

 i

An Analysis on Controlling Humanoid Robot Arm Using Robot

Operating System (ROS)

Sriram Murali

A Thesis submitted to Middlesex University in partial fulfillment of the

requirements for the degree of

Master of Science (by Research)

Department of Design Engineering & Mathematics

Middlesex University, London

Supervisor: Dr. Vaibhav Gandhi

 Dr. Zhijun Yang

 ii

Acknowledgements

 I like to deliver my greatest obligation Dr. Vaibhav Gandhi and Dr.

Zhijun Yang for the endless support for my thesis, from initial advice from the

early stages of conceptual wellspring and through evolving advice and

inspiration to this day. I am thankful to them for guiding me to the Robotics

field.

 I would like to thank Dr. Tao Geng for serving advice through the

project work.

 I am thankful to Middlesex University Research team for providing me

an opportunity to pursue the Master’s degree as a research program.

 I like to acknowledge my parents for their intense support who motivated

and consoled me to go on my own way, beyond them it would have been

difficult to outright my thesis.

 iii

Abstract

 Humanoid robots are extensively discussed in modern days. The

movement task and manipulation of Humanoid Robots is examined based on

mobility of platforms and control of the arm. This project describes a robotic

arm that is analogous to an arm of a human being. Some important parameters

to be considered are reachability, stability and manipulability.

 This thesis aims at adapting a humanoid robot arm for performing

movement operation that can be used for various purposes. The proposed robot

arm has 3 motors on the left arm and 3 motors on the right arm thereby

constituting a total of 6 motors. This operation can be achieved by the use of

sensor like ultrasonic sensor. Here Beaglebone Black, an open source linux

based controller board is used. The Beaglebone Black acts as the main

controller for the entire system. A research is also being made to implement the

robotic arm using Robot Operating System (ROS) platform. ROS is preferred

since it is modular, simple and easy to use tools for development, it provides

good hardware support, lots of algorithms are implemented together as package,

etc.

 iv

Table of Contents
Acknowledgements ... ii

Abstract .. iii

List of Figures ... vi

List of Acronyms ... ix

Chapter 1 Introduction ... 1

1.1 Introduction .. 1

1.2 Rationale ... 2

1.3 Aims and Objectives .. 3

1.4 Overview of Thesis .. 3

1.5 Outline of the Thesis ... 4

Chapter 2 Methods of implementation of the Project ... 6

2.1 Robot Arm model .. 6

2.2 Implementing Humanoid Robot Arm movement ... 7

2.2.1 Gesture controlled arm using accelerometer .. 7

2.2.2 Haptic Controlled Robot Arm ... 7

2.2.3 Robotic Arm using Raspberry Pi ... 8

2.4 Conclusion ... 9

Chapter 3 Overview of working details ... 10

3.1 Hardware Components ... 10

3.1.1 Beaglebone Black ... 10

3.1.2 Ultrasonic Sensor ... 16

3.1.3 USB2Dynamixel Connector .. 17

3.1.4 Dynamixel AX-12A Motors ... 18

3.1.5 CM-530 Controller ... 18

3.2 Software Architecture ... 21

3.2.1 Choice of software used .. 21

3.2.2 Architecture of ROS .. 21

3.2.3 ROS Concepts ... 25

3.3 ROS Code Hierarchy .. 27

3.3.1 Communication between Nodes ... 27

3.3.2 ROS Ecosystem ... 27

3.4 Publishing and subscribing using ROS ... 29

3.4.1 Publishing Messages .. 29

 v

3.4.2 Subscribing Messages .. 30

3.5 ROS Package .. 30

3.5.1 ROS Dynamixel motor package .. 30

3.6 Implementation of the Project ... 30

3.6.1Installing the Operating System .. 30

3.7 Installing Debian OS in Beaglebone Black ... 31

3.7.1 Main Process .. 31

3.7.2 Debian Wheezy on a microSD card .. 32

3.7.3 Flashing Debian Wheezy to eMMC .. 32

Chapter 4 Manoeuver of the Robot arm for Grasping task .. 33

4.1 Introduction .. 34

4.2 Models and Materials ... 35

4.2.1 Humanoid Robot Arm specifications ... 35

4.2.2 Ultrasonic Sensor ... 35

4.3 The Experimental work ... 37

4.3.1 Program Structure .. 38

4.4 Working ... 42

4.5 Block Diagram ... 43

 .. 43

4.6 Conclusion ... 43

Chapter 5 Conclusion and Future works ... 44

5.1 Conclusion ... 44

5.2 Contributions to the Research .. 44

5.3 Limitations ... 46

5.4 Future works ... 48

Reference List .. 49

Appendix A .. 53

 vi

List of Figures

2.1 Humanoid Robot arm model…………………………………………….6

3.1 Beaglebone Black Controller……………………………………………11

3.2 Beaglebone Black switch locations……………………………………..12

3.3 Beaglebone Black User Leds……………………………………………13

3.4 Beaglebone Black key components……………………………………..13

3.5 Beaglebone Black Block diagram……………………………………….14

3.6 TPS65217C Block Diagram……………………………………………..15

3.7 Ultrasonic Sensor HC-SR04……………………………………………..17

3.8 USB2Dynamixel controller……………………………………………...18

3.9 Dynamixel Control using PC…………………………………………….18

3.10 Dynamixel AX-12A Motor……………………………………………..19

3.11 CM-530 controller………………………………………………………20

3.12 Parts of CM-530 controller……………………………………………..20

3.13 ROS Architecture……………………………………………………….24

3.14 ROS and Camera Node…………………………………………………24

3.15 ROS with camera topic…………………………………………………25

3.16 Publishing and Subscribing……………………………………………..25

3.17 Code Hierarchy………………………………………………………….28

3.18 Communication between Nodes…………………………………………29

3.19 ROS Master………………………………………………………………30

4.1 Flowchart of working model………………………………………………38

 vii

4.2 Connecting Ultrasonic sensor with Beaglebone Black……………………39

4.3 Working of Ultrasonic Sensor……………………………………………..40

4.4 Flowchart for the working of Dynamixel Motors………………………….43

4.5 Interfacing the motors with Beaglebone Black…………………………….44

4.6 Block Diagram……………………………………………………………..45

 viii

List of Tables

Table 3.1 Comparison between Software .…………………………………… 23

 ix

List of Acronyms

API Application Program Interface

ARM Acorn RISC Machine

CMOS Complementary Metal Oxide Semiconductor

DMS Data Management System

DDR3 Double Data Rate Type 3

eMMC Embedded Multi Media Controller

GA Genetic Algorithm

GMM Gaussian Matrix Model

GMR Gaussian Matrix Regression

GNU GNU’s Not Unix

GPIO General Purpose Input Output

GPU Graphics Processing Unit

LCD Liquid Crystal Display

LCM Light weight Communications and Marshaling

LED Light Emitting Diode

OpenCV Open Source Computer Vision

OS Operating System

PIC Peripheral Interface Controller

PID Proportional Integral Derivative Controller

PWM Pulse Width Modulation

RAM Random Access Memory

ROS Robot Operating System

 x

RL Reinforcement Learning Algorithm

RPC Remote Procedure Call

SWM Support Vector Machine Algorithm

SMPS Switch Mode Power Supply

TCP/IP Transmission Control Protocol/Internet Protocol

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

USB Universal Serial Bus

VCS Version Control System

XML Extensible markup language

YARP Yet Another Robot Platform

 1

Chapter 1 Introduction

1.1 Introduction

Humanoid Robot resembles a human body. The purpose of a humanoid

robot is to interact with human beings and environments for experimental

purposes such as locomotion, picking and placing things etc. In general

Humanoid robot consists of Torso, a head, two arms and two legs[1]. Humanoid

robot is a challenging research field that has received significant deliberation

nowadays[2]. Sustainable researches are carried under the Humanoid Robot

platform to make it to move and implement well designated tasks[3]. The

Robotic arm resembles a mechanical arm that is identical to a human arm. The

networks of the arm are associated with joints that allow rotational or linear

displacement. The end effector of the robot can be used to perform many tasks

like picking and placing objects [4],[1],[3] spinning, welding depending upon

the type of application. There are different types of Robotic arms such as

Cartesian Robot, Cylindrical Robot, Polar or Spherical Robot, SCARA Robot,

Articulated Robot, Parallel Robot, Anthropomorphic Robot, etc. [5]

 One of the most controversial issues related to humanoid robot research to

be control mechanisms, modularity and Inter-platform operability in their

operating system[6]. To overcome this issue, Robot Operating System (ROS)

architecture [7], [6] which is simple to navigate and manage in prototype

circumstance has been employed as the software architecture to support both

real-time hardware and simulation within this project. Beaglebone Black, an

open source Linux based board is used to deploy a Human like robot having 18

degrees of freedom is examined. Robot Operating System (ROS) [8] is

implemented in the Beaglebone Black controller to increase the interactivity of

the robot. Ultrasonic sensor is attached to the robot arm for detecting the

presence of an object. The main objective of this research is to present a method

with sufficient flexibility to be made potentially suitable for different scenarios

of object perception and handling.

Python Programming and ROS are freely available for the user to develop[9].

There are many sensors like Ultrasonic sensors, IR sensors, DMS Sensor and

Gyro sensor are used in the robot. The Beaglebone Black consists of additional

ports which can be used to interface additional sensors in future. The robot uses

 2

Dynamixel AX-12A motors. There are six Degrees of Freedom (DOF) in the

mechanical end effector, three motors on the left arm and other three on the

right arm.

The Robot Operating System (ROS) [6] is practically equivalent to that of a

working arrangement of a Personal Computer, which involves accumulation of

projects that offers control to clients. If there should be occurrence of ROS,

regardless of these projects admit a client to control portability of the robot

instead of using it on a PC. The Robot Operating System is preferred because of

its modularity, Inter-platform operability and Concurrent resource handling.

