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ABSTRACT2

A cognitively-autonomous artificial agent may be defined as one able to modify both its external3
world-model and the framework by which it represents the world, requiring two simultaneous4
optimization objectives. This presents deep epistemological issues centered on the question of5
how a framework for representation (as opposed to the entities it represents) may be objectively6
validated. In this summary paper, formalizing previous work in this field, it is argued that sub-7
sumptive perception-action learning has the capacity to resolve these issues by a) building the8
perceptual hierarchy from the bottom up so as to ground all proposed representations and b)9
maintaining a bijective coupling between proposed percepts and projected action possibilities to10
ensure empirical falsifiability of these grounded representations. In doing so, we will show that11
such subsumptive perception-action learners intrinsically incorporate a model for how intentiona-12
lity emerges from randomized exploratory activity in the form of ’motor babbling’. Moreover, such13
a model of intentionality also naturally translates into a model for human-computer interfacing14
that makes minimal assumptions as to cognitive states.15
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1 INTRODUCTION

Significant deficits have been apparent in traditional approaches to embodied computer vision for some17
time Dreyfus (1972). In the conventional approach to autonomous robotics, a computer vision system is18
employed to build a model of the agent’s environment prior to the act of planning the agent’s actions within19
the modeled domain. Visuo-haptic data arising from these actions will then typically be used to further20
constrain the environment model, either actively or passively (in active learning the agent actions are driven21
by the imperative of reducing ambiguity in the environment model Settles (2010); Koltchinskii (2010)).22

However, it is apparent, in this approach, that there exists a very wide disparity between the visual23
parameterization of the agent’s domain and its action capabilities within it Nehaniv et al. (2002). For24
instance, the agent’s visual parametric freedom will typically encompass the full intensity ranges of the25
RGB channels of each individual pixel of a camera CCD, such the the range of possible images generated26
per time-frame is of an extremely large order of magnitude, despite the fact that only a minuscule fraction27
of this representational space would ever be experienced by the agent. (Note that this observation is not28
limited purely to vision based approaches - alternative modalities such as LIDAR and SONAR would also29
exhibit the same issues). On the other hand, the agent’s motor capability is likely to be very much more30

1



Windridge et al. Emergent Intentionality in Perception-Action Subsumption

parametrically-constrained (perhaps consisting of the possible Euler angle settings of the various actuator31
motors). This disparity is manifested in classical problems such as framing McCarthy and Hayes (1969)32
and symbol grounding. (The latter occurs when abstractly-manipulated symbolic objects lack an intrinsic33
connection to the real-world objects that they represent; thus a chess-playing robot typically requires a34
prior supervised computer vision to be solved in order to apply deduced moves to visually-presented chess35
pieces.)36

Perception-Action (P-A) learning was proposed in order to overcome these issues, adopting as its informal37
motto, ‘action precedes perception’ Granlund (2003); Felsberg et al. (2009). By this it is meant that, in a38
fully-formalizable sense, actions are conceptually prior to perceptions; i.e. perceptual capabilities should39
depend on action-capabilities and not vice versa. (We thus distinguish PA-learning from more generalized40
forms of learning within a perception/action context (cf. e.g. d. R. Millan (2016); Mai et al. (2013); Masuta41
et al. (2015)), in which the nature of the perceptual domain remains fixed a priori [albeit with potential42
variations in e.g. visual saliency]).43

It will be the argument of this paper that perception-action learning, as well as having this capacity to44
resolve fundamental epistemic questions about emergent representational capacity, also naturally gives45
a model for emergent intentionality that applies to both human and artificial agents, and may thus be46
deployed as an effective design-strategy in human-computer interfacing.47

