches 

Hypervisor Virtualization and flows controlling 

resulted with gradual optimatization 

for datacenters requirements 
workload. 

[10] Flow reconfiguration and 

efficient response to service 
demands through SDN. 

Link up latency and link down 

latency. 

SDN testbed called Pi Stack 

Switch 

Network Administrator can recognize 

link state and topology changes in less 
than one second. 

[11] SDN management and 

configuration tasks across 

different network types. 
 

Various types of policies such 

as: time, data usage, 

authentication status, and 
traffic flow. 

 

 

Deployed in a campus network 

and a home network. 

Procera is feasible for network 

policies, reduces the complexity of 

network management considerably for 
a range of network settings and 

various network policies. 

[12] Build and test OpenFlow based 

mirroring switch. 

Throughput  Open vSwitch installed on laptop 

and on Raspberry Pi as mirroring 

switch. 
 

OpenFlow-based laptop mirroring 

switches are more useful then 

Raspberry Pi for port mirroring. 

[13] Analytic Hierarchy Process 

(AHP) to select the best SDN 

controller. 

Top five SDN controllers 

considering their current 

deployment and utilization.  
 

Using Analytic Hierarchy Process 

(AHP) to select the best open 

source SDN controller.  

Ryu is the best SDN controller taking 

into account the specific requirements. 

[14] SDN Controllers Performance 

Testing 

Round Trip Time (RTT), TCP 

bandwidth 

Mininet tree topology simulation  POX is not recommended for 

environments where performance is 
crucial.  

 In this context, the control of network traffic flows is 
moved from the infrastructure (switches and routers) to 
administrators. 

 Because evidently there are more and more users, devices 
and services on the network, imposing changes in the network 
infrastructure paves the way for new technologies such as 
SDN. In the industry, the benefits of SDN technologies can be 
seen in several networking sectors including: service 
providers, Enterprise Campus Infrastructure, Data Centre and 
Clouds and Wide Area Networks. 

This paper investigates the use of QoS-based routing over 

SDN. A real experimental SDN test-bed using Raspberry Pi 

computers was built. The experiments demonstrate that QoS 

can be delivered not only by prioritizing some data traffic 

(e.g., multimedia streams) but also by redirecting particular 

traffic flows through different links aiming at optimal 

bandwidth utilization and fulfilling requirements based on 

valid policies. 

II. RELATED WORKS 

SDN has already produced remarkable interest from both, 
academia and industry. SDN with OpenFlow was first 
introduced by McKeown et al. in [2] as a promising way to 
enable innovation in production networks. Even though its first 
purpose was for researchers to run experimental protocols 
within their campus network, its advantages made it suitable 
for commercial networks, being adopted by major players in 
the market. For example, Google is using SDN with OpenFlow 
technology since 2010 in order to reduce the backbone network 
complexity and improve performance [3].  

 The SDN architecture can enable the dynamic QoS 
provisioning for various applications such as voice, video and 

even real-time communications. Its main advantage is that it 
simplifies monitoring and troubleshooting problems because it 
provides a high level of visibility of the service quality 
indicators, transmission of multimedia in real time and efficient 
and effective traffic management. Caba et al. [4] investigated 
QoS in the context of SDN showing a significant evaluation 
improvement and increase in traffic utilization in network 
throughput over bandwidth allocation and fairness among 
various traffic classes. The evaluation results also proved that 
actual QoS Config API is satisfying performance to enable 
dynamic configuration QoS on forwarding devices. SDN as 
relatively new technology is attractive to researches for tests 
under various environments. Araniti et al. [5] investigated the 
performance of SDN over wireless environments and 
concluded that the use of OpenFlow introduces benefits in 
terms of end-to-end delay, throughput, and jitter. Bayes' 
theorem and Bayesian network model were used in [6] to find 
the most feasible path that satisfies the QoS constraint. 
Whereas in [7], the authors propose a compression-based 
technique for SDN that aims at decreasing the link usage for 
QoS applications while increasing the network observability. 