Beaglebone black [10] is an inexpensive board which possibly lessen

framework usage cost. This development platform features a microprocessor

AM335x, based on ARM cortex A8 processor, so it is possible to run some

Linux distributions in it and is for C++ and additionally Python Programming.

There are few techniques by which Humanoid Robot arm [11] is being modified

and planned. The technique utilizes different controllers for controlling the

Humanoid robot arm. The controllers are Arduino, Raspberry Pi and so forth.

Uncommon programming methods are likewise being taken after to enhance the

outline of robot arm. The programming strategy utilizes Arduino

Programming[12], C++ programming[12], Python programing[13], MATLAB

[12] and so on.

1.2 Rationale

The work exhibited in this research project uses Beaglebone Black as the

principle controller and Robot Operating System (ROS) [13] as an operating

system. Greater part of the mechanical frameworks don't utilize ROS since it

has a few downsides like overhead of the messaging system[14]. A portion

of the benefits of ROS are

 Inter-Platform operability – Can be utilized with assortment of

programming dialects.

 Modularity – makes the framework more vigorous. In the event that

one part crashes the entire framework does not crash.

 Concurrent resource handling – share assets effectively by

distributing and subscribing to messages.

 3

The ultimate aspiration of this research project is to present one method with

adequate tractability to be possibly applicable to different scenarios of object

handling and grasping [15]. Another improvement is the capability to have a

robot safely and effortlessly inserted in an unexplored environment. This is

desirable due to the introduction of an adaptive guidance used in the method.

1.3 Aims and Objectives

The main aim of this research project is to build a Humanoid Robot arm to

simulate the behaviour of human using Beaglebone Black and Robot Operating

System (ROS). The next aim of this project is to build the humanoid robot arm

for grasping the object. The final aim of this research project is to make full

analysis about the Robot Operating System for grasping the object. This project

includes robot arm, Beaglebone Black, Ultrasonic Sensor, USB2Dynamixel

connector and Dynamixel motors for control of a robotic arm.

The Objectives of this project to achieve the aims are

 To understand the working configurations of the Beaglebone black

controller.

 To understand the operation of the dynamixel motors.

 To perform detailed analysis about ROS for performing the grasping

operation.

1.4 Overview of Thesis

To perform a grasping action the first step for a humanoid robot is that the

several body parts should be able to interact. There are several necessary

features required for grasping an object. The first feature is reachability which

assures the robot to grasp an object, the second feature is stability that

guarantees the robot to remain balanced while moving or grasping an object,

and the third feature is manipulability that makes the robot to manipulate the

object efficiently after grasping. Many researchers are carrying out research

works under this area[18]. This humanoid robot arm grasping problem is carried

out in different ways by different researchers[15].

To perform the task of Humanoid robot arm grasping, different controller

boards like Raspberry Pi, Arduino etc. are being used. Here GNU octave, which

is a freely accessible language identical to MATLAB is also being used. This

language is used for numerical computing[12]. It provides considerable graphics

proficiency for data visualization and manipulation.

 4

Robotic arm can also perform operations using MATLAB [12] and Arduino

based controllers. Here image processing technique is used to control humanoid

robot arm using human hand. In this method the motion of the robot arm is

manipulated by inspiring human hand in different directions. Here a PIC micro-

controller is used which consists of a CMOS camera that can be used, from

which the location of the object can be resolved. MATLAB is used to record the

human arm position using different X and Y axes to manipulate the robotic arm.

Respective position of the hand is designated with different color code to

observe the position.

The next method considers the robot grasping problem that uses grippers,

section and motion capability. This method reformulates the object grasping

task as simple two dimensional repetition resolution issues. The planes defined

here are as follows; the first plane is manipulability plane. Here the end effector

of the robot is determined with respect to the robot arm. The robot’s section and

shoulder is determined in support of stability and manipulability of the whole

body in the second plane. By linking these two planes ideal solution is obtained.

Humanoid robots are universally reviewed in the modern years. The motion

planning and control of humanoid robots can be discussed based on its

movement and control of its arms. The robotic arm is designed with any

representation of degrees of freedom (DOF). A performance based on inverse

kinematics accession is used to solve the problem in terms of fuzzy reasoning

was learnt. To demonstrate the path planning and control of the planned system,

PC based simulation OpenGL 3D libraries are used. OpenGL is a short

language, cross platform application programming interface (API) for analyzing

2D and 3D graphic visuals. The API is combined with a graphics processing

unit (GPU), to manage hardware accelerated translation.

1.5 Outline of the Thesis

To understand the work done in the project, the subsequent lines give a small

portrayal of what is addressed in each chapter. Chapter 2 details the art work of

the Humanoid Robot arm, the Literature review discussing contemporary work

about the robotic arm and the types of algorithms used. Chapter 3 presents an

overview of the working details. It presents the architecture of the work, the

hardware components and the software architecture as well as the packages

being used in the project. Chapter 4 gives the manoeuver of the robot arm for

 5

grasping task and lastly Chapter 5 presents the future works and conclusion of

the research project.

 6

Chapter 2 Methods of implementation of the Project

 This chapter discuss about the implementation of the robotic arm

implemented by various methods. It starts with an overview of the robotic arm

and then follows with the explanation of some of the algorithms and techniques

used for controlling the robot arm.

2.1 Robot Arm model

 The Robotic arm considered in this research project consists of 6

DOFs in total. That is the arms of the robot constitutes 6 Dynamixel AX-12A

motors [21] in total. The left arm comprises of 3 dynamixel motors and the right

arm comprises of other 3 dynamixel motors. The figure 2.1[22] represents the

model of humanoid robot arm.

Figure 2.1 Humanoid Robot Arm Model

 7

CM-530 controller is used as the default controller for this robot. The programs

are inbuilt within the CM-530 controller for performing different operations. In

this research project CM-530 controller is replaced by the Beaglebone Black

[23]. Python language is used to program the Beaglebone Black. It has one USB

port which is used to connect the USB2Dynamixel and the motors. The

USB2Dynamixel connector is capable of driving more than 200 motors at a

time[24]. The serial protocol of the dynamixel motor is daisy chained which

means several servos can be connected in a chain with each other. Common

external power supply of 12v is given to power all the dynamixel motors.

2.2 Implementing Humanoid Robot Arm movement

Inverse Kinematics

Inverse kinematics is the use of kinematic equation of the robot to determine the

joint parameters which provides desired position of the end effector. Inverse

Kinematics [25] requires different approach. Instead of using vector algebra we

provide a pure geometrical solution. Taking inverse of rotation/translation

matrices will not give inverse kinematics solution.

2.2.1 Gesture controlled arm using accelerometer

Humanoid Robot arm can also be controlled using gesture movement. In this

method the robot arm is controlled using human hand gesture and an

accelerometer. This method makes use of the transmitter and the receiver units.

The transmitting unit is mounted on the transmitting end and it is worn using a

glove. This consists of accelerometer and a microcontroller for processing the

signals. The receiver end consists of a RF receiver, microcontroller and servo

motors. The entire arrangement is placed in a mobile unit that can be controlled

using wireless remote control.

The accelerometer is used to capture the human hand behaviours. It measures

the accelerations. These readings are analysed to create mathematical relation

with PWM control of motors. The communication can be performed using

Amplitude shift keying. Codes corresponding to different set of ADC values are

transmitted and checked at the receiving end. If the received code is correct then

the corresponding PWM value is used to drive the motor.

2.2.2 Haptic Controlled Robot Arm

This method is proposed by other researchers to implement the movement of the

robot arm. In this proposed work a device is designed to replicate the operator’s

actions that also recognise the sensor information to carry out the desired action

 8

by providing desired commands to the actuator. The hardware components used

here are Arduino Mega 2560 controller, Flex sensors, Inertial Measurement unit

and servo motors.

The robotic arm is an electro mechanical device consisting of arm and hand

part. The servos are controlled by the signals from the flex sensors. The arm is

controlled by the IMU signals. The implementation of the arm consists of two

parts haptic glove and the robot arm.

The haptic glove is fitted with a microcontroller. Inertial measurement unit and

flex sensors are connected with the micro controller. A wireless module is also

attached with it which can be used to transmit and receive signals. The other

part is the robot arm. The robotic arm is fitted with Arduino micro controller.

Servo motors are attached with this controller. Here also a wireless module is

attached to transmit and receive the signals. IMU is used to sense the motion of

the arm. The operation of the robotic arm is performed by moving the haptic

glove. The signals are transmitted and received using the wireless modules

between the glove and the robotic arm.

2.2.3 Robotic Arm using Raspberry Pi

The movement of the robotic arm in this method makes use of Raspberry Pi

controller and Arduino. Raspberry Pi is an open source linux based board. A

camera module is also used to capture the image of the object. Image processing

technique is used to process the captured image. Using this technique the

objects can also be sorted with three different shapes and size. The robotic arm

considered here consists of 4 degrees of freedom. The Arduino board used here

is Atmega 328 controller. GNU octave software, which is compatible with

MATLAB, is used.

A camera module is used with Raspberry Pi for capturing the image of the

object. For image processing, first the image is captured through Pi camera and

it is stored as image.jpg with 600x400 resolutions. Specific shape detection and

colour code detection algorithms are used. Initially the IR sensor detects the

presence of the object. If the image is present the raspberry pi camera is

switched ON and captures the image. Then the shape and colour of the object is

processed and its output is saved in a text file. The Raspberry Pi sends the

output signal to Arduino using python script which reads the output from two

text files and sends serial message to Arduino which is used to interface

Raspberry Pi and the servo motors via the servo controller with the robotic arm.

 9

Arduino receives the incoming message and the motion of the robot arm is

controlled accordingly. Motor controller board is connected to the Arduino

board and the Arduino also communicates to the controller via serial

communication. These instructions are given by the Arduino to the controller

accordingly the arm picks the object and sort the object based on colour and

shape.

 2.4 Conclusion

These are the different methodologies used for implementing the robot arm.