2 PERCEPTION-ACTION LEARNING

Perception-Action learning agents thus proceed by randomly sampling their action space (‘motor babbling’).48
For each motor action that produces a discernible perceptual output in the bootstrap representation space49
S (consisting of e.g. camera pixels), a percept pi ∈ S is greedily allocated. The agent thus progressively50
arrives at a set of novel percepts that relate directly to the agent’s action capabilities in relation to the51
constraints of the environment (i.e. the environment’s affordances); the agent learns to perceive only52
that which it can change. More accurately, the agent learns to perceive only that which it hypothesizes53
that it can change - thus, the set of experimental data points ∪ipi ⊂ S can, in theory, be generalized54
over so as to create an affordance-manifold that can be mapped onto the action space via the injective55
relation {actions} → {perceptinitial} × {perceptfinal}Windridge and Kittler (2010, 2008); Windridge56
et al. (2013a).57

2.1 Subsumptive Perception-Action Learning58

Importantly, this approach permits Cognitive Bootstrapping Windridge and Kittler (2010), the boot-59
strapping of an autonomous agent’s representational framework simultaneously with the world-model60
represented in terms of that framework. This centers on the fact that the learned manifold embodying61
the injective relation {actions} → {perceptinitial} × {perceptfinal} represents a constrained subset of the62
initial action domain, and as such, is susceptible to parametric compression. Furthermore, this parametric63
compression in the action domain (corresponding to the bootstrapping of a higher level action) necessarily64
corresponds to a parametric compression in the perceptual domain (P-A learning enforces a bijective65
relation {actions} → {perceptnew

initial} × {perceptnew
final} such that each hypothesizable action (ie intention66

primitive) has a unique, discriminable outcome Windridge and Kittler (2010, 2008); Windridge et al.67
(2013a)).68

Each induced higher-level action/intention (e.g. Translate) is thus created co-extantly with a higher-69
level percept domain (e.g. Object)). The falsifiability of such induced representational concepts arises70
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from actively addressing the question of whether this higher-level perception in fact constitutes a useful71
description of the world i.e. whether it yields a net compression in the agent’s internal representation of72
its own possible interactions with the world (its affordances). In particular, it is argued in Windridge and73
Kittler (2008), that the perception-action bijectivity constraint applied in such a hierarchical manner is74
uniquely sufficient to enable simultaneous empirical falsifiability of the cognitive agent’s world model75
and the means by which this world is perceived (by virtue of the implicit grounding of the unique set of76
higher-level percepts so generated).77

Very often parametric compressibility will be predicated on the discovery of invariances in the existing78
perceptual space with respect to randomized exploratory actions. Thus, for example, an agent might79
progress from a pixel-based representation of the world to an object-based representation of the world80
via the discovery that certain patches of pixels retain their (relative) identity under translation, i.e. such81
that it becomes far more efficient to represent the world in terms of indexed objects rather than pixel82
intensities (though the latter would, of course, still constitute the base of the representational hierarchy).83
This particular representational enhancement can represent an enormous compression Wolff (1987); a pixel-84
based representation has a parametric magnitude of Pn (with P and n being the intensity resolution and85
number of pixels, respectively), while an object-based representation typically has a parametric magnitude86
of ∼ no, o << n, where o is the number of objects.87

When such a high level perceptual manifold is created it permits proactive sampling - the agent can88
propose actions with perceptual outcomes that have not yet been experienced by the agent, but which are89
consistent with its current representational model (this guarantees falsifiability of both the perceptual model90
as well as the generalized affordance model). Perception-Action learning thus constitutes a form of active91
learning: randomized selection of perceptual goals within the hypothesized perception-action manifold92
leads more rapidly to the capture of data that might falsify the current hypothesis than would otherwise be93
the case (i.e. if the agent were performing randomly-selected actions within in the original motor domain).94
Thus, while the system is always ’motor babbling’ in a manner analogous to the learning process of infant95
humans, the fact of carrying out this motor babbling in a higher-level P-A manifold means that the learning96
system as a whole more rapidly converges on the “correct” model of the world. (Correct in the sense of97
being a true model of the world’s affordances; i.e. every possible instantiation of the induced high-level98
actions terminates in the anticipated percept, with no possible environmental actions being overlooked.)99

