
Quaternion-based Deep Belief Networks Fine-Tuning

João Paulo Papa1, Gustavo H. Rosa1, Danillo R. Pereira1, Xin-She Yang1

aDepartment of Computing, São Paulo State University, Av. Eng. Luiz Edmundo
Carrijo Coube, 14-01, Bauru,SP, 17033-360, Brazil - Phone: +55-14-3103-6079

papa@fc.unesp.br, gth.rosa@uol.com.br, cotonilo@gmail.com
bSchool of Science and Technology, Middlesex University, NW4 4BT, United Kingdom -

Phone: +44-020 8411-2351
x.yang@mdx.ac.uk

Abstract

Deep learning techniques have been paramount in the last years, mainly
due to their outstanding results in a number of applications. In this paper,
we address the issue of fine-tuning parameters of Deep Belief Networks by
means of meta-heuristics in which real-valued decision variables are described
by quaternions. Such approaches essentially perform optimization in fitness
landscapes that are mapped to a different representation based on hyper-
complex numbers that may generate smoother surfaces. We therefore can
map the optimization process onto a new space representation that is more
suitable to learning parameters. Also, we proposed two approaches based
on Harmony Search and quaternions that outperform the state-of-the-art re-
sults obtained so far in three public datasets for the reconstruction of binary
images.

Keywords: Deep Belief Networks, Quaternion, Harmony Search

1. Introduction

In the last years, the need for a more insightful description of certain
problems have fostered the research in the so-called deep learning tech-
niques, which are based on the foundations of hierarchical brain processing.
Therefore, one can stack single neural networks on top of each other to de-
sign a more complex model that can somehow learn different information

1Corresponding author.

Preprint submitted to Elsevier June 26, 2017

Paper accepted on 22 June 2017 and available online on 1 July 2017.

at each layer. Although one can refer to a number of deep-driven related
techniques out there, most of them rely on either Convolutional Neural Net-
works (CNNs) [17] or Restricted Boltzmann Machines (RBMs) [1]. In fact,
RBMs can be stacked in several layers, and depending on the interactions
among the layers, one can obtain a Deep Belief Network (DBN) [13] or a
Deep Boltzmann Machine (DBM) [29].

Deep learning techniques have been often used as a feature learner, thus
obtaining outstanding results in a number of computer vision- and signal
processing-related applications, such as face [32] and object recognition, im-
age reconstruction [3], speech recognition [12], and time-series modeling [16],
among others [10], However, one can highlight some main shortcomings of
such techniques: (i) since they usually have complex architectures, they are
more prone to overfitting as well, and (ii) depending on the model, one can
easily face hundreds of parameters to fine-tune, which can be an insurmount-
able problem. In this work, we focus on the latter issue.

Fine-tuning parameters in machine learning can be modeled as an opti-
mization task, in which the fitness function is the effectiveness of the tech-
nique over some validating set. Albeit, to work on a high-dimensional search
space computing derivatives towards the minimum of the function may not be
a good choice [30]. In this context, meta-heuristic-based optimization tech-
niques sound appealing, since most of them do not make use of derivatives in
the search for better solutions, but they employ nature-inspired mechanisms
instead.

Currently, the reader can refer to a very few works that deal with fine-
tuning parameters in deep learning techniques, mainly because of the lack
of communication among researchers from both sides. Fedorovici et al. [5],
for instance, applied the Gravitational Search Algorithm to fine-tune CNNs
for optical character recognition, and Papa et al. [21] employed the Harmony
Search (HS) [9] to optimize the parameters of Restricted Boltzmann Ma-
chines in the context of binary image reconstruction. In the very same year,
Papa et al. [22] evaluated some meta-heuristic techniques to fine-tune Dis-
criminative Restricted Boltzmann Machines, which are basically a variant of
näıve RBMs that consider the label units during the reconstruction process.
Finally, Papa et al. [24], Rosa et al. [27, 28] and Rodrigues et al. [26] employed
Harmony Search, Firefly Algorithm, Cuckoo Search and some of its variants
to optimize Deep Belief Networks and Convolutional Neural Networks, re-
spectively. Other works have focused on regularization-based approaches,
such as the well-known Dropout [31] and DropConnect [35], which essen-

2

tially aim at inducing sparsity into the models, thus preventing them from
overfitting.

As aforementioned, since one can find very few works that deal with both
meta-heuristic optimization and deep learning, it is very easy to track them
down and to state the approach proposed in this paper outperformed all pre-
vious works with respect to the task of binary image reconstruction using
Deep Belief Networks. In this paper, we move the problem of parameter op-
timization from Euclidean-based representations to Quaternions, which are a
powerful mathematical tool that extends the complex number theory and are
extensively used for crystallographic texture analysis and aircraft dynamics,
for instance. Inspired in the works of [7, 6], we propose two quaternion-based
variants of the HS algorithm: the Quaternion Harmony Serch (QHS), and
the Quaternion Improved Harmony Search (QIHS), being the former based
on näıve Harmony Search, and the latter based on the Improved Harmony
Search (IHS) [18]. Such variant allows HS to dynamically update its parame-
ters, thus achieving better results. From another point of view, the approach
proposed in this paper is similar to a tensor-based optimization, where each
decision variable is mapped to a quaternion representation. Thus, the whole
set of decision variables turns out to be a tensor.