These methods are introduced by other researchers to make the robot arm to

grasp the object.

 10

Chapter 3 Overview of working details

This Chapter examines the overview of the hardware components and the

software used for the project.

3.1 Hardware Components

The hardware peripherals proposed in the research project are Beaglebone

Black [23], [10] that acts as the main controller for the robot arm, the ultrasonic

sensor which will be used to disclose the existence of objects, camera module

that is used to capture the detected image, USB2Dynamixel connector that is

used to connect the motors with Beaglebone black controller and Dynamixel

AX-12A motors which is the arm [54] of the robot.

3.1.1 Beaglebone Black

Beaglebone Black controller acts as the main controller for the robotic arm. The

Beaglebone Black controller [55] is the newest member of Beagleboard family.

Beaglebone Black is a modest device, open source and flexible platform for

experimentation. This is a linux based board. The board has AM335x [56]

1Gigahertz ARM cortex A8 chip with 512 megabytes of DDR3 RAM. It also

has 4gigabytes of 8-bit eMMC on board flash storage for booting and long term

storage purposes. The image of the Beaglebone Black controller is shown in

figure 3.1 [10].

Figure 3.1 Beaglebone Black controller

 11

The Beaglebone Black runs Debian OS [57] and it is programmed using Python

which is an open source. One can build assorted software for eloquent purposes.

The use of Beaglebone Black in this design has made it a cost adequate

solution.

3.1.1.1 Beaglebone Black features

The Beaglebone Black controller’s switches and locations are shown in figure

3.2 [10].

 This controller board accepts 5V power supply.

 Power down sequence is initiated b1y the processor by alerting the power

button.

 The connection to LAN is 10/100 Ethernet.

 Serial Debug is the Serial Debugging port of the controller.

 Mini USB connection is the USB client to PC that powers the board.

 Boot can be forced from the microSD card using BOOT switch.

 Four blue LEDs are there which are usable to the end user.

After the Power LED starts to blink within ten seconds other LEDs starts to

flicker in their delinquent configuration. USR0 is constructed at boot to blink in

a heartbeat arrangement. USR1 is configured at boot to light during microSD

card approach. USR2 is configured at boot to light during CPU action. USR3 is

configured at boot to light during eMMC connection.

Figure 3.2 Beaglebone Black switch locations

 12

 The processor can be reset by the reset button.

 MicroSD card is installed in a microSD slot.

 The display is connected to the micro HDMI connector.

 USB interfaces like Wi-Fi, BT, Keyboard, etc. can be connected to USB

host.

Figure 3.3 [10] shows the user LEDs of Beaglebone black controller.

3.1.1.2 Beaglebone Black Key Components

The figure 3.4 [10] below shows the parts of the key factors on the PCB design

of the board.

Figure 3.3 Beaglebone Black user LEDs

Figure 3.4 Beaglebone Black Key Components

 13

 The main processor of the board is Sitara AM3359AZCZ100.

 The Dual Data Rate RAM memory of the controller is micron 512MB

DDR3L.

 The various components of the board are powered by TPS65217C PMIC.

 The physical interface to the network is SMSC Ethernet.

 The on-board MMC chip is micron eMMC which can hold up to 2GB

data.

 Control for an HDMI or DVI-D display with an adapter is provided by

HDMI framer.

3.1.1.3 Block Diagram

The architecture of Beaglebone Black controller is shown in figure 11 [58].

Figure 3.5 Beaglebone Black block diagram

 14

The central Power authority IC for the entire system is TPS65217C [59]. It is a

single chip power management IC. It consists of linear dual input power path,

three step down converters, and four LDOs. It has three high efficiency

2.25MHz step down converters. They are targeted to provide the core voltage,

MPU, and memory voltage for the board. The step down converters gets into

low power mode at light capacity for maximum adaptability across broadly

achievable range of load currents. Small foot print solution size is attained by

the step down converters by allocating small inductors and capacitors. For low

noise applications these mechanism can be enforced into fixed frequency PWM

using I2C interface [60].

LDO1 and LDO2 support the system standby condition. During normal

operation these LDOs support up to 100mA. LDO3 and LDO4 support 285mA

each. LDO1 is consistently ON by default but either rail can be configured to

remain in SLEEP state. In particular the DCDC converter remains up in low

power PFM condition to support processor suspend mode. Flexible power up

and power down sequencing is offered by TPS65217C. It provides considerable

functions like pushbutton monitor, hardware rest function, temperature sensor to

protect the battery and power-good output. The block diagram of TPS65217C is

shown in figure 3.6 [59].

Figure 3.6 TPS65217C Block Diagram

 15

3.1.1.4 Beaglebone black PIN configurations

The pin out diagram of the Beaglebone Black is represented below.

The Beaglebone Black [61], [62] consists of large number of pins. These pins

are divided into two headers. The pins present on the left side are represented as

header P9 and the pins present on the right side of the controller are represented

as header P8. The pins are represented using different colours used for various

purposes.

Red colour pins – They are the power, ground and reset pins. The power pins

may be of 5V, 3.3V or 1.8V. The VDD_ADC is 1.8V power supply used to

provide reference for analog read functions.

Green colour pins – These pins are general purpose GPIO pins. Some of these

pins can be used for UART serial communication.

Purple colour pins – These pins are generally used for PWM output. These pins

can also be used to simulate analog output between 0 and 3.3V.

Light blue colour pins – These pins are used as analog in. The analog in reads

between 0 and 1.8V.

White colour pins – These pins are used for shared I2C bus connections.

 16

Orange colour pins – These pins are generally used for LCD screen

applications.

3.1.2 Ultrasonic Sensor

Ultrasonic sensor is used to detect the presence of object. They calculate the

acoustic waves having frequency higher than hearing range. They act by

bringing about high frequency vibration of sound and then it receives and

evaluates the echo pulse. Ultrasonic sensor is based on three physical principles.

The principles are

 Time of flight – The distance can be measured by time of flight method

 Doppler shift – The velocity can be sensed using this method

 Amplitude attenuation – Attenuation coefficient, distance and

directionality can be sensed.

This sensor does not require substantial association with the target. The

evaluations are very conscious to temperature and angle of target. It has high

accuracy and the measurements are not affected by sun light or black material.

The figure 3.7 [63] represents an ultrasonic sensor.

Figure 3.7 Ultrasonic Sensor HC-SR04

 17

3.1.3 USB2Dynamixel Connector

The USB2Dynamixel [24]is a device used to connect the dynamixel motors

with the main controller or to the PC through USB port. It is equipped with 3p

and 4p connectors to be connected with different dynamixel motors. The

USB2Dynamixel does not provide power to the dynamixel. Power must be

given separately in order to operate the dynamixel motors. Figure 3.8 [24] is an

USB2Dynamixel connector.

The figure 3.9 [24] shows the dynamixel control using a computer.

Serial connector – Changes from USB port to serial port through RS-232

communication.

3P connector – used to connect Dynamixel of AX series through TTL

communication.

4P connector – used to connect dynamixel of DX, RX series through RS-485

communication.

Figure 3.8 USB2Dynamixel connector

Figure 3.9 Dynamixel control using PC

 18

3.1.4 Dynamixel AX-12A Motors

Dynamixel AX-12A motor [64], [65] is deliberately controlled servo motor

which can provide 50 regulations and evaluation parameters that allows full

control over the robot applications. It is a new version of AX 12+ with

advanced external design and improved gear durability. The motors are

connected in daisy chain, which means that several servo motors can be

associated with each other in a group. Servo motor works on PWM [62](Pulse

width modulation) principle which means that the angle of rotation can be

controlled by the extent of the enforced pulse. The servo motor is made of DC

motor. It can be controlled by a variable resistor (potentiometer) and few gears.

The position of the motor is decided by electrical pulse. The Dynamixel motors

are stronger and have a robust control system that reports the position,

temperature and torque. The communication in dynamixel motor takes place

over a half-duplex UART port. Figure 3.10 [21] shows a dynamixel AX-12A

motor.

3.1.5 CM-530 Controller

The CM-530 controller [66] is a small controller used in robotic applications.

The CM-530 controller consists of 32 bit Arm Cortex M3 processor, a CPU,

TTL Communication board (3 pin dynamixel bus), status LED, input buttons,

GPIO ports, buzzer and sound sensor. The CM-530 [66] is suitable with

Figure 3.10 Dynamixel AX-12A motor

 19

dynamixel AX and MX series motors. This controller support Bluetooth and

Zigbee communication. It can be programmed with Embedded C and it is

compatible with Roboplus software. The CM-530 controller [66] is connected

with PC through USB port. The configuration of the controller is shown in

figure 3.11 [66] and figure 3.12 [66].

PC Link – It is used to interface the serial cable with CM-530 controller. It is

used for communication with PC.

Figure 3.11 CM-530 Controller

Figure 3.12 Parts of CM-530 Controller

 20

Communication Device Connection Jack – this jack is used as a wireless

communication medium with Zigbee and Bluetooth.

Battery Jack – battery is connected using this jack.

Power Jack –the SMPS power supply is connected using this jack.

Power LED – The ON and OFF status are shown.

Power Switch – It is used to turn on or off the robot.

Mode Button –the mode of the controller can be changed using the mode

button.

Start Button – Selected mode can be started from the controller using start

button.

U/L/D/R button – These are the navigation buttons used to navigate the robot

when it is switched on.

AX/MX series port –This port is used to connect Dynamixel AX and MX series

motors

Peripheral device connection port – Peripheral devices and sensors like touch

sensor, IR sensors are connected.

Mode display LED – Present operating mode of the controller is shown by this

LED.

CM-530 controller is not used as the main controller in this research project.

This controller is used to learn about the basic working mechanisms of the

dynamixel motors used in robot arm, its operation when connected in daisy

chain method. The CM-530 controller has many disadvantages when compared

to Beaglebone black controller. It has only less memory which is not compatible

with many of the industrial robot applications. Also the Beaglebone black can

be used with any OS distributions whereas the latter controller does not support

OS distributions. The controller is pre-programmed with some minimal

functionality whereas our main controller supports C++ and Python program

[17] which can be re-programmed any number of times according to our need.