This P-A motor-babbling activity can take place in any P-A manifold, of whatever level of abstraction;100
we may thus, by combining the idea of P-A learning with Brooke’s notion of task subsumption, conceive101
of a hierarchical Perception-Action learner (Shevchenko et al. (2009)), in which a vertical representation102
hierarchy is progressively constructed for which randomized exploratory motor activity at the highest level103
of the corresponding motor hierarchy would rapidly converge on an ideal representation of the agent’s world104
in terms of its affordance potentialities. Such a system would thus converge upon both a model of the world,105
and an ideal strategy for representation of that world in terms of the learning agent’s action capabilities106
within it. In the example given, which juxtaposes a simulated camera-equipped robot arm in relation to a107
child’s shape-shorter puzzle, the robotic agent commences by motor babbling in the initial motor-actuator108
domain, and eventually progresses to motor-babbling in the bootstrapped ”move-shape-to-hole” action109
domain (i.e. placing a randomly chosen object into its corresponding hole). This apparently intentional110
activity amounts to solving the shape-sorter puzzle, even though the system is still only motor babbling111
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albeit at a higher level of the induced hierarchy, and has no prior programming as to the ’goal’ of the112
environment1.113

Procedurally, this takes place as a recursive loop alternating between exploration, generalization and114
representation as in Algorithm 1. Note in particular, in Algorithm 1, that the act of parametrically-115
instantiating a proposed bijective perception-action term {P initial

n } × {P final
n } with respect to an initial116

perceptual state {P initial
n } and a sought perceptual end-state {P final

n }is equivalent to formulating an intention117
(which may or may not be achievable in the environment).118

Algorithm 1 Ab Initio Induction of Perception-Action Hierarchy in Artificial Agents
1: Initialization Obtain:
2: Bootstrap percept set {P1} (eg camera pixel)
3: Bootstrap action set {A1} (motor primitives)
4: Inference mechanism capable of generalizing exploratory samples from function M

M : {P initial
n } × {P final

n } × {A} → {achieved, not achieved}

5: while prediction accuracy < threshold) do
6: A) Carry-out randomized exploratory activity on basis of representational-framework

i.e. generate grounded top-down parametric instantiations
Ai≤n(P

initial, P final) by randomly selecting initial &
target percepts at proposed top level of hierarchy, n

7: B) Induce rules governing action legitimacy
legitimate actions achieve intended perceptual goal
( = affordance-based model of world)

Generate function M : {P} × {P} × {A} → {true, false}
(e.g. via first-order logical induction or stochastic discrimination)

8: C) Remap perceptual variables to represent novel high-level action hypothesis in most efficient manner
i.e. form the bijection: {An+1} ↔ {Pn+1} × {Pn+1}

9: end while

Perceptual goals thus exist at all levels of the hierarchy, and the subsumptive nature of the hierarchy119
means that goals and sub-goals are scheduled with increasingly specific content as the high-level abstract120
goal is progressively grounded through the hierarchy2. (Thus, as humans, we may conceive the high-level121
intention ‘drive to work’, which in order to be enacted, involves the execution of a large range of sub-goals122
with correspondingly lower-level perceptual goals e.g. the intention ‘stay in the center of the lane’, etc).123
(The hierarchical perception-action paradigm at no stage specifies how the scheduled sub-task is to achieve124

1 In this case, the ”move-shape-to-hole” action is induced following the failure of the ”move-shape-onto-surface” action to produce the anticipated result (i.e.
when, following exploratory ”move-shape-onto-surface” actions, the object happens by chance to fall into a hole to which matches its shape and orientation).
This immediately falsifies the existing rule-base such that that the action domain is necessarily modified, by first-order logical rule-induction, to account for this
possibility. In the context of the PA bijectivity condition this requires the existence of an action ”move-shape-to-hole” perceptually parameterized by a set of
labels corresponding to the perceptual representation of holes. Exploratory instantiation of this higher-level rule then corresponds to placing random objects into
their corresponding holes i.e. ”solving the shapesorter”, even though no such external goal specification has taken place.
2 The subsumption hierarchy thus acts bidirectionally; the hierarchy is learned bottom-up, while exploratory actions are instantiated top-down.
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the perceptual goal - this is free within the framework, and may be achieved by a variety of mechanisms125
e.g. optimal control, minimum jerk etc).126