 However, despite of testing SDN using virtual machines 
such as well know network emulator Mininet

1
, test-beds that 

utilize low cost tiny computer machines with embedded open 
source Linux software can also be explored. 

 Kim et al. [8] tested the OpenFlow functionality over an 
experimental test-bed created using two Raspberry Pi with 
OpenVSwitch [9] and Floodlight

2
 as the SDN controller. The 

authors highlighted the many benefits of the low complex 
experiment including effective performance comparable to 

                                                           
1 Mininet - http://mininet.org/ 

2 Floodlight - http://www.projectfloodlight.org/floodlight/ 



much more expensive devices, low cost and easy 
programmable. However, they assessed that Raspberry Pi with 
only one Ethernet interface is not sufficient to process multiple 
connection individually. Thus, Han et al. [10] developed 
another SDN experimental test-bed based on Raspberry Pi, 
created on Pi Stack Switch using the Network – Hypervisor 
called OpenVirteX. They addressed the issue of one Ethernet 
device by making use of USB to Ethernet adapters. This way 
the authors managed the network architecture with four 
Raspberry Pi computers, where one Raspberry Pi acted as a 
controller and three others as OpenFlow protocol supported 
switches. By use of OpenVirteX hypervisor with virtualization 
functionality they created Pi Stack Switch with 10 ports. The 
tests included topology changes latency, amount of time 
reaction due to a network failure and state changes of links. 

 As there is still a lot of on-going work within the OpenFlow 
technology, understanding its performance limitations is 
crucial before using it in large-scale deployments. A summary 
of related works is listed in Table I. 

III. QOS-BASED FRAMEWORK FOR SDN 

A. System Architecture 

 The general QoS-based framework for SDN is illustrated in 
Fig. 2. The framework consists of a SDN controller integrating 
custom modules to manage routing, SDN Switch implementing 
the flow tables, and the end-host running the applications. The 
interaction between the SDN Controller and the SDN Switch is 
done using the OpenFlow Protocol. 

 

Fig. 2. System Architecture 

The SDN controller consists of the following functional blocks:  

 Topology block is used to store information about all 
devices, ports and the links currently up in the network. 
The topology discovery is done by generating link 
events using the Link Layer Discovery Protocol 
(LLDP) packets.  

 Stats Collector block is used to keep track of the links 
load by periodically collecting load information from 
the switch ports counter. 

 Path Weight block is used to compute a weight for 
each path in the topology. The weight is computed 
based on the available link capacity. 

 QoS Path Compute block is used to compute the paths 
the flows could take to reach the destination and enable 
QoS provisioning. 

 Set of Rules and Path Install block sends the computed 
paths and rules to the switch. 

 Network Map block is used to store a map of the 
network. 

B. QoS Path Computation 

The QoS Routing is done based on a weighted routing 
algorithm as the one proposed in [15]. When the controller 
receives a packet of a new flow, it computes all the possible 
paths the flow might take to reach the destination. For each 
path, a weight is computed based on the current load. The path 
with the highest weight is selected as the target. The switch 
port counters are used to collect information about the load for 
each link, identify the imbalances in the traffic load and 
compute the paths weight.  

Thus, assuming the network topology represented by a 
connected graph G = (V, E), with the set of nodes V and the 

directed set of edges E. Given F⊂V
2 

as the set of source-

destination flows, a set N(s,d) of shortest paths between any 
source-destination pairs (s, d) ϵ F is computed. Furthermore, 
we assume that for any node v ϵ V, any path i ϵ N(s,d) has a 
number of Mi subpaths and each subpath j ϵ Mi has a number of 
Sij segments. We denote with λkji and ckji the traffic link load, 
which is taken from the SDN switch port counters by polling 
the switch port using standard OpenFlow mechanisms, and the 
link capacity on segment k, of subpath j, of path i, respectively. 
Thus, the Link Utilisation Ratio (LUR) is defined as in (1) [15].  