Therefore, the main contributions of this paper are threefold: (i) to pro-
pose the Quaternion Harmony Search and (ii) the Quaternion Improved Har-
mony Search, and (iii) to model the task of fine-tuning parameters of Deep
Belief Networks in the quaternion space. In this paper, we focused on the
Harmony Search due to its efficiency during the optimization process, since
it does not update all possible solutions in a single iteration, but only one.

The remainder of this paper is organized as follows. Section 2 presents
theoretical details about quaternions, Harmony Search, and Deep Belief Net-
works, while Sections 3 and 4 discuss the methodology and experiments,
respectively, and Section 5 states conclusions and future works.

2. Theoretical Background

2.1. Quaternion Algebra

Quaternions are mostly known to provide a convenient mathematical
formulation to handle with orientations and rotations of objects in three-
dimensional spaces. Their applications span from computer science, robotics,
navigation, and flight dynamics, just to name a few. Quaternions with unit
norm are also known as versors [25] hypercomplex numbers [14], which can

3

be used to rotate any other quaternion. Such operations of rotations are usu-
ally quite expensive by means of standard algebra, which makes quaternions
even more appealing.

A quaternion q is composed of real and complex numbers, i.e., q = x0 +
x1i + x2j + x3k, where x0, x1, x2, x3 ∈ ℜ and i, j, k are imaginary numbers
that follow the following set of equations:

ij = k, jk = i, ki = j, (1)

ji = −k, ji = −k, kj = −i, ik = −j, (2)

and
i2 = j2 = k2 = 1. (3)

In short, a quaternion q is represented in a 4-dimensional space over the real
numbers, i.e., ℜ4. Actually, depending on the application, we can consider
the real numbers only, as the one addressed in this work.

Given two quaternions q1 = x0+x1i+x2j+x3k and q2 = y0+y1i+y2j+y3k,
the quaternion algebra defines a set of main operations [4]. The addition, for
instance, can be defined by:

q1 + q2 = (x0 + x1i+ x2j + x3k) + (y0 + y1i+ y2j + y3k) (4)

= (x0 + y0) + (x1 + y1)i+ (x2 + y2)j + (x3 + y3)k,

while the subtraction is defined as follows:

q1 − q2 = (x0 + x1i+ x2j + x3k)− (y0 + y1i+ y2j + y3k)

= (x0 − y0) + (x1 − y1)i+ (x2 − y2)j + (x3 − y3)k. (5)

Another important operation is the norm, which maps a given quaternion
to a real-valued number, as follows:

N(q1) = N(x0 + x1i+ x2j + x3k)

=
√

x2
0 + x2

1 + x2
2 + x2

3. (6)

Finally, Fister et al. [7, 6] introduced two other operations, qrand and
qzero. The former initializes a given quaternion with values drawn from a
Gaussian distribution, and it can be defined as follows:

4

qrand() = {xi = N (0, 1)|i ∈ {0, 1, 2, 3}}. (7)

The latter function initialized a quaternion with zero values, as follows:

qzero() = {xi = 0|i ∈ {0, 1, 2, 3}}. (8)

Although there are other operations, we defined only the ones employed in
this work.

2.2. Harmony Search

Harmony Search is an optimization algorithm based on the way musicians
create their songs. Roughly speaking, the idea is to model each decision
variable as a musical instrument, and the optimization task is then reduced
to find the set of instruments that generate a song with the “best” harmony
as possible [8]. The notion of best is encoded as the fitness value of the
function to be maximized/minimized.

Basically, the Harmony Search works by generating only one solution
per iteration, the so-called “harmony”, which is created based on two main
principles: (i) values (musical notes/instruments) that have been used in
the past, and (ii) new values generated at random that somehow encode the
inspiration of the musician. In short, Harmony Search is quite simple and
works well in several applications.

In this section, we first introduce the näıve HS to the reader, followed by
the IHS background and the proposed QHS and QIHS.

2.2.1. Standard Harmony Search

Let H = (h1,h2, . . . ,hN) be a set of harmonies that compose the so-
called “Harmony Memory”, such that hi ∈ ℜM . The HS algorithm generates
after each iteration a new harmony vector ĥ based on memory considerations,
pitch adjustments, and randomization (music improvisation). Further, the
new harmony vector ĥ is evaluated in order to be accepted in the harmony
memory: if ĥ is better than the worst harmony, the latter is then replaced
by the new harmony.

In regard to the memory consideration step, the idea is to model the
process of creating songs, in which the musician can use his/her memories
to create a new song. This process is modelled by the Harmony Memory
Considering Rate (HMCR) parameter, which is the probability of choosing
one value from the historic values stored in the harmony memory, being

5

(1 − HMCR) the probability of randomly choosing one feasible value, as
follows:

ĥj =

{

hj
A with probability HMCR

θ ∈ ϕj with probability (1-HMCR),
(9)

where A ∼ U(1, 2, . . . , N), and ϕ = {ϕ1,ϕ2, . . . ,ϕM} stands for the set of
feasible values for each decision variable.