 21

3.2 Software Architecture

The Software architecture used in this project is Robot Operating System (ROS)

[6]. It is a malleable structure for programming the robot. Complicated and

vigorous robot performance can be facilitated by the presence of libraries,

conventions and tools. ROS [67] is an open-source software package which is

similar to an operating system for the robot. It provides assistance like hardware

abstraction, low level machine control, implementation of frequently used

components, message passing between process and package administration.

3.2.1 Choice of software used

The software used in this project is ROS [57]. There are many choice of robot

software that can be used in robots as shown in table 3.5. They are

 Light weight Communications and Marshalling (LCM)

 Yet Another Robot Platform (YARP)

 Robot Operating System (ROS)

3.2.2 Architecture of ROS

The ROS [67] Master constitutes the main part of the Robot Operating System.

The communication between the nodes takes place with ROS Master. The

Master grants all other ROS [68] fragments (nodes) for communicating with

each other. It consists of many resources like packages, meta packages,

repositories etc.

The responsibility of communication with the camera takes place with the help

of a camera node, the image data is processed by image handling node on the

robot arm and the image can be displayed using image display node on the

screen. All the nodes should be certified with the master to start communication

with each other. Figure 3.13 [69] shows the architecture of ROS.

 22

Table 3.1 Comparison between software

LCM YARP ROS

It is a group of libraries and

tools for message passing and

data marshalling.

It is an open source software

package for interconnecting

sensors, processors and

actuators.

It is a collection of software

frameworks that provides

services such as message

passing, hardware

abstraction, package

management etc., The action

takes place in nodes that

receive post and multiplex

sensor, control, state,

planning, actuator and other

messages.

It contributes

publish/subscribe message

passing model.

Publish / subscribe message

passing model available.

ROS consists of nodes that

publish and subscribe

messages. A single node can

publish/subscribe to multiple

topics.

Supported Languages: C,

C++, Java

Supported Languages: C,

C++

Supported Languages: C++,

Java, Python, LISP

Graphical tools are not

available.

Graphical tools are not

available.

It supports graphical

representation which uses

Rviz for graphical

representation.

It cannot sync several

different services to one

device.

It cannot sync several

different services to one

device.

ROS can sync several

different services to one

simple device.

It does not have separate

packages for everything.

It does not have separate

packages for everything.

It has separate packages for

each and everything that can

be installed easily.

It has only few dependencies. It has only few dependencies. ROS has many dependencies.

Features: low latency,

efficient broadcast

mechanism, user friendly.

Features: great flexibility

with sensors, hardware. Used

in mobile robot vision

applications, efficient.

Features: publish/subscribe

all data streams, multiplexing

information, segmentation

and recognition, motion

control and planning,

grasping, object identification

etc.

 23

Figure 3.14 [69] shows communication between ROS and the camera node.

A topic can be published by the camera node only after registering with the

ROS master and the other nodes are subscribed to that respected topic. Once the

camera node starts to receive some data from the camera, the topic is assigned

directly to the other two nodes. A node can register a unique service with the

ROS [67] master. The image processing node requests the topic and the camera

node gathers the data from camera and then sends the acknowledgement. The

camera topic is shown in figure 3.15 [69].

Figure 3.13 ROS Architecture

Figure 3.14 ROS and Camera Node

 24

The publishing and subscribing topics is shown in figure 3.16 [69]. The ROS

ecosystem consists of its core stack (roscore and catkin), dedicated tools (Rviz

and rqt_graph) and third party ROS packages. Roscore is a compilation of

nodes and programs which are prerequisites of ROS based structure. The

roscore should run all the time in order for ROS [8] node to broadcast. Cmake

macros and combined python codes are used to frame parts of ROS that are

categorized under Catkin. The sensor data and state data from ROS are

visualized from Rviz, which is a 3D visualizer. It is possible to visualize current

structure using Rviz on a virtual model of the robot. Live representations of the

Figure 3.15 ROS with camera topic

Figure 3.16 Publishing and Subscribing

 25

sensor values can be demonstrated subsequent over ROS [6] topics including

information from a camera, measuring distance using infrared sensor, data from

sonar and more. Rqt_graph builds a dynamic graph of what is going on, on the

system. It is a component of rqt package. It Provides Rqt_graph as a GUI plugin

for visualizing ROS graphs [70].

3.2.3 ROS Concepts

Robot Operating System has three concepts. They are File system level,

computational graph level, and community level. The ROS [71] File system

level consists of Packages, Meta packages, Package demonstrate, Repositories,

Message (msg) types, and Service (srv) types.

Packages are the fundamental entity for organizing software in ROS. A package

consists of nodes, ROS-reliant libraries, datasets, and structure of files that are

formulated together.

Meta Packages are particular packages that only serve a group of other related

packages. Meta Packages [6] do not install files other than their package.xml

and they do not contain any tests, codes, files or other items that are present in

packages.

Package Manifest is an XML file called package.xml that must be included with

any catkin compliant package root folder. Manifest contributes metadata about a

package along with its name, description, version, dependencies and other Meta

information like exported packages.

A Repository [68] is a collection of package that shares a trivial VCS system.

Packages that share a VCS, shares same version. ROS repository contains only

one package.

The value of the data is described by simple message description language

published by ROS nodes [13]. The source code can be easily and automatically

generated by ROS tools for type of message in several target languages by the

message type information. .msg file consists of two parts. Fields and Constants

are the two types of .msg file. Fields are the data that is sent inside of the

message whereas the constant defines the useful values that illustrates those

fields. Message types are assigned to use package resource name.

Robot Operating System (ROS) [6] uses a reduced service description language

for describing its service types. This builds directly upon the ROS message

configuration to enable request/response connection between nodes. These

 26

descriptions are gathered in .srv files in the srv/subdirectory of the package. The

service descriptions are referred to use package resource name.

The associative network of Robot Operating System (ROS) is computation

graph level that processes the data together.

Node is a process which performs calculation. They communicate through

remote procedure call services, parameter servers and streaming topics. A robot

control system usually consists of many nodes and these are represented to

operate at fine grained scale. The naming and listing services are implemented

by the ROS to rest of the nodes in ROS system. It also records publishers and

subscribers topics and also the services. The ROS master facilitates the

individual nodes to locate one another. Once the nodes are located they

communicate with each other peer to peer. The command to initialize the ROS

master is roscore [6]. Once this command is executed the ROS master loads

along with all other essential components. A Parameter Server is a common,

multi-variant dictionary. It can be accessed through network APIs. ROS naming

convention [14] is used to name the parameters.

The messages are published to the topics that facilitate the communication

between the nodes with each other. Transferring request and responding

messages are performed by nodes which is a part of ROS [6] service call. Srv

files define the request and response messages. The data structure of a message

can be specified by message files. They are stored in a package inside a

message subdirectory. The Topics are the communication medium where the

messages between the nodes are exchanged. They have unidentified publishing

and subscribing definition from where the production of instructions are

separated from utilization. Multiple numbers of publisher nodes and subscriber

nodes are present in a topic. Topics are performed solely for communicating

only in one direction. Publishing to a topic is done by ROS message types

whereas the nodes receive the message types that are identical. ROS node [68]

provides service beneath a string name and client calls the service by sending

the desired message and waiting for the acknowledgement.

Bags are used for saving and playing back ROS message data. They are

designed by tool called rosbag which can subscribe to more than one ROS

topic. These files can be played back in ROS to the same topics from where

they are recorded.

 27

 3.3 ROS Code Hierarchy

Repository – It contains all codes from a particular development group.

Stack – It groups all the code on a particular subject or device.

Packages – They separate the modules and provide different services.

Nodes – They are the executable which exists in every model

3.3.1 Communication between Nodes

A running instance of a ROS program is called as a node. Messages are sent by

nodes by distributing it to a particular topic. The content of the message is

identified by the topic name. A node interested in certain kind of data will

subscribe to a relevant topic. There are many publishers and subscribers for a

topic and a single node can subscribe many topics.

A ROS node can be written in rospy or roscpp. Here roscpp is defined for C++

and rospy is defined for Python code.

3.3.2 ROS Ecosystem

The ROS Ecosystem [13] consists of its core stack (roscore and catkin),

dedicated tools (Rviz and rqt_graph) and third party ROS packages. These

Stacks

Packages

Nodes

Repository

Figure 3.17 Code Hierarchy

 28

packages represent the bulk ecosystem having specific features that can be

reused by other packages.

 Core stack

Roscore is a collection of nodes and programs that are prerequisites of ROS

based system. The nodes that are launched as part of roscore are determined

in roslaunch/roscore.xml. Roslaunch treats nodes listed in roscore.xml

differently. The nodes running with same name are being searched and are

launched.

 Dedicated tools

Rviz (ROS Visualization) is a 3D visualizer that displays sensor data and

states the information from ROS. Using Rviz any user can visualize current

configuration on a virtual model of the robot. The live representations of the

sensor values are displayed that includes camera data, Infrared distance

measurements, sonar data and more. Rviz can be initialised using the

command “rosrun rviz rviz”.

Rqt_graph creates a dynamic graph of the process going on, on the system. It

is a part of rqt package. Rqt_graph provides a GUI plugin for visualizing

ROS graphs. This can be initialised using the command “rosrun rqt_graph

rqt_graph”.

 Third party ROS packages

The third party ROS packages [6] are non-catkin packages. These ROS

packages are compiled using third party library code that makes it available

using rosbuild’s dependency system.

Figure 3.18 Communications between Nodes

 29

3.4 Publishing and subscribing using ROS

3.4.1 Publishing Messages

Messages can be published using C++ or Python programming. Every ROS

topic is associated with a message type that has a corresponding header file.