Moreover, these perceptual goals have no internal content; in a fully-achieved perception-action learning127
agent, the environment effectively “becomes it own representation”, Newell and Simon (1976), representing128
a significant compression of the information that an agent needs to retain. This relates directly to the129
issue of symbol grounding, a seminal problem in the conceptual underpinning of the classical approach130
to machine learning Harnad (1990). The problem arises when one attempts to relate an abstract symbol131
manipulation system (it was a common historical assumption that computational reasoning would center132
on a system such as first-order logic deduction McCarthy and Hayes (1969)) with the stochastic, shifting133
reality of sensor data. In hierarchical P-A learning the problem is eliminated by virtue of the fact that134
symbolic representations are abstracted from the bottom-up Marr (1982); Gärdenfors (1994); Modayil135
(2005); Granlund (2003). They are thus always intrinsically grounded (for an example of utilization of136
first-order logic induction within a subsumption hierarchy see Windridge and Kittler (2010)).137

The subsumption hierarchy is thus typically characterized by continuous stochastic relationships on the138
lower levels with more discrete, symbolic manipulations occurring at the higher levels - for this reason,139
consistent with findings of Shevchenko et al. (2009), motor-babbling at the top of the representation140
hierarchy involves the spontaneous scheduling of perceptual goals and sub-goals at the lower level of the141
hierarchy in a way that (as the hierarchy becomes progressively deeper) looks increasingly intentional.142
(This phenomenon is readily apparent in the development of motor movement of human infants as schema143
abstraction takes place - for instance, the intuition of a generalized percept category container correlates144
with the attempt to validate this notion via the repeated placing of a variety of objects into a variety of145
containers; cf Hintzman (1986) for an analysis of scheme abstraction in infants).146

Such high-level schema-employment in humans can, in principle, be detected via an appropriate147
classification system, enabling novel forms of intentional interfacing between humans and machines.148

3 HUMAN-COMPUTER INTERFACING

The percept-action relationship may thus be modeled in reverse to characterize human intentional behavior;149
consider how, as humans we typically represent our environment when driving a vehicle. At one level, we150
internally represent the immediate environment in metric-related terms (i.e. we are concerned with our151
proximity to other road users, to the curb and so on). At a higher level, however, we are concerned primarily152
with navigation-related entities (i.e how individual roads are connected). That the latter constitutes a higher153
hierarchical level, both mathematically and experientially, is guaranteed by the fact that the topological154
representation subsumes, or supervenes upon, the metric representation; i.e. the metric-level provides155
additional ‘fine-grained’ information to the road topology: the metric representation can be reduced to the156
topological representation, but not vice versa.157

We can thus adopt the perception-action bijectivity principle as a design paradigm in building HCI158
systems by demanding that intentional acts on the part of the user are correlated maximally-efficiently159
(i.e. bijectively) with perceptual transitions apparent to the user. This thus permits a user interface that160
makes minimal assumptions as to underlying cognitive processes, assuming nothing more than the ability161
to discriminate percept termina. This subsumption architecture paradigm was used in Windridge et al.162
(2013b) to demonstrate, in the context of a driver assistance system, induction of the intentional hierarchy163
for drivers of a vehicle in which action and eye-gaze take place with respect an external road camera view.164
The corresponding system constructed for the the project demonstrator was thus able to determine the165
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driver’s intentional hierarchy in relation to the current road situation and provide assistance accordingly.166
In principle, such an interface can also be extended to direct mechanical assistance by substituting the167
computationally modeled perception-action system for the human perception-action system along the lines168
of the horse-rider interaction paradigm.169