Further, every component j of the new harmony vector ĥ is examined to
determine whether it should be pitch-adjusted or not, which is controlled by
the Pitch Adjusting Rate (PAR) variable, according to Equation 10:

ĥj =

{

ĥj ± βϱ with probability PAR
ĥj with probability (1-PAR).

(10)

The above equation concerns shifting the neighbouring values of some deci-
sion variable in the harmony, where ϱ is an arbitrary distance bandwidth,
and β ∼ U(0, 1).

2.2.2. Improved Harmony Search

The Improved Harmony Search [18] differs from traditional HS by updat-
ing the PAR and ϱ values dynamically. The PAR updating formulation at
time step t is given by:

PARt = PARmin +
PARmax − PARmin

T
t, (11)

where T stands for the number of iterations, and PARmin and PARmax

denote the minimum and maximum PAR values, respectively. In regard to
the bandwidth value at time step t, it is computed as follows:

ϱt = ϱmax exp

(
ln(ϱmin/ϱmax)

T
t

)

, (12)

where ϱmin and ϱmax stand for the minimum and maximum values of ϱ,
respectively.

Notice the PAR values (Equation 11) increase at a constant rate along the
iterations. Essentially, the PAR variable is used to generate new solutions
in the neighborhood of a given harmony (Equation 10). As the number of

6

iterations increases, meta-heuristic optimization algorithms tend to prevail
the exploitation step, i.e. the search for better solutions are concentrated in
even small (local) regions of the feature space. In case of IHS, by increasing
the PAR values, one can increase the probability of generating new solutions
as the number of iterations increases either. However, one should consider
Equation 12 either. As the number of iterations increases, the step (variable
ϱ) used to generating new solutions (Equation 10) also decreases.

2.2.3. Quaternion-based Harmony Search

The proposed approaches aim at mapping the problem of optimizing vari-
ables in the Euclidean space to the quaternions space. As aforementioned,
the idea is to obtain smoother representations of the fitness landscape, thus
making the problem easier to handle.

In the standard Harmony Search, each harmony hi ∈ ℜM , i = 1, 2, . . . , N
is modeled as an array containing M variables to be optimized, such that
hij ∈ ℜ. In both QHS and QIHS, each decision variable j is now represented
by a quaternion qj ∈ ℜ4, such that each harmony can be seen as a matrix h′

i ∈
ℜ4×N . Therefore, each harmony is no longer an array of decision variables,
but a matrix instead.

However, we can map each quaternion to a real-valued number in or-
der to use standard HS/IHS. Basically, one has to compute hij = N(h′

ij),
i = 1, 2 . . . , N and j = 1, 2, . . . ,M . Further, the standard HS/IHS procedure
can be executed as usual. But note the optimization process is conducted at
quaternion level, which means QHS/QIHS aims finding the quaternions for
each decision variable such that their norm values minimize the fitness func-
tion. An ordinary HS/IHS aims at learning values for each decision variable
that minimizes the fitness function. More details about the quaternion-based
optimization process can be found in Section 3.2.

2.3. Deep Belief Networks

In this section, we describe the main concepts related to Deep Belief Net-
works, but with a special attention to the theoretical background of RBMs,
which are the basis for DBN understanding.

2.3.1. Restricted Boltzmann Machines

Restricted Boltzmann Machines are usually referred to as energy-based
stochastic neural networks composed of two layers of neurons, in which the
learning phase is conducted by means of an unsupervised fashion. Figure 1

7

depicts the architecture of a Restricted Boltzmann Machine, which comprises
a visible layer v with m units and a hidden layer h with n units. The real-
valued m × n matrix W models the weights between visible and hidden
neurons, where wij stands for the weight between the visible unit vi and the
hidden unit hj .

hh …

v

1 h2 hn

vm…v3v2v1

wijW

Figure 1: The RBM architecture.

Let us assume v and h as the binary visible and hidden units, respectively.
In other words, v ∈ {0, 1}m and h ∈ {0, 1}n. The energy function of a
Restricted Boltzmann Machine is given by:

E(v,h) = −
m
∑

i=1

aivi −
n
∑

j=1

bjhj −
m
∑

i=1

n
∑

j=1

vihjwij, (13)

where a and b stand for the biases of visible and hidden units, respectively.
The probability of a configuration (v,h) is computed as follows:

P (v,h) =
e−E(v,h)

∑

v,h

e−E(v,h)
, (14)

being the denominator a normalization factor that stands for all possible
configurations involving the visible and hidden units. In short, the RBM
learning algorithm aims at estimating W, a and b.

2.3.2. Learning Algorithm

The parameters of an RBM can be optimized by performing stochastic
gradient ascent on the log-likelihood of training patterns. Given a training
sample (visible unit), its probability is computed over all possible hidden
vectors, as follows:

8

P (v) =

∑

h

e−E(v,h)

∑

v,h

e−E(v,h)
. (15)

In order to update the weights and biases, it is necessary to compute the
derivatives of the logarithm of P (v) with respect to wij, ai and bi, thus
leading to the following equations:

Wt+1 = Wt + η(P (h|v)vT − P (h̃|ṽ)ṽT)− λWt + α∆Wt−1

︸ ︷︷ ︸

=∆Wt

, (16)

at+1 = at + η(v− ṽ) + α∆at−1

︸ ︷︷ ︸

=∆at

(17)

and

bt+1 = bt + η(P (h|v)− P (h̃|ṽ)) + α∆bt−1

︸ ︷︷ ︸

=∆b
t

, (18)

where

P (hj = 1|v) = σ

(
m∑

i=1

wijvi + bj

)

, (19)

and

P (vi = 1|h) = σ

(
n
∑

j=1

wijhj + ai

)

. (20)

In this case, σ(·) stands for the logistic sigmoid function. Notice ṽ and h̃

stand for the reconstructed (sampled) versions of the input v and hidden
units h, respectively.