This header file should be #include in the program. The package name should

be the name of the package containing the message. The object which is needed

is created by the line

ros::Publisher pub = node_handle advertise <message_type>(topic_name,

queue_size);

The scope resolution operator is used to separate the package name from the

type name. Here

 node_handle is the object of class ros::NodeHandle.

 message_type is the data type of the message that needs to be published.

 topic_name is the string which contains the name of the topic to be

published.

 advertise represents the size of the message queue for the publisher.

Publishing messages to multiple topics can be done by creating separate

ros::Publisher object for each topic. After all the work is completed the

messages can be published using the command

pub.publish(msg);

Figure 3.19 ROS Master

 30

After using this command the messages will be sent to any subscribers of the

corresponding topic.

3.4.2 Subscribing Messages

The subscriber node does not know about the arrival of the messages. A code

must be placed inside the callback function to respond to the incoming

messages. For subscribing to a topic subscriber object should be created.

ros::Subscriber sub = node_handle.subscribe(topic_name, queue_size,

pointer_to_callback_function);

Here,

 node_handle is the same node that handles the object.

 topic_name is the name of the topic to be subscribed.

 queue_size is the integer size of the message queue for the subscriber.

 Pointer to callback function is executed by ROS when a message arrives.

When ros::Subscriber is constructed connection with any publishers of the

named topic is being established.

3.5 ROS Package

ROS package is a comprehensible collection of files, that includes both

executable and supporting file that serves a specific purpose. A package

contains ROS nodes. Packages that we create should live together in a directory

called workspace. A subdirectory is created inside a workspace directory as it

contains the source code for the package.

3.5.1 ROS Dynamixel motor package

This contains the package that is used to interface various series of Dynamixel

motors. This package supports AX and MX dynamixel motor models.

 3.6 Implementation of the Project

3.6.1Installing the Operating System

The Beaglebone Black acts as the main controller in this system. The

Beaglebone black is compatible with much software. One can use Debian [76],

Android, Ubuntu, Cloud9 IDE etc. in the Beaglebone black controller. Here

Debian Wheezy is used as the operating system for Beaglebone black.

 31

Choice of the Operating System

Among many operating systems Debian is used as the Operating system in

Beaglebone black controller. The reasons for using Debian as an Operating

system are

 All the packages are unified.

Debian outpaces all other software collections in terms of package

integration. Here all software is packaged by a systematic group; all

packages can be found at a single site. This integration between packages

makes Debian more robust.

 Supports multiple architecture and kernels

Debian supports multiple architectures like alpha, amd64, armel, hppa,

powerpc, s390, and sparc. It supports kernels like GNU Hurd, FreeBSD

besides linux.

 Stability

Debian has good stability. It can run for over a year without rebooting

unlike other systems that crashes multiple times a day.

 Good System security

Debian has good system security. It is very responsive in fixing security

problems. The availability of open source code in Debian prevents poor

security models being implemented.

 Easy Upgrade

Due to easy packaging system in Debian it can be easily upgraded to its

latest version.

 Easy Installation

Debian can be installed easily using CD, DVD, USB stick or even using

the network.

3.7 Installing Debian OS in Beaglebone Black

The Debian OS [56] has to be installed in Beaglebone Black controller. For

installing the OS following steps should be followed.

3.7.1 Main Process

The instructions mentioned below are for users with Windows computer.

 32

 The first step is to download the Debian Wheezy image from the internet.

The image can be booted every time from a microSD card or the image

can be flashed into the eMMC of the Beaglebone black controller.

 After downloading the .img.xz file, it should be extracted.

 Then the microSD card is inserted into the computer.

 The image is written into the microSD card using Win 32 disk imager

software.

 After writing the image the microSD card should be removed.

3.7.2 Debian Wheezy on a microSD card

After completing the main process Debian image [14] is mounted in a microSD

card. This method does not flash the image into eMMC. This method provides

information to boot the image from the microSD card every time.

 Insert the microSD card containing the Debian Wheezy image into

powered off Beaglebone black. Make sure that Ethernet is connected.

 Power is applied to the board by holding the boot button. The boot button

should be held continuously until the led flashes. Use external power

supply.

 After some time screen shows a login prompt. Give the user and

password as Debian.

 Boot button should be hold every time to boot Debian image from

microSD card otherwise the Beaglebone black boots whatever image

found on its eMMC.

3.7.3 Flashing Debian Wheezy to eMMC

This method describes about flashing Debian image into the eMMC of the

Beaglebone black after completing the main process.

 Insert the microSD card containing Debian image into powered off

Beaglebone black.

 Power should be applied to the board while the boot button is held.

The boot button is held continuously until the user LEDs starts to

flash.

 After some time screen shows a login prompt.

 The board should be left for about 10 minutes until the image is being

flashed into eMMC of Beaglebone black controller.

 33

 After some time the LEDs will be solid and not flashing. Remove the

power and microSD card and then the power should be re-applied to the

controller.

 It takes some time to boot to the login screen. Give the user name as

Debian and password as temppwd.

 Now the Beaglebone black will boot the Debian image from eMMC.

 34

Chapter 4 Manoeuver of the Robot arm for Grasping task

This chapter discusses the task of grasping an object using the Robot arm.

4.1 Introduction

This research project is based on Bioloid Robot arm [78], [79]for grasping

objects using Robot Operating System (ROS) [6]. This system is chosen after

careful consideration of the hardware and software components. The

fundamental objective of this project is to establish a platform to integrate both

the hardware and software components to make the robot arm to grasp the

object.

The hardware part is the Beaglebone black [22], which is considered as the

main controller of the entire system. It runs Debian [76] operating system with

running ROS which is the main framework to integrate the entire software

running in Beaglebone black controller. Ultrasonic sensor is used to detect the

presence of object. The robotic arm uses dynamixel AX-12A motors to move

the arm. The Beaglebone black consists of additional ports that can be used to

interface other sensors. ROS architecture [70] is used as the main software

framework because it is easy to manage and navigate. In case of ROS the

programs acknowledges the user to manipulate the mobile operations of the

robot arm. ROS [69] is preferred because of its modularity, inter-platform

operability and concurrent resource handling. In previous working models the

robotic arm is implemented using some algorithms. There are many controllers

that can be used to implement the arm of the robot. Here Beaglebone black [80]

is used because it is cost effective system which is a freely available linux based

board.

The experimental setup consists of Beaglebone black, USB2Dynamixel

connector, Ultrasonic sensor [81], Dynamixel motors [82]. Initially the

ultrasonic sensor detects the presence of the object. If the presence of object is

detected, the signal is stored in Beaglebone black controller. The entire process

is controlled by the ROS.

So, the overall system behaviour can be explained as follows.

 ROS provides communication between the modules that codes and

decodes messages between ROS [71] and the communication medium

 35

used in the controller as it supports localization and motion planning

modules.

 The packages which are being installed in ROS acts as a driver that

allows the communication of the data between and allows data

conversion that can be read by ROS applications.

 The communication of the data between the modules takes place

easily by publishing and subscribing to the appropriate topics.

To understand the interaction between different systems, the following section

describes the used hardware and software architecture covering the operating

mode of each of the components.

4.2 Models and Materials

This part describes about the hardware peripherals used in this project.

4.2.1 Humanoid Robot Arm specifications

The Humanoid Robot arm [83] considered in this project consists of six

dynamixel AX-12A motors. It has 6 degrees of freedom. The left arm

[4]consists of three dynamixel motors and the right arm consists of other three

dynamixel motors. These motors are connected with usb2dynamixel connector

which in turn is connected with the main controller. The dynamixel motor is

provided with 12V power supply. The motors are connected is daisy chain in

which all the motors are connected in series with each other where a common

power supply is given to all the motors.

4.2.2 Ultrasonic Sensor

The sensor used in this project is ultrasonic sensor [62]. It works according to

three principles. They are time of flight, Doppler Effect
1
 and attenuation of

sound waves. These sensor measurements are very sensitive to temperature and

the angle of target. The Doppler shift can be explained as follows. When the

wave reflects from a moving object its frequency is shifted by an amount

proportional to the velocity of the object.

𝑓𝑒 − 𝑓𝑟 = 2𝑓𝑒(𝑣
𝑐⁄) cos 𝐴 …. (5.1)

Where,

A - Angle between the target’s and the pulse’s lines of motion

𝑓𝑒– Frequency of emitted pulse

𝑓𝑟– Frequency of received pulse

 36

𝑣- Velocity of the target

Usually the ultrasonic sound propagates faster than audible sound. The

measurement of the distance transmitted can be calculated using the equation

given below.

𝐼 = 𝐼0𝑒−𝑎𝑥
…. (5.2)

Where,

𝐼– It is the received intensity

𝐼0–It is the original intensity

𝑎–The attenuation coefficient

𝑥– Distance transmitted by the wave

1
Doppler effect is the change in frequency or wavelength of a wave for an observer moving relative to its

source.

 37

4.3 The Experimental work

The main task of this project is to implement the robot arm to grasp the object

[84]using ROS. Here Python script is used to implement the project. The flow

diagram given below is the working of the robot arm for grasping [9] the object.

 No

The flowchart of the working model is explained as follows. Initially the

process gets started. After starting the process the ultrasonic sensor detects the

presence of the object [63]. If no object is detected the process gets terminated.

After receiving the signal the Beaglebone black [7]sends the information in the

form of Python script to usb2dynamixel connector. After the connector receives

the necessary signal the corresponding signal is transferred to the dynamixel

motors to perform the task of grasping [77].