   (1) 

Furthermore, at each node v ϵ V, and for any path the flow 
could take to reach the destination, a weight is computed. Thus, 
for any path i ϵ N(s,d) the weight wi is computed using (2) [15] 
where wi ϵ [0,1] and . The highest the path weight, 
the less loaded the path is. The path is is selected as the target 
path and the set of rules and path install instructions are sent to 
the SDN switches on the path. 

  (2) 

IV. EXPERIMENTAL SETUP 

A. Experimental Test-Bed Setup 

 A real experimental test-bed was setup, as illustrated in Fig. 
3, consisting of four Raspberry Pi running the Open vSwitch 
(OVS), two host PCs, a Server and the Open Network 
Operation System (ONOS)

3
 Controller. Each Raspberry Pi is 

equipped with several USB to Ethernet adapters to enable 
multiple Ethernet ports on the OVS SDN switches and create a 
multi-path environment. The four OVS devices are managed 
by one centralized SDN controller ONOS installed on an 
Apple MacBook Pro machine running El Captian operating 
system. Table II presents a list with the hardware specification 
used for the experimental setup. 

                                                           
3 ONOS - http://onosproject.org/ 



 
Fig. 3. Experimental Test-Bed 

TABLE II.  LIST OF HARDWARE COMPONENTS FOR EXPERIMENTAL TEST-BED 

Hardware Version Specification 

Raspberry Pi 2 Model B 

Quad Core CPU 900 

MHz, 1GB RAM, 16GB 

ROM 

USB 2 Fast Ethernet 

Adapter 
VK-QF970 RJ45 10 

USB Fast Ethernet 

Adapter 
D Link RJ45 10/100 

Network Cables Cat 5e Up to 100Mbps 

Sony VAIO 

workstation 
VPCJ 12 LOE  

HP Laptop ProLiant Gen8 G1610T  

Apple Laptop MacBook Pro 13  

Switch 
NETGEAR GS305-

100UKS 
5-Port Gigabit 

B. Experimental Scenarios 

Several experimental scenarios are considered to test the 
performance of QoS-based routing over the real experimental 
test-bed, such as: continuous UDP traffic is generated between 
the PC0 host and the Server considering four data rates: 0.5 
Mbps, 1Mbps, 2Mbps and 3Mbps. Whereas, TCP traffic is 
generated between the PC1 host and the Server. iPerf version 3 
was used for generating traffic. In this case, we investigate the 
use of QoS-based routing and shortest path routing. 
Additionally, a link failover scenario is considered where the 
shortest path link is disturbed while PC1 host is transmitting 
data to the Server. 

V. RESULTS AND DISCUSSIONS 

A. Test-Bed Limitations 

The overall test-bed setup was tested in order to determine 
the capacity and the maximum available resources. This was 
done using iPerf. The Raspberry Pi 2 model B is equipped with 
one RJ45 10/100 network socket and four USB ports. Thus, to 
enable us to create a mesh topology network four USB to 
Ethernet adapters were used for each Raspberry Pi. Although, 
Raspberry Pi has sufficient processing power to handle the 
connected USB to Ethernet adapters, the tested speed of the 
adapters turned out to achieve 4Mbps only, which limited the 
overall test-bed capacity. Thus, the maximum generated traffic 
in case of UDP was set at 3 Mbps.  

B. System Throughput 

 The overall test-bed is monitored and managed by the 
ONOS controller which also enables us to view the network 
topology with all the devices and the active flows through the 
ONOS GUI. We investigated the maximum throughput that 
can be achieved by the system when using the shortest path and 
the QoS-based path. In the first case, all the traffic is routed 
over the shortest path following the OVS4-OVS2 link (see Fig. 
3). In the case of QoS-based routing, as UDP starts first, it will 
occupy the shortest path. When the TCP traffic starts, the SDN 
controller will route it through the next less congested path, 
using the OVS4-OVS3-OVS2 links. In this way, the imbalance 
in the traffic load over the experimental test-bed is avoided. 
Fig. 4 illustrates the achieved throughput from the ONOS GUI 
for various data rates of the UDP traffic (i.e., 0.5Mbps, 1Mbps, 
and 3Mbps) and the TCP traffic between PC1-Server in case of  



 

a) Shortest path – UDP 0.5Mbps 

 

b) QoS-based path – UDP 0.5Mbps 

 

c) Shortest path – UDP 1Mbps 

 

d) QoS-based path – UDP 1Mbps 

 

e) Shortest path – UDP 3Mbps 

 

f) QoS-based path – UDP 3Mbps 

Fig.4. Throughput for Shortest path and QoS-based path for UDP 0.5Mbps, 1Mbps, and 3Mbp

. 