2.3.3. Stacked Restricted Boltzmann Machines

Truly speaking, DBNs are composed of a set of stacked RBMs, being each
of them trained using the learning algorithm presented in Section 2.3.2 in a
greedy fashion, which means an RBM at a certain layer does not consider

9

others during its learning procedure. Suppose we have a DBN composed of
L layers, being Wi the weight matrix of RBM at layer i. Additionally, the
hidden units at layer i become the input units to the layer i+ 1.

The approach proposed by [13] for the training step of DBNs also consid-
ers a fine-tuning as a final step after the training of each RBM. Such proce-
dure can be performed by means of a Backpropagation or Gradient descent
algorithm, for instance, in order to adjust the matrices Wi, i = 1, 2, . . . , L.
The optimization algorithm aims at minimizing some error measure consid-
ering the output of an additional layer placed at the top of the DBN after its
former greedy training. Such layer is often composed of softmax or logistic
units, or even some supervised pattern recognition technique.

Figure 2 depicts an example of a DBN with three layers (the same used in
the experimental section). In this context, we have W = {W1,W2,W3} as
the set of weight matrices, and h = {h1,h2,h3} as the set of hidden layers.
In this case, Wi stands for the weight matrix between layers i and i+1, and
hj denotes the jth hidden layer. One can observe at every two layers we have
a standard RBM, which is trained greedily, i.e. we do not consider anything
else other than the two layers that compose the current RBM during the
learning procedure.

v …

…h1

…h2

…h3

W
3

W
2

W
1

Figure 2: The DBN architecture used in this work.

10

3. Methodology

In this section, we describe the datasets, experimental setup and the
proposed approach to model DBN fine-tuning by means of quaternions.

3.1. Datasets

We validate DBN fine-tuning in the task of binary image reconstruction
over three public datasets, as described below:

• MNIST dataset1: it is composed of images of handwritten digits. The
original version contains a training set with 60, 000 images from digits
‘0’-‘9’, as well as a test set with 10, 000 images. We preprocess the data
according to the methodology used Papa et al. [24].

• CalTech 101 Silhouettes Data Set2: it is based on the former Caltech
101 dataset, and it comprises silhouettes of images from 101 classes
with resolution of 28 × 28. Notice we used only the training and test
sets, since our optimization model aims at minimizing the MSE error
over the training set.

• Semeion Handwritten Digit Data Set3: this dataset contains 1,593 bi-
nary images of manuscript digits with resolution of 16×16 from around
80 persons. We employed the whole dataset in the experimental section.
In regard to this dataset, we used 2% for training and the remaining
98% for testing purposes.

Figure 3 displays some training examples from the aforementioned datasets,
which were partitioned in 2% for the training set and 98% to compose the
test set.

3.2. DBN Fine-Tuning as an Optimization Problem

Usually, Restricted Boltzmann Machines require the setting up of four
main parameters: the learning rate η, number of hidden units n, momentum
ϕ and weight decay λ. Since Deep Belief Nets stack RBMs on top of each

1http://yann.lecun.com/exdb/mnist/
2https://people.cs.umass.edu/~marlin/data.shtml
3https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

11

(a) (b) (c)

Figure 3: Example images from (a) MNIST, (b) CalTech 101 Silhouettes and (c) Semeion
datasets.

other, if one has L layers, then each harmony encodes 4L variables to be op-
timized. However, as the training procedure of DBNs are greedy-wise, which
means each layer is trained independently, only 4 variables are optimized per
layer.

In this work, we initialized all harmonies with random values for the
further application of the optimization techniques. In this work, we used
the following ranges concerning the parameters: n ∈ [5, 100], η ∈ [0.1, 0.9],
λ ∈ [0.1, 0.9] and ϕ ∈ [0.00001, 0.01]. In order to fulfill the requirements
of any optimization technique, one shall design a fitness function to guide
the search into the best solutions. In this paper, we used the mean squared
error (MSE) over the training set considering the task of binary image re-
construction as the fitness function. Therefore, we adopted the very same
methodology used by Papa et al. [24] to allow a fair comparison against the
works. Figure 4 depicts the model used in this paper to encode a standard
optimization problem on each harmony. As aforementioned, although we
have a 4L-dimensional harmony, only 4 variables are used at time. In regard
to the source-code, we used an implementation provided by LibOPT [23].

The approach proposed in this paper models each harmony as a tensor,
since each decision variable is now a 4-dimensional quaternion. Therefore,
the problem of optimizing each decision variable (real-valued number) is now
mapped to a problem of optimizing a 4-dimensional vector in the quaternions
space. Figure 5 illustrates the above situation.