Start

Ultrasonic
Sensor

Object

Detect

Process

Terminated

Beaglebone

Black

USB2Dynamixel

Connector

Motors
Stop

Figure 4.1 Flow chart of the working model

 38

4.3.1 Program Structure

In this project python programing is used to perform the action. The hardware

wiring of the ultrasonic sensor with the Beaglebone black [62] is shown. The

Ultrasonic sensor consists of four pins namely Ground, Power, Trigger and

Echo. The Power pin of the sensor is connected with pin 5 of the Beaglebone

black and the ground of the sensor is connected to the pin 1 of the main

controller. The trigger and echo are connected to the pins 12 and 11 pins of the

P8 side of the main controller. Here the resistors are used because the

Beaglebone black input pins are capable of delivering only 3.3V whereas the

sensor emits 5V supply. In order to avoid the damage to the controller board the

resistors are used. Figure 30 shows connection between beaglebone black and

ultrasonic sensor. [62]

The flowchart explains the working of the ultrasonic sensor.

Figure 4.2 Connecting Ultrasonic sensor with Beaglebone Black

 39

4.3.1.1 Algorithm

Step 1: The process of object detection is started.

Step 2: The sensor value is read for every 2 seconds. The value is read in order

to detect the presence of the object. The value can be read using a function.

Step 3: The ADC value is converted into Analogue voltage using the formula

Analoguevoltage = x.value*1.8

Step 4: The distance is calculated into inches. The formula used to convert into

inches is distanceInches = analoguevoltage / 0.00699.

Step 5: The program is terminated.

Start

Reads the sensor

value

Analoguevoltage=x.value*1.8

distanceInches=analoguevoltage /

 0.00699

Stop

Figure 4.3 Working of Ultrasonic Sensor

 40

The distance is calculated in centimetre. If the distance increases the voltage of

the ultrasonic sensor also increases whereas if the distance is reduced the

voltage of the sensor will fall. This can be shown in a graphical form as

represented below.

4.3.1.2 Algorithm

Step 1: Initially the process for motor operation is started.

Step 2: The dynamixel checksum is calculated. The checksum is calculated

using if condition. If not (0<=id<=0xFD) is used to calculate the dynamixel

checksum. If the condition is false it displays as the respective ID is not legal. If

the condition is true it proceeds to the next step.

Step 3: The enwiring of the dynamixel motor is checked. It is checked using if

statement. If not (0<=v<=1023). If the condition is not satisfied it shows

enwiring is illegal. If the condition is true, the control moves to the next step.

Step 4: After checking the necessary conditions the servos are interfaced with

the controller.

Step 5: Serial port is provided to the servos in order for its operation to be

performed.

Step 6: After providing the serial port reset is provided to the servos. If the

servo motor misbehaves reset can be used.

Step 7: After providing the reset the next step is to define the set position. It is

done using if statement. If not (0<=position<=1023) is the condition. If it is not

satisfied then it is displayed as invalid position. If the condition is satisfied, the

position of the servos should be set in degrees.

 41

Figure 4.4 Flowchart for the working of dynamixel motors

Step 8: The maximum degree this servo will rotate is 300. If the angle is in

between 0 and 300 the condition is satisfied otherwise it shows as invalid angle.

Step 9: The ID of the servo motor is changed since there may be multiple servos

running at the same time. The ID of the servo should be in-between 0 to 253. If

not (0<=nid<=253). If the condition is false it displays invalid servo ID. If the

condition is true the speed of the motor is set.

Step 10: If the speed is in-between the stipulated range the motor starts to move

else the process will be terminated thereby showing an error message. The steps

8 to 10 are repeated to perform the grasping action by putting the necessary

conditions inside a loop.

Step 11: Stop the program.

 42

4.4 Working

The block diagram consists of Beaglebone Black [22], ultrasonic sensor,

USB2Dynamixel connector and robot arm [77].

USB2Dynamixel connector is used to interface the dynamixel motors with

Beaglebone black. The USB port of the controller is used to connect the

connector. Initially the object is detected using the ultrasonic sensor. After

detecting the object, the controller transfers the information using python

coding [17] and reads the output. The Beaglebone black in addition sends the

message to USB2Dynamixel connector using python code that reads the output

and sends serial message to dynamixel motors connected with the robot arm.

The USB2Dynamixel connector receives the incoming message from

Beaglebone black and appropriately it controls the motion of the arm. Here

initially the robot arm is connected with wires to perform the action. Respective

ROS packages are installed within the controller to perform all the work

successfully.

This is a low cost mechanism that finds its way to perform pick and place the

object thereby making this system in industries very cheap along with the same

accuracy as that of a dedicated PC.

Outcome of the Project

The arm of the robot is successful in case of motion. Both the arms represent the

movement. The speed of the motors can be controlled by the program and it can

be changed according to our needs. The arms of the robots are unable to

perform the grasping operation as it needs fine tuning and the program needs to

be even more specific.

Figure 4.5 Interfacing the motors with Beaglebone black

 43

4.5 Block Diagram

4.6 Conclusion

In this chapter, using the ultrasonic sensor the distance can be detected and the

motors were made to run using the python code.

USB2Dynamixel and Motors Robot Arm

Beaglebone
Black

Ultrasonic
Sensor

Figure 4.6 Block Diagram

 44

Chapter 5 Conclusion and Future works

5.1 Conclusion

In this research project a robotic arm is being considered. We have explored the

robotic arm for a humanoid robot with 6 degrees of freedom (DOF). The

technology developed in this project consists of Robot Operating System

software, robotic arm structure design, dynamixel actuators and ARM based

controller.

 The Beaglebone black acts as a powerful controller for this project which

comes along with inbuilt flash storage, higher processing speed, having

more GPIO pins and much more. One disadvantage of Beaglebone black

is that, it has lower graphic processing power so when using camera

modules this controller may lag a bit behind when compared to other

controllers.

 The USB2Dynamixel connector is used as it has the capability to run

more than 200 dynamixel motor using a single connector by connecting

the motors serially with each other.

 The use of dynamixel motors in this project adds advantage as it has high

torque; high accuracy and the motors can be connected using daisy chain.

 The Ultrasonic sensor is used to detect the presence of object in this

project. But this sensor have minimum sensing distance, also changes in

environment affect ultrasonic response.

 The advantages of ROS include Inter-platform operability, modularity

and concurrent resource handling. Relatively long learning curve may be

necessary to master ROS.

5.2 Contributions to the Research

My Research concentrates for the most part on the movement of the robotic

arms. The fundamental thought behind this is to execute the robot arm using

Robot Operating System. My work focuses on the investigation of ROS and

deduction techniques to encourage the arm utilizing ROS. In doing that I have

sought after a few interrelated professions that traverse the numerous part of the

issue from collecting the model using CM-530 controller, introducing the Robot

Operating System in Beaglebone black, making the motors to run using ROS

and python script, interfacing the Ultrasonic sensor, study on ROS and more.

The following is a short synopsis of some of my key research commitments.

. The principle contributions of this thesis are

 45

 I have experienced many papers, productions and journals with respect to

the robot arm usage that helped me to comprehend the utilization of

various platforms. This correlation between the diverse stages turns into

the establishment of the exploration of ROS, which is utilized as software

platform.

 I have given an arrangement of standard strategies to enhance the

execution parameter of the model. I have utilized ultrasonic sensor and

Beaglebone black which goes about as the fundamental controller for the

proposed framework as it backings extensive variety of equipment.

 To execute the robot arm utilizing ROS, I have made an examination

between other working stages on how they slack when contrasted with

ROS. Amid the investigation of utilizing ROS, I have looked into about it

which helped me think about the components of the automated stage that

upgrade my comprehension on Publishing and subscribing topics.

The other contributions of the research are as follows.

Operating Motors using ROS and Python Script: The dynamixel motor is

used in the arm of the robot. To begin with the ROS dynamixel motor bundle is

introduced, so it can bolster the dynamixel motor for operation. First the ROS

dynamixel motor package is installed, so that it can support the dynamixel

motor for operation. A package is created that contains the necessary files to run

the motor. The controller manager is started by launching the launch file which

connects the motors and publish feedback data. A joint controller is made, then

a dispatch document is made and it is propelled. The controller manager node is

begun first and it is published to a desired angle to move the motor. The motor

is likewise keep running with python script. I have executed independently the

running of motors utilizing ROS and python script.

Interfacing the Ultrasonic sensor: I have used the ultrasonic sensor to detect

the presence of the object. The ultrasonic sensor is worked utilizing the python

script. I confronted trouble when attempting to actualize the sensor utilizing

ROS. I have connected the Echo and Trigger of the sensor is to the pin 11 and

12 of the header P8 in the controller. The ground and Vcc is associated with the

individual pins of the Beaglebone Black. I have used a resistor between the

Echo pin as the input pins are 3.3V while the sensor emits 5V in order to keep

harm of the board.

 46

Operating the motors using Python Script: I have utilized dynamixel AX-

12A motors in the robot arm. Python coding is utilized to run the motors. To

begin with I have encircled the code and I have stacked it in Beaglebone Black

controller. At first I actualized the operation of a solitary motor by interfacing it

with the controller utilizing usb2dynamixel connector. After fruitful execution

of the work I have re-encircled the python code to make it work for running 3

dynamixel motors and succeeded working three dynamixel motors all the while

in the meantime.

Survey on ROS: ROS is utilized as the robot platform for the entire research

extend. I have considered and reviewed about the ROS commands, its

usefulness that can be utilized as a part of this research project. I have made an

examination about the software that can likewise be utilized like ROS however

having a few disservices when compared with ROS. Communication between

the nodes is also studied. These are trailed by numerous dozen papers which I

have used to review about ROS.

5.3 Limitations

Beaglebone Black:

A portion of the impediments of the Beaglebone Black are as per the following.

 The microSD card cannot be used as a storage device when booting.

 Software Guarded Extensions is not given in 3.8 kernels.

 The latest image does not work on lap dock.

 This controller lingers somewhat behind when utilizing camera

modules.

Limitations of ROS:

 The Robot Operating System has some limitations. The limitations of

ROS are

 Getting started with ROS is convoluted and troublesome as it is a fairly

huge framework enveloping a geometry library, robot specification

language, pose estimation, localization and mapping, navigation packages

all entwined with a message-passing structure. It accepts entirely great

working information of networking paradigms like remote procedure

calls and publisher-subscriber. Working with ROS requires binding the

code to ROS’s package build system and gathering against its

 47

dependencies. One of the greatest torment purposes of integrating third-

party code or libraries into my particular undertakings is simply making

sense of getting things to compile. If the build system software like

Cmake, catkin and its basics of how the compilers and linkers work

figuring out its establishment will be troublesome.