 

Fig. 5. Achieved Throughput PC1-Server under the four UDP data rates 

shortest path and QoS-based path. The achieved throughput for 
all the UDP data rates is illustrated in Fig. 5. It can be noticed 
that in case of the shortest path, where the traffic flows are 
sharing common links, for the first scenario with UDP data rate 
of 0.5Mbps, the TCP traffic reaches as high as 2.79Mbps. 
However, as the UDP data rate increases the throughput for the 
TCP traffic decreases significantly, reaching as low as 
0.88Mbps when the UDP data rate of 3Mbps is streamed. In 

the case of QoS-based path, as the UDP traffic increases it has 
a negligible impact on the TCP throughput. For example, when 
the UDP stream data rate is 0.5Mbps the TCP throughput goes 
as up as 3.11Mbps, whereas when the UDP stream data rate is 
3Mbps the TCP traffic throughput goes as low as 2.6Mbps.  

C. System Packet Loss 

In order to investigate the overall system performance in terms 
of packet loss in case of shortest path and QoS-based path, 
UDP traffic was generated between PC1-Server at the 
maximum link capacity. The UDP traffic between PC0-Server 
was set at 1Mbps, 2Mbps and 3Mbps. In this way, the two 
paths containing the OVS4-OVS2 link and the OVS4-OVS3-
OVS2 links are over utilized. Thus, in the case of shortest path 
all the traffic is going through the OVS4-OVS2 link, whereas 
in the case of QoS-based path, the PC0-Server UDP traffic is 
passing through the OVS4-OVS2 link and the PC1-Server 
UDP traffic is going through the OVS4-OVS3-OVS2 links. 
The results are illustrated in Fig. 6. As the test-bed is also 
limited by the capacity and processing of the USB to Ethernet 
adapters, this causes increased packet loss especially when the 
setup is used at its maximum capacity. Additionally, the 



packet loss when the shortest path is used is much higher than 
when the QoS-based path is used. 

 

Fig. 6. Packet Loss Rate PC1-Server under three UDP data rates 

D. Link Failover 

 In this scenario we test the reaction of the system to the link 
failover. To emulate the link failure, the cable connecting two 
switches that connect the hosts was removed, during data 
transmission as illustrated in Fig. 7. Initially the traffic is 
following the shortest path (see Fig. 7a) when the link drops. 
The ONOS controller detects the link failure and reroutes the 
traffic over a different path (see Fig. 7b). The latency 
introduced by the controller for link down is 3ms and for link 
up is 8ms. This latency is due to the time it takes for the switch 
to respond to OpenFlow request and replay messages. 

 

a) Shortest Path Routing 

 

b) Re-routing in case of Link Failover 

Fig. 7. Link Failover Example 

VI. CONCLUSIONS 

This paper investigates the use of QoS-based routing over 

a controlled SDN environment. A real experimental test-bed 

was setup using Raspberry Pi computers running virtual SDN 

switches and enabling a multi-path SDN environment 

managed by the ONOS controller. The results show that 

compared to the shortest path routing, a QoS-based routing 

approach enables optimal bandwidth utilization by redirecting 

some data traffic through less congested links and avoiding the 

network traffic imbalances. However, the small scale test-bed 

is limited in performance by the USB to Ethernet adapters 

used which reduces in turn the overall system capacity. 

Future works will consider creating a more stable test-bed 

setup and faster USB to Ethernet adapters will be used to 

improve the overall performance of the test-bed. A scalability 

scenario will also be considered. 
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