Although the number of hidden units (n) is integer-valued, Harmony
Search does not have equations based on velocity and other mechanisms of-
ten employed by swarm-based optimization techniques. Since each decision

12

n η λ n η λϕ ϕ n η ϕλ…
Layer 1 Layer 2 Layer L

…

…

v

h
1

…h
2

…

…h
L

…h
L-1

Figure 4: Proposed approach to encode the decision variables on each harmony.

n η λ n η λ n η λ…

Layer 1 Layer 2 Layer L

q0

ϕ ϕ ϕ

q1 q2 q3 q4 q5 q6 q7

x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0

x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1

x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2

x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3

q
4L-1

q
4L-2

q
4L-3

q
4L-4

Figure 5: Quaternion-based encoding process.

variable that composes the harmony is initialized within its predefined range,
when we create a new harmony we need to go through Equation 9 and fur-
ther Equation 10. The first equation just generates a new random value
within the range of each decision variable with probability 1 − HMCR, or
it simply takes a value from the harmony memory with probability HMCR.
Therefore, Equation 9 does work within the range of each decision variable.
With respect to Equation 10, an integer number can be mapped to a real one
with probability PAR. In this case, we just map that number to its nearest
integer (round operation).

3.3. Optimization Techniques

We compared the proposed QHS and QIHS against a random initializa-
tion of the parameters (RS), Particle Swarm Optimization (PSO) [15, 36],
and the Hyperopt library using random search (Hyper-RS) and Tree of

13

Parzen Estimators (Hyper-TPE) [2]. Additionally, we evaluated five HS
variants: (i) IHS, (ii) Global-best Harmony Search (GHS) [19], (iii) Novel
Global Harmony Search (NGHS) [38], (iv) Self-adaptive Global Best Har-
mony Search (SGHS) [20] and (v) Parameter-setting-free Harmony Search
(PSF-HS) [9]. We also evaluated the robustness of parameter fine-tuning
using three distinct DBN models: one layer (1L), two layers (2L) and three
layers (3L). Notice the 1L approach stands for the standard RBM.

Finally, Table 1 presents the parameters used for each optimization tech-
nique according to [24]. We used 5 agents (initial solutions) for all optimiza-
tion techniques during 50 iterations for convergence. The pm and LP pa-
rameters stand for the probability of mutation and learning period of NGHS
and SGHS techniques, respectively.

Table 1: Parameter configuration.

Technique Parameters

PSO c1 = 1.7, c2 = 1.7, w = 0.7
HS/QHS HMCR = 0.7, PAR = 0.7, ϱ = 10
IHS/QIHS HMCR = 0.7, PARMIN = 0.1

PARMAX = 0.7, ϱMIN = 1
ϱMAX = 10

GHS HMCR = 0.7, PARMIN = 0.1
PARMAX = 0.7

NGHS pm = 0 · t
SGHS HMCRm = 0.98, PARm = 0.9

ϱMIN = 0, ϱMAX = 0.9, LP = 5

We have conducted a hold-out procedure with 20 randomly generated
training and test sets, 10 iterations for the learning procedure of each RBM,
and mini-batches of size 20. In addition, we also considered three learning
algorithms: Contrastive Divergence (CD) [11], Persistent Contrastive Diver-
gence (PCD) [33] and Fast Persistent Contrastive Divergence (FPCD) [34].
Finally, the Wilcoxon signed-rank test [37] with significance of 0.05 was used
for statistical validation purposes.

4. Experiments

In this section, we present the experimental results concerning the task of
binary image reconstruction. Tables 2, 3 and 4 present the average values of

14

the minimum squared errors over the MNIST, CalTech 101 Silhouettes and
Semeion Handwritten Digit datasets (testing set), respectively. The values
in bold stand for the best results considering the Wilcoxon test.

Clearly, one can observe QHS and QIHS obtained the best results so
far for all datasets, thus outperforming the recent results obtained by [24]
with IHS optimization technique. Notice no significant difference among the
number of layers or the training algorithm could be observed. That is an
interesting point, since it is expected that more layers would be helpful to
a better description of the images. In fact, such behaviour can be observed
for some HS-based techniques, such as IHS and HS-PSF considering MNIST
dataset. Additionally, PSO seemed to behave similarly, since the best results
were obtained with one layer only.

In regard to Semeion Handwritten Digit dataset, which poses a greater
challenge (i.e., we obtained higher reconstruction errors), the more layers one
has, the lower the reconstruction errors are for all optimization techniques,
except for QHS and QIHS. Probably, as the proposed approaches converge
faster than traditional ones, the number of layers may not be so important,
since we restricted the convergence process to only 10 iterations. Regarding
this dataset, the best results excluding QHS and QIHS were obtained by
PSO, Hyper-RS and Hyper-TPE. As a matter of fact, it might be expected
that swarm-based optimization techniques converge faster, since they share
new solutions among all particles, thus updating them all. We have observed
PSO results are more competitive when the problem gets more complex,
such as in Caltech 101 and Semeion Handwritten Digit dataset. That leads
us to think about quaternion-based versions of Particle Swarm Optimization
either, which seems to be fruitful to the research community.

Although QHS and QIHS obtained the lowest errors over Caltech 101
Silhouettes dataset, IHS achieved similar results if we consider the statistical
evaluation. In fact, IHS with FPCD and 3 layers obtained results quite close
to the ones obtained by QHS/QIHS with CD and 1 layer only. That is an
interesting point, since it shows us that QHS/QIHS can achieve similar or
even better results than HS-based techniques with less layers, i.e. with a
simpler neural architecture.