 The intersystem communication is marginally troublesome in rosbuild

contrasted with that of catkin. Both rosbuild and catkin are build systems.

Both build systems generate executable files from the source file.

rosbuild was the build system of ROS since the early circumstances. It

utilizes CMake however summons it from a makefiles and builds each

package independently and in source. Catkin has been introduced in

groovy. It is utilizing CMake more neatly where it falls short on features.

It builds packages out of source as a matter of course, handles

dependencies better and improves the job of packaging. So in the event

that you we pick we might need to run with catkin it might take a bit

longer to learn CMake. But whenever we depend on a rosbuild package

we are forced to stick to rosbuild. However catkin packages can only

depend on other catkin packages. So, if we have a dependency that is still

on rosbuild, it needs to be converted first or rosbuild should be used for

the packages.

 ROS is good for material handling because of the fact that it endures

powerfully changing conditions as new impediments are presented. But

ROS has limitations in process control applications. It was never

designed for processes like painting, spot welding or arc welding. Using

ROS for small projects is intricate as teach pendants can be used to train

robots.

 ROS shows error messages while trying to install and run the code. It is

also one of the limitations. The error messages can be troubleshooting by

finding the alternative codes over the internet and while installing the

error messages can be rectified by installing some dependencies.

 ROS is not really the best for tasks which are totally mission-critical,

totally needs to be scalable, secure or need to run on some other operating

systems other than Ubuntu which is fairly common.

 48

Dynamixel Motor:

The constrains of Dynamixel motors are

 Upon continuous rotation the motors gets heated.

 The cost of the motor is higher.

5.4 Future works

There are some ideas to advance into:

 This system may be built for use in the industrial application for pick and

place tasks.

 The Bioloid Robot arm is light in weight and can provide reasonable

accuracy in handling objects.

 This arm can be taken to higher level by providing a voice controller

thereby implementing it using voice command.

 This system uses linux based commands. The same system can be

implemented using Android application over which the full system can be

controlled using internet anywhere from the world.

 A camera module can be used to detect the presence of the object in the

environment.

 The system can be implemented by interfacing the sensor and motor

together using ROS.

 The system can be implemented using Artificial Intelligence in future as

this may provide intelligent behaviour to the robot in unpredictable and

changing environment.

 49

Reference List
[1] Robotics and Automation Society, Ed., 2012 12th IEEE-RAS International Conference on

Humanoid Robots (Humanoids 2012): Osaka, Japan, 29 November - 1 December 2012.
Piscataway, NJ: IEEE, 2012.

[2] Chung-Hsien Kuo, Yu-Wei Lai, Kuo-Wei Chiu, and Shih-Tseng Lee, “Motion planning and control
of interactive humanoid robotic arms,” 2008, pp. 1–6.

[3] Masayuki Shamoto, Kunihito Kato, and Kazuhiko Yamamoto, “A implementation of Humanoid
Vision -analysis of eye movement and implementation to robot-,” 2007, pp. 744–747.

[4] T. Tremblay and T. Padir, “Modular Robot Arm Design for Physical Human-Robot Interaction,”
2013, pp. 4482–4487.

[5] “Robotics/Types of Robots/Arms - Wikibooks, open books for an open world.” [Online].
Available: https://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Arms. [Accessed: 03-Oct-
2016].

[6] J. M. O’Kane, A gentle introduction to ROS. Leipzig: Amazon, 2014.
[7] P. Tavares and A. Sousa, “Flexible pick and place architecture using ROS framework,” 2015, pp.

1–6.
[8] J. Rozman, R. Luza, and F. V. Zboril, “ROS-based remote controlled robotic arm workcell,” 2014,

pp. 101–106.
[9] “Documentation - ROS Wiki.” [Online]. Available: http://wiki.ros.org/. [Accessed: 03-Oct-2016].
[10] “BeagleBoard.org - black.” [Online]. Available: https://beagleboard.org/black. [Accessed: 03-

Oct-2016].
[11] I. Zubrycki and G. Granosik, “Test setup for multi-finger gripper control based on robot

operating system (ROS),” 2013, pp. 135–140.
[12] P. S. Lengare and M. E. Rane, “Human hand tracking using MATLAB to control Arduino based

robotic arm,” 2015, pp. 1–4.
[13] L. Joseph, Learning robotics using Python: design, simulate, program, and prototype an

interactive autonomous mobile robot from scratch with the help of Python, ROS, and Open-CV!
Birmingham: Packt Publishing open source, 2015.

[14] “wiki.ros.org.” .
[15] Y. Lin, Shaogang Ren, M. Clevenger, and Y. Sun, “Learning grasping force from demonstration,”

2012, pp. 1526–1531.
[16] K. Li and M. Meng, “Multilevel part-based model for object manipulation,” 2013, pp. 1114–

1119.
[17] tutorialspoint.com, “Python Basic Syntax,” www.tutorialspoint.com. [Online]. Available:

http://www.tutorialspoint.com/python/python_basic_syntax.htm. [Accessed: 03-Oct-2016].
[18] F. Husain, A. Colome, B. Dellen, G. Alenya, and C. Torras, “Realtime tracking and grasping of a

moving object from range video,” 2014, pp. 2617–2622.
[19] “2.1. Gaussian mixture models — scikit-learn 0.18.1 documentation.” [Online]. Available:

http://scikit-learn.org/stable/modules/mixture.html. [Accessed: 09-Dec-2016].
[20] “Dynamixel AX-12A Robot Actuator from Robotis.” [Online]. Available:

http://www.trossenrobotics.com/dynamixel-ax-12-robot-actuator.aspx. [Accessed: 03-Oct-
2016].

[21] “Robots for Beginners.” [Online]. Available:
http://support.robotis.com/en/product/bioloid/beginnerkit/download/bioloid_beginner_app.
htm. [Accessed: 03-Oct-2016].

 50

[22] D. F. Vera, D. M. Cadena, and J. M. Ramirez, “Iris recognition algorithm on BeagleBone Black,”
2015, pp. 282–286.

[23] “USB2Dynamixel.” [Online]. Available:
http://support.robotis.com/en/product/auxdevice/interface/usb2dxl_manual.htm. [Accessed:
03-Oct-2016].

[24] “What are the kinematics for a 3DOF robot arm? - Quora.” [Online]. Available:
https://www.quora.com/What-are-the-kinematics-for-a-3DOF-robot-arm. [Accessed: 03-Oct-
2016].

[25] “Genetic algorithm,” Wikipedia. 19-Nov-2016.
[26] “Introduction to Genetic Algorithms.” [Online]. Available:

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html. [Accessed: 08-
Dec-2016].

[27] “Genetic Algorithms Overview.” [Online]. Available: http://geneticalgorithms.ai-
depot.com/Tutorial/Overview.html. [Accessed: 08-Dec-2016].

[28] “FAQ: comp.ai.genetic part 2/6 (A Guide to Frequently Asked Questions) - Q1.1: What’s a
Genetic Algorithm (GA)?” [Online]. Available:
https://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/part2/faq-doc-2.html. [Accessed:
08-Dec-2016].

[29] J. Brownlee, “A Tour of Machine Learning Algorithms,” Machine Learning Mastery, 25-Nov-
2013. .

[30] “Machine learning,” Wikipedia. 05-Dec-2016.
[31] “List of machine learning concepts,” Wikipedia. 13-Jun-2016.
[32] “Essentials of Machine Learning Algorithms (with Python and R Codes),” Analytics Vidhya, 10-

Aug-2015. .
[33] “An Introduction to Neural Networks.” [Online]. Available:

http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html. [Accessed: 08-Dec-2016].
[34] “Artificial neural network,” Wikipedia. 28-Nov-2016.
[35] A. R. F. Quiros, A. C. Abad, and E. P. Dadios, “Object locator and collector robotic arm using

artificial neural networks,” 2015, pp. 1–6.
[36] M. A. Nielsen, “Neural Networks and Deep Learning,” 2015.
[37] “Neural Networks.” [Online]. Available:

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html. [Accessed: 08-Dec-
2016].

[38] [Online]. Available: http://www-
bcf.usc.edu/~ioannou/RobustAdaptiveBook95pdf/Robust_Adaptive_Control.pdf. [Accessed:
08-Dec-2016].

[39] [Online]. Available: http://www.landau-adaptivecontrol.org/Slides%20Ch1.pdf. [Accessed: 08-
Dec-2016].

[40] “Adaptive control,” Wikipedia. 14-Nov-2016.
[41] “cmumrsdproject - Adaptive Monte Carlo Localization (Details of Theory and ROS Package).”

[Online]. Available:
http://cmumrsdproject.wikispaces.com/Adaptive+Monte+Carlo+Localization+(Details+of+Theo
ry+and+ROS+Package). [Accessed: 29-Nov-2016].

[42] “Reinforcement learning,” Wikipedia. 07-Dec-2016.
[43] “Reinforcement Learning - Algorithms.” [Online]. Available:

http://www.cse.unsw.edu.au/~cs9417ml/RL1/algorithms.html. [Accessed: 08-Dec-2016].
[44] “Reinforcement Learning Introduction.” [Online]. Available: http://reinforcementlearning.ai-

depot.com/. [Accessed: 08-Dec-2016].
[45] [Online]. Available:

http://www.cs.columbia.edu/~kathy/cs4701/documents/jason_svm_tutorial.pdf. [Accessed:
08-Dec-2016].

 51

[46] “Introduction to Support Vector Machines — OpenCV 2.4.13.1 documentation.” [Online].
Available:
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html.
[Accessed: 08-Dec-2016].