Such P-A HCI interfaces will generally require the ability to adaptively link high-level reasoning processes170
(modeled by e.g. first-order logic) with low-level reactive processes (modeled, for example, stochastically).171
This amounts to a requirement to propagate learning across the symbolic/sub-symbolic divide. However,172
because the P-A hierarchy does not make intrinsic distinction between these (there is only progressively173
grounded P-A abstraction), it is possible to conceive of P-A learning platforms that embody a variety of174
different learning approaches at different hierarchical levels, but which are all able to learn together by175
passing derivatives between hierarchical layers in a manner analogous to deep learning approaches.176

An example utilizing a two-layer P-A hierarchy is given in Windridge et al. (2013a) which incorporates a177
fuzzy first-order logic reasoning process on the top level and an Euler-Lagrange based trajectory optmisation178
process on the lower level. The fuzzy-reasoning process employs predicates embodying the P-A bijectivity179
condition to compute the fixed point of the logical operator TP ; i.e. TP (I) = I for each time interval t.180

I is thus the Herbrand model, the minimal logically-consistent ‘world model’ for time t, of the logical181
programme P (where P =fixed clauses+temporalized detections+ground atom queries for t+ 1; P hence182
embodies a series of first-order logical rules concerning traffic behavior). This functionalization of the183
logical reasoning enables the predicate-prediction disparity with respect to the lower-level to modulate184
the lower-level’s Euler-Lagrange optimization via the inter-level Jacobean derivatives. The net result is185
logically-weighted updating of the Euler-Lagrange optimization that allows for on-line (top-down and186
bottom-up) adaptivity to human inputs. For example, in top-down terms, this allows a logically-influenced187
Bayesian prior for gaze-location at junctions to be derived. It also allows for adaptive symbol tethering; for188
example actively associating eye-gaze clusters with specific semantically-described road entities (such as189
stop & give-way signs) via their logical context.190

In principle, any high-level abstract reasoning or induction process can be incorporated with low-level191
stochastic learning in this manner; highly flexible human-computer interfaces are thus made possible192
through adopting perception-action bijectivity as a design principle.193

4 CONCLUSION

We have proposed perception-action hierarchies as a natural solution to the problem of representational194
induction in artificial agents in a manner that maintains empirical validatability. In such ab initio P-A195
hierarchies (i.e. where cognitive representations are bootstrapped in a bottom-up fashion), exploration is196
conducted via motor-babbling at progressively higher levels of the hierarchy. This necessarily involves the197
spontaneous scheduling of perceptual goals and sub-goals in the induced lower levels of the hierarchy in198
such a way that, as the hierarchy becomes deeper, that the randomized exploration becomes increasingly199
‘intentional’ (a phenomenon that is readily apparent in the development of motor movement in human200
infants).201

This has implications for social robotics; in particular, it becomes possible to envisage communicable202
actions within collections of agents employing P-A hierarchies. Here, the same bijectivity considerations203
apply to perceptions and actions as before, however the induction and grounding of symbols would be204
conducted through linguistic exchange (we note in passing that the perception-action bijectivity constraint205
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implicitly embodies the notion of mirroring without requiring specific perceptual apparata - ‘mirror neurons’206
etc).207

P-A subsumption hierarchies naturally also encompass symbolic/sub-symbolic integration and permit208
adaptive learning with respect to existing knowledge bases; in this case a bijective P-A consistency criterion209
is imposed on the engineered subsumption hierarchy. Moreover, P-A-subsumption hierarchies naturally210
lend themselves to a “deep” formulation in neural-symbolic terms d’Avila Garcez et al. (2009); this is the211
subject of ongoing research.212

We therefore conclude that Perception-Action learning, as well as enabling autonomous cognitive213
bootstrapping architectures, also constitutes a particularly straightforward approach to modeling human214
intentionality, in that it makes fewest cognitive assumptions - the existence of perceptual representation is215
only assumed in so far as it directly relates to an observable high-level action concept (such a ‘navigating a216
junction’,‘stopping at a red light’, etc); conversely, the ability to correctly interpret a human agent’s action217
implicitly invokes a necessary and sufficient set of perceptual representations on the part of the agent. This218
bijectivity of perception and action also gives a natural explanation for wider intention-related phenomenon219
such as action mirroring.220
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