Usually, FPCD takes longer to converge [34]. As we have used the very
same number of iterations for convergence (i.e., 10 iterations), it is expected
FPCD did not obtain similar results to those achieved by both CD and
PCD. Figure 6 displays the convergence curve (MSE) of QHS and QIHS
during the first execution of the cross-validation procedure for the first layer

15

Table 2: Average MSE values considering MNIST dataset.

1L 2L 3L
CD PCD FPCD CD PCD FPCD CD PCD FPCD

HS [24] 0.1059 0.1325 0.1324 0.1059 0.1061 0.1057 0.1059 0.1058 0.1057
IHS [24] 0.0903 0.0879 0.0882 0.0885 0.0886 0.0886 0.0887 0.0885 0.0886
GHS [24] 0.1063 0.1062 0.1063 0.1061 0.1063 0.1061 0.1063 0.1065 0.1062
NGHS [24] 0.1066 0.1066 0.1063 0.1065 0.1062 0.1062 0.1069 0.1064 0.1062
SGHS [24] 0.1067 0.1067 0.1062 0.1072 0.1066 0.1063 0.1068 0.1065 0.1064
PSF-HS [24] 0.1005 0.1006 0.0998 0.1032 0.0976 0.1007 0.0992 0.0995 0.0998

PSO 0.1057 0.1058 0.1057 0.1060 0.1059 0.1058 0.1058 0.1059 0.1058
RS [24] 0.1105 0.1101 0.1102 0.1105 0.1101 0.1096 0.1108 0.1099 0.1096

Hyper-RS [24] 0.1062 0.1062 0.1060 0.1062 0.1062 0.1060 0.1062 0.1061 0.1062
Hyper-TPE [24] 0.1059 0.1059 0.1058 0.1059 0.1059 0.1057 0.1050 0.1051 0.1051

QHS 0.0876 0.0876 0.0899 0.0876 0.0876 0.0901 0.0876 0.0876 0.0918
QIHS 0.0876 0.0876 0.0888 0.0876 0.0876 0.0882 0.0888 0.0876 0.0888

Table 3: Average MSE values considering CalTech 101 Silhouettes dataset.

1L 2L 3L
CD PCD FPCD CD PCD FPCD CD PCD FPCD

HS [24] 0.1695 0.1696 0.1691 0.1695 0.1699 0.1693 0.1694 0.1696 0.1692
IHS [24] 0.1696 0.1695 0.1693 0.1609 0.1607 0.1612 0.1611 0.1618 0.1606

GHS [24] 0.1699 0.1697 0.1692 0.1699 0.1698 0.1695 0.1697 0.1696 0.1694
NGHS [24] 0.1706 0.1703 0.1697 0.1697 0.1703 0.1694 0.1701 0.1699 0.1695
SGHS [24] 0.1703 0.1703 0.1701 0.1709 0.1706 0.1700 0.1708 0.1703 0.1701
PSF-HS [24] 0.1663 0.1670 0.1670 0.1689 0.1691 0.1681 0.1675 0.1684 0.1686

PSO 0.1691 0.1690 0.1689 0.1689 0.1691 0.1688 0.1692 0.1692 0.1690
RS [24] 0.1755 0.1759 0.1743 0.1758 0.1755 0.1748 0.1766 0.1766 0.1742

Hyper-RS [24] 0.1696 0.1697 0.1694 0.1662 0.1662 0.1695 0.1652 0.1651 0.1650
Hyper-TPE [24] 0.1694 0.1693 0.1691 0.1693 0.1693 0.1691 0.1649 0.1642 0.1642

QHS 0.1605 0.1606 0.1616 0.1605 0.1605 0.1616 0.1605 0.1605 0.1615
QIHS 0.1605 0.1606 0.1626 0.1605 0.1605 0.1624 0.1605 0.1605 0.1613

considering MNIST dataset, CD and FPCD training algorithms. Although
both techniques tend to converge when one increases the number of iterations,
CD clearly converges faster than FPCD for both QHS and QIHS. Notice we
are not using too many learning iterations, which is often required by FPCD.
Once more, the idea of this paper is to show we can fine-tune DBNs properly
with a limited number of iterations.

Another way of comparing quaternion-based and standard HS techniques

16

Table 4: Average MSE values considering Semeion Handwritten Digit dataset.