[47] “Support vector machine,” Wikipedia. 30-Nov-2016.
[48] “Understanding Support Vector Machine algorithm from examples (along with code),”

Analytics Vidhya, 06-Oct-2015. .
[49] “Evolutionary algorithm,” Wikipedia. 05-Dec-2016.
[50] “Evolutionary Algorithms 1 Introduction.” [Online]. Available:

http://www.geatbx.com/docu/algindex.html. [Accessed: 08-Dec-2016].
[51] “Evolutionary computation,” Wikipedia. 03-Dec-2016.
[52] “Chapter 1. The Power of Evolution.” [Online]. Available:

http://watchmaker.uncommons.org/manual/ch01.html. [Accessed: 08-Dec-2016].
[53] Y. Pititeeraphab and M. Sangworasil, “Design and construction of system to control the

movement of the robot arm,” 2015, pp. 1–4.
[54] “Overview | Controlling a Servo with a BeagleBone Black | Adafruit Learning System.” [Online].

Available: https://learn.adafruit.com/controlling-a-servo-with-a-beaglebone-black/overview.
[Accessed: 03-Oct-2016].

[55] A. Nayyar and V. Puri, “A Review of Beaglebone Smart Board’s-A Linux/Android Powered Low
Cost Development Platform Based on ARM Technology,” 2015, pp. 55–63.

[56] “Bootstrapping the BeagleBone Black with Debian.” [Online]. Available:
http://thethingsystem.com/dev/Bootstrapping-the-BeagleBone-Black-with-Debian.html.
[Accessed: 03-Oct-2016].

[57] [Online]. Available:
https://courses.cs.washington.edu/courses/cse466/11au/calendar/ros_cc_1_intro-jrsedit.pdf.
[Accessed: 03-Oct-2016].

[58] “TPS65217 | Power Management Multi-Channel IC (PMIC) Solutions | Power Management |
Description & parametrics.” [Online]. Available: http://www.ti.com/product/TPS65217.
[Accessed: 03-Oct-2016].

[59] the_admin, “i2c communication: Beaglebone Black and MPU6050 (acc+gyro) | intuition >>
data >> analysis.” .

[60] “Programming the BeagleBone Black with Python | Random Nerd Tutorials.” .
[61] “PWM | Setting up IO Python Library on BeagleBone Black | Adafruit Learning System.”

[Online]. Available: https://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-
black/pwm. [Accessed: 03-Oct-2016].

[62] “Using ultrasonic Sensor with Arduino and Stm32.” .
[63] A. R. Chaidir, A. B. Satriya, and G. Dias Kalandro, “Design of a gripping imitator robotic arm for

taking an object,” 2016, pp. 1–5.
[64] “dynamixel_motor - ROS Wiki.” [Online]. Available: http://wiki.ros.org/dynamixel_motor.

[Accessed: 03-Oct-2016].
[65] “CM-530.” [Online]. Available:

http://support.robotis.com/en/product/auxdevice/controller/cm530.htm. [Accessed: 03-Oct-
2016].

[66] “Robotic Arm Controller Bachelor of Engineering (Honours) Sustainable Design Engineering
Year 4, Semester 7 2012/13 Sustainable Design Practice 2 Robotic Arm Controller Robotic Arm
Controller Table of Contents.” [Online]. Available:
https://www.academia.edu/7296388/Robotic_Arm_Controller_Bachelor_of_Engineering_Hon
ours_Sustainable_Design_Engineering_Year_4_Semester_7_2012_13_Sustainable_Design_Pra
ctice_2_Robotic_Arm_Controller_Robotic_Arm_Controller_Table_of_Contents. [Accessed: 03-
Oct-2016].

 52

[67] H. Wei, Z. Huang, Q. Yu, M. Liu, Y. Guan, and J. Tan, “RGMP-ROS: A real-time ROS architecture
of hybrid RTOS and GPOS on multi-core processor,” 2014, pp. 2482–2487.

[68] M. Quigley, B. Gerkey, and W. D. Smart, Programming robots with ROS, First edition.
Sebastopol: O’Reilly & Associates Incorporated, 2015.

[69] “ROS 101: Intro to the Robot Operating System | Robohub.” .
[70] E. Fernandez, Learning ROS for robotics programming: your one-stop guide to the Robot

Operating System. 2015.
[71] J. Lentin, Mastering ROS for robotics programming: design, build, and simulate complex robots

using Robot Operating System and master its out-of-the-box functionalities. Birmingham
Mumbai: Packt Publishing, 2015.

[72] “Robotic Mapping: Simultaneous Localization and Mapping (SLAM),” GIS Lounge, 15-Jan-2013.
[Online]. Available: https://www.gislounge.com/robotic-mapping-simultaneous-localization-
and-mapping-slam/. [Accessed: 29-Nov-2016].

[73] “Marginal Particle and Multirobot Slam: SLAM=‘SIMULTANEOUS LOCALIZATION AND
MAPPING’ By Marc Sobel (Includes references to Brian Clipp Comp Robotics) - ppt download.”
[Online]. Available: http://slideplayer.com/slide/4546667/. [Accessed: 29-Nov-2016].

[74] denna, “SLAM: Simultaneous Localization and Mapping: Part I,” SlideServe, 08-Sep-2012.
[Online]. Available: http://www.slideserve.com/denna/slam-simultaneous-localization-and-
mapping-part-i. [Accessed: 29-Nov-2016].

[75] “navigation/Tutorials/RobotSetup.” [Online]. Available:
http://library.isr.ist.utl.pt/docs/roswiki/navigation(2f)Tutorials(2f)RobotSetup.html. [Accessed:
29-Nov-2016].

[76] “Bootstrapping the BeagleBone Black with Debian.” [Online]. Available:
http://thethingsystem.com/dev/Bootstrapping-the-BeagleBone-Black-with-Debian.html.
[Accessed: 03-Oct-2016].

[77] R. Khurshid, N. Fitter, E. Fedalei, and K. Kuchenbecker, “Effects of Grip-Force, Contact, and
Acceleration Feedback on a Teleoperated Pick-and-Place Task,” IEEE Trans. Haptics, pp. 1–1,
2016.

[78] S. Rosa, A. Russo, A. Saglinbeni, and G. Toscana, “Vocal interaction with a 7-DOF robotic arm
for object detection, learning and grasping,” 2016, pp. 505–506.

[79] Robotics and Automation Society and Engineering in Medicine and Biology Society, Eds., 2012
4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
(BioRob 2012): Rome, Italy, 24 - 27 June 2012 ; [including the first edition of the Symposium on
Surgical Robotics ; part of the Bioengineering Week (June 20 - 29, 2012)]. Piscataway, NJ: IEEE,
2012.

[80] I. Siradjuddin, S. P. Tundung, A. S. Indah, and S. Adhisuwignjo, “A real-time Model Based Visual
Servoing application for a differential drive mobile robot using Beaglebone Black embedded
system,” 2015, pp. 186–192.

[81] “dinuxbg/pru-gcc-examples,” GitHub. [Online]. Available: https://github.com/dinuxbg/pru-gcc-
examples. [Accessed: 03-Oct-2016].

[82] M. Karimi, A. Ahmadi, N. Khazaee Korghond, E. Babaians, and S. S. Ghidary, “ReMoRo; A mobile
robot platform based on distributed I/O modules for research and education,” 2015, pp. 657–
662.

[83] L. Pauly, M. V. Baiju, P. Viswanathan, P. Jose, D. Paul, and D. Sankar, “CAMbot: Customer
assistance mobile manipulator robot,” 2015, pp. 1–4.

[84] S. Pradeep, A. Rani, V. Singh, and S. Agarwal, “An Approach for Object Picking using Correlation
analysis and Robotic Manipulation,” 2015, pp. 1–6.

 53

Appendix A

Specifications of the devices used.

Table A.1 Specifications of Beaglebone Black

 Features
Processor AM335x ARM cortex A8 chip

Video out HDMI

DRAM 512MB DDR3

On-board Flash 4GB Embedded MMC

Power source Mini USB or 5VDC External Jack

Indicator 1-power, 2-Ethernet, 4-user controllable LEDs.

Ethernet 10/100, RJ45

SD/MMC connector micro SD, 3.3V

User Input Reset button

Boot button

Power button

Video out 16b HDMI, 1280x1024 (max)

1024x768, 1280x720, 1440x900,

1920x1080@24hz w/EDID support

Audio Via HDMI interface, stereo

Weight 1.4 Oz (39.68gms)

Table A.2 Specifications of Ultrasonic Sensor

Power supply +5V DC

Quiescent current <2mA

Working current 15mA

Effectual angle <15°

Range 2cm – 400cm

 54

Resolution 0.3cm

Measuring angle 30 degree

Trigger input pulse width 10uS

Table A.3 Specifications of Dynamixel Ax-12A Motor

 Specifications

Weight 54.6gms

Dimension 32mm*50mm*40mm

Resolution 0.29°

Gear reduction ratio 254:1

Stall torque 1.5Nm (at 12.0V, 1.5A)

No load speed 59rpm (at 12V)

Running degree 0°~300°

Voltage 9~12V

Command signal Digital packet

Protocol type Half duplex Asynchronous serial communication

ID 254 (0~253)

Communication speed 7343bps ~ 1mbps

Feedback Position, temperature, load, input voltage etc.

Table A.4 Specifications of CM-530 Controller

 Specifications

Weight 54gms

CPU ARM Cortex STM32F103RE

Operating Voltage 6V to 15V

Current consumption Idle: 50mA

External I/O max current: 0.3A

Overall max current: 10A

Operating Temperature -50◦ to 70◦C

Internal I/O Device Button: 6 (Reset 1;port 5)

MIC: 1

Voltage Sensor: 1

 55

External I/O device OLLO Compatible I/O 5pin port: 6

AX/MX series 3pin connector: 5

Compatible products Gyro sensor, DMS sensor, IR Sensor, Touch

Sensor, Servo motors etc.