1L 2L 3L
CD PCD FPCD CD PCD FPCD CD PCD FPCD

HS [24] 0.2128 0.2128 0.2129 0.2202 0.2128 0.2128 0.2199 0.2128 0.2128
IHS [24] 0.2131 0.2130 0.2128 0.2116 0.2114 0.2121 0.2103 0.2109 0.2119
GHS [24] 0.2133 0.2129 0.2128 0.2129 0.2130 0.2129 0.2129 0.2129 0.2128
NGHS [24] 0.2134 0.2132 0.2131 0.2130 0.2131 0.2129 0.2131 0.2132 0.2130
SGHS [24] 0.2135 0.2131 0.2130 0.2131 0.2131 0.2130 0.2132 0.2132 0.2130
PSF-HS [24] 0.2137 0.2130 0.2130 0.2121 0.2120 0.2124 0.2120 0.2120 0.2121

PSO 0.2128 0.2128 0.2128 0.2128 0.2128 0.2128 0.2128 0.2128 0.2127
RS [24] 0.2146 0.2143 0.2145 0.2146 0.2144 0.2139 0.2143 0.2140 0.2140

Hyper-RS [24] 0.2127 0.2129 0.2129 0.2129 0.2129 0.2129 0.2129 0.2129 0.2128
Hyper-TPE [24] 0.2128 0.2128 0.2128 0.2128 0.2128 0.2127 0.2128 0.2128 0.2128

QHS 0.2095 0.2096 0.2143 0.2096 0.2096 0.2142 0.2096 0.2096 0.2170
QIHS 0.2096 0.2096 0.2096 0.2096 0.2159 0.1624 0.2096 0.2096 0.2132

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 1 2 3 4 5 6 7 8 9 10

M
SE

Iteration

CD
FPCD

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 1 2 3 4 5 6 7 8 9 10

M
SE

Iteration

CD
FPCD

(b)

Figure 6: MSE values during the convergence process considering (a) QHS and (b) IQHS
optimization algorithms for MNIST dataset.

is to consider the values of the logarithm of the pseudo-likelihood (PL) when
estimating the difference between the input training pattern and the output
sampled by the DBN learning algorithm. Since the idea is to maximize the
logarithm of PL, the higher these values, the better the technique is. Figure 7
displays a comparison among HS, IHS, QHS and QIHS considering MNIST
dataset at the very first layer of the first execution of the cross-validation
procedure using CD. Clearly, the proposed techniques can obtain much better
values for the logarithm of pseudo-likelihood, which means they can learn

17

more accurate models than standard HS-based optimization techniques.

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

 1 2 3 4 5 6 7 8 9 10

lo
g

PL

Iteration

HS
IHS

QHS
QIHS

Figure 7: Logarithm of the pseudo-likelihood over MNIST dataset considering HS, IHS,
QHS and QIHS optimization techniques.

Probably, one main shortcoming of quaternion-based optimization con-
cerns with the computational load, which is usually, at least, twice more
expensive than traditional techniques. The problem is related to the compu-
tation of the norm for each decision variable, which requires a loop with 4
more iterations.

5. Conclusions

This paper dealt with the problem of DBN parameter fine-tuning by
means of quaternion-based optimization techniques. The idea is to map
the traditional Euclidean space, commonly used by most of optimization
techniques, to a probably smoother fitness landscape on the quaternions
space. The two proposed approaches, i.e. QHS and QIHS, showed to be
more effective concerning the task of binary image reconstruction than stan-
dard techniques based on Harmony Search, thus outperforming very recent
state-of-the-art results. However, one main shortcoming concerns with their
computational load, which is at least twice more expensive than traditional
techniques.

In regard to future works, we intend to implement different variants of
the Harmony Search to work on the quaternions space, as well as we aim at
finding different search space representations. Another approach would be
to consider more than one space during the optimization process in order to
learn a hybrid manifold that can benefit from different representations.

18

Acknowledgments

The authors are grateful to FAPESP grants #2014/12236-1,
#2014/16250-9 and #2015/25739-4, as well as CNPq grant #470571/2013-6
and #306166/2014-3. The authors also thank Prof. André Nunes de Souza
and Prof. Danilo Sinkiti Gastaldello for their insightful comments.

References

[1] D. H. Ackley, G. E. Hinton, and T. J Sejnowski. A learning algorithm
for boltzmann machines. Cognitive Science, 9:147–169, 1985.

[2] J. S. Bergstra, D. Yamins, and D. D. Cox. Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms. In
Python for Scientific Computing Conference, pages 1–7, 2013.

[3] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional
network for image super-resolution. In D. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, editors, 13th European Conference on Computer Vi-
sion, Lecture Notes in Computer Science, pages 184–199. Springer In-
ternational Publishing, 2014.

[4] D. Eberly. Quaternion algebra and calculus. Technical report, Magic
Software, 2002.

[5] L. Fedorovici, R. Precup, F. Dragan, R. David, and C. Purcaru. Em-
bedding gravitational search algorithms in convolutional neural networks
for OCR applications. In 7th IEEE International Symposium on Applied
Computational Intelligence and Informatics, SACI ’12, pages 125–130,
2012.

[6] I. Fister, J. Brest, I. Fister Jr., and X.-S. Yang. Modified bat algo-
rithm with quaternion representation. In IEEE Congress on Evolution-
ary Computation, pages 491–498, 2015.

[7] I. Fister, X.-S. Yang, J. Brest, and I. Fister Jr. Modified firefly algo-
rithm using quaternion representation. Expert Systems with Applica-
tions, 40(18):7220–7230, 2013.

19

[8] Z. W. Geem. Music-Inspired Harmony Search Algorithm: Theory and
Applications. Springer Publishing Company, Incorporated, 1st edition,
2009.

[9] Z. W. Geem and K.-B. Sim. Parameter-setting-free harmony search
algorithm. Applied Mathematics and Computation, 217(8):3881–3889,
2010.

[10] X. Han and Q. Dai. Batch-normalized mlpconv-wise supervised pre-
training network in network. Applied Intelligence, 2017.

[11] G. E. Hinton. Training products of experts by minimizing contrastive
divergence. Neural Computation, 14(8):1771–1800, 2002.

[12] G. E. Hinton, D. Li, Y. Dong, G. E. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury.
Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal Processing Magazine,
29(6):82–97, 2012.

[13] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm
for deep belief nets. Neural Computation, 18(7):1527–1554, 2006.

[14] I. L. Kantor and A. S. Solodovnikov. Hypercomplex numbers. Springer-
Verlag, 1989.

[15] J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufmann
Publishers Inc., San Francisco, USA, 2001.

[16] M. Längkvist, L. Karlsson, and A. Loutfi. A review of unsupervised
feature learning and deep learning for time-series modeling. Pattern
Recognition Letters, 42(1):11–24, 2014.

[17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[18] M. Mahdavi, M. Fesanghary, and E. Damangir. An improved harmony
search algorithm for solving optimization problems. Applied Mathemat-
ics and Computation, 188(2):1567–1579, 2007.

20

[19] M. G. H. Omran and M. Mahdavi. Global-best harmony search. Applied
Mathematics and Computation, 198(2):643–656, 2008.

[20] Q.-K. Pan, P. N. Suganthan, M. Fatih Tasgetiren, and J. J. Liang. A
self-adaptive global best harmony search algorithm for continuous opti-
mization problems. Applied Mathematics and Computation, 216(3):830–
848, 2010.

[21] J. P. Papa, G. H. Rosa, K. A. P. Costa, A. N. Marana, W. Scheirer, and
D. D. Cox. On the model selection of bernoulli restricted boltzmann
machines through harmony search. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’15, pages 1449–1450,
New York, USA, 2015. ACM.

[22] J. P. Papa, G. H. Rosa, A. N. Marana, W. Scheirer, and D. D.
Cox. Model selection for discriminative restricted boltzmann machines
through meta-heuristic techniques. Journal of Computational Science,
9:14–18, 2015.

[23] J. P. Papa, G. H. Rosa, D. Rodrigues, and X.-S. Yang.
LibOPT: An open-source platform for fast prototyp-
ing soft optimization techniques. ArXiv e-prints, 2017.
http://adsabs.harvard.edu/abs/2017arXiv170405174P.

[24] J. P. Papa, W. Scheirer, and D. D. Cox. Fine-tuning deep belief networks
using harmony search. Applied Soft Computing, 46:875–885, 2016.

[25] C. Perwass. Geometric Algebra with Applications in Engineering.
Springer, 2009.

[26] D. Rodrigues, X.-S. Yang, and J.P. Papa. Fine-tuning deep belief net-
works using cuckoo search. In X.-S. Yang and J.P. Papa, editors, Bio-
Inspired Computation and Applications in Image Processing, pages 47–
59. Academic Press, 2016.

[27] G. H. Rosa, J. P. Papa, K. A. P. Costa, L. A. Passos, C. R. Pereira,
and X.-S. Yang. Learning Parameters in Deep Belief Networks Through
Firefly Algorithm, pages 138–149. Springer International Publishing,
Cham, 2016.

21

[28] G. H. Rosa, J. P. Papa, A. N. Marana, W. Scheirer, and D. D. Cox. Fine-
tuning convolutional neural networks using harmony search. In A. Pardo
and J. Kittler, editors, Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, volume 9423 of Lecture Notes in
Computer Science, pages 683–690. Springer International Publishing,
2015. 20th Iberoamerican Congress on Pattern Recognition.

[29] R.Salakhutdinov and G. E. Hinton. An efficient learning procedure for
deep boltzmann machines. Neural Computation, 24(8):1967–2006, 2012.

[30] D. Schuurmans and M. P. Wellman, editors. Derivative-Free Optimiza-
tion via Classification. AAAI Press, 2016.

[31] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural net-
works from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, January 2014.

[32] Y. Taigman, Y. Ming, M. Ranzato, and L. Wolf. Deepface: Closing the
gap to human-level performance in face verification. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR ’14, pages 1701–
1708, 2014.

[33] T. Tieleman. Training restricted boltzmann machines using approxima-
tions to the likelihood gradient. In Proceedings of the 25th International
Conference on Machine Learning, pages 1064–1071, New York, USA,
2008. ACM.

[34] T. Tieleman and G. E. Hinton. Using fast weights to improve persistent
contrastive divergence. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 1033–1040, New York, USA,
2009. ACM.

[35] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of
neural networks using dropconnect. In S. Dasgupta and D. Mcallester,
editors, Proceedings of the 30th International Conference on Machine
learning, volume 28 of ICML ’13, pages 1058–1066. JMLR Workshop
and Conference Proceedings, 2013.

22

[36] Y. Zhang S. Wang and G. Ji. A comprehensive survey on particle swarm
optimization algorithm and its applications. Mathematical Problems in
Engineering, 2015(2015):1–38, 2015.

[37] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80–83, 1945.

[38] D. Zou, L. Gao, J. Wu, S. Li, and Y. Li. A novel global harmony search
algorithm for reliability problems. Computers & Industrial Engineering,
58(2):307–316, 2010.

23

