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Abstract

Argumentation has provided a means to deal with inconsistent knowledge. We explore the potential of argumentation
to handle conflicting user preferences. Classical preference handling methods in Artificial Intelligence (AI) lack
the ability to handle ambiguity and the evolution of preferences over time. Previous experiments conducted by the
authors indicate the usefulness of argumentation systems to handle Ambient Intelligence (AmI) examples with the
aforementioned characteristics.

This paper explores a generalized framework that can be applied to handle user preferences in AmI. The paper
provides an overall preference handling architecture which can be used to extend current argumentation systems. We
show how the proposed system can handle multiple users with the introduction of personalised preference functions.
We illustrate how user preferences can be handled in realistic ways in AmI environments (such as smart homes), by
showing how the system can make decisions based on inhabitants’ preferences on lighting, healthy eating and leisure.

Keywords: Users’ Preference, Preference Handling, Ambient Intelligence, Argumentation, User-centric Computing,
Ambient Assisted Living

1. Introduction

One of the key factors in designing a successful Am-
bient Intelligence (AmI) system is the balancing of
users’ preferences [1, 2]. This is particularly important
in Ambient Assisted Living (AAL) [3]. AAL systems
rely on sensing technology deployed in a physical space
to gather real time contextual information, which the
system uses in decision-making to benefit the users of
that space. On a daily basis we enter sensorised spaces
such as cars and homes and we also bring sensors with
us in our smart phones. Examples of current wireless
sensors are Passive Infrared Sensors (PIR) which al-
low tracking of movement within a room and pressure
sensors to sense whether someone is in bed or sitting
on a chair. There are sensors which allow controlling
lights knowing when they are on or off and also actua-
tors turning them on or off. There is now a wide range
of devices, including wearables, which can provide data
from an individual’s vital signs, e.g. blood pressure and
glucose levels, and this information is available in dig-
ital form. Also important is the information that can
be gathered from the outside world. So for example,
public transport timetables, doctor appointments and su-
permarket offers may also help the system to support a
human’s life in a practical way. However, these systems

can not handle users’ preferences in a dynamic way, and
this is the focus of our paper. When a system is expected
to act on behalf of humans, it needs to understand and
respond to the preferences of users and should have the
ability to resolve conflicting preferences.

Preferences are not only significant in making deci-
sions for users in AmI, but also vital in understanding
and supporting decisions made by users [1]. Evidence
from [4] illustrates how preferences guide the choices
of the user, and how preferences have a number of com-
plexities that clash or produce conflicts. For example,
listening to the radio or watching movies might change
the user’s opinion about a product, and make the user
want more or less of the product.

Various preference handling models have been pro-
posed in Artificial Intelligence (AI) to address pref-
erence recommendation problems. These techniques
are not well equipped to reason and represent changes
in users’ preferences over time, nor do they deal
with inconsistent preferences. Some of the promi-
nent techniques are: Conditional Preference Network
(CP-nets) [5], Utility Conditional Preference Network
(UCP-nets) [6], Tradeoffs-Enhanced Conditional Pref-
erence Networks (TCP-nets) [7], Linguistic Conditional
Preference Network (LCP-nets) [8]
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These techniques in AI have been investigated be-
cause they closely relate to the problem we address in
our research. However, our research aims to address
preferences in AmI systems, and that requires methods
which can cope with conflicting knowledge and reason
with time.

Additional findings identified other relevant proposed
techniques in the state of art. For example, [9] for-
malises a problem of multiple criteria decision making
within a logical argumentation system, designing a logi-
cal machinery that manipulates directly arguments with
their strengths and returns preferred decisions, enabling
users to compute with justification preferred decision
choices. Following the same line of research, an ar-
gumentation framework was presented by [10], to rea-
son about qualitative interest-based preferences. The
same authors further presented an argumentation-based
framework [11] to model and automate reasoning of
multi-attribute preferences of a qualitative nature, show-
ing how to reason about preferences when incomplete
or uncertain. A perspective on practical reasoning was
proposed in [12] as probable justification for a course of
action. This was based on an argumentation scheme, to
support decision making processes in multi-agent sys-
tems. Collaborative research conducted by a computer
scientist and a psychologist [13], presented seven pro-
cedures to help choose among options represented as
bipolar set of arguments after its evaluation and ranked
according to their importance. The authors of [14] em-
ployed multi attribute decision theory, and introduced
several argumentation schemes, in order to provide an
agent the best decision based on it preferences over out-
come. However, these studies still are unable to manage
preferences over time.

Our experience in the development of AmI systems
enables us to conclude that argumentation is a technique
that will provide advantages that the classical prefer-
ences in AI do not. Argumentation is basically con-
cerned with the exchange of proposals and their justi-
fication [15]. These sets of arguments may either come
from dialogue between several agents or from available
pieces of information (which may be contradictory) at
the disposal of one unique agent.

Argumentation develops as a reasoning process [16]
that can help to make decisions by handling conflicting
situations expressed within a discussion among partici-
pants (or agents) with different goals. During the 80’s,
argumentation started to attract attention within Com-
puter Science (CS) as a branch of AI focused on ways
to represent processes humans follow when using com-
mon sense reasoning, taking into account the influx of
new information [17, 18]. Time has also been an im-

portant matter in various areas of CS and AI [19] and in
particular in AmI [20, 21].

This paper presents a generalized framework that can
be applied to handle users’ preferences in an AmI en-
vironment by extending current argumentation systems.
Section 2 discusses argumentation and its significance
in handling conflicts and time. Section 3 complements
argumentation with a general preference architecture,
to show how argumentation can handle multiple users’
preferences through personalised preference functions.
We illustrate in section 4 how users’ preferences can be
handled in AmI environments (such as smart homes)
with realistic examples based on inhabitants’ prefer-
ences on lighting, healthy eating and leisure. Section 5
provides conclusions and discussions on further work.

2. Temporal Argumentation

The previous section provided a list of several theo-
retical methods which to some extent address the role
of preferences in decision-making. However, from the
point of view of Ambient Intelligence there are some
further dimensions which are not explicitly addressed
by those methods. Preferences sometimes are in conflict
with each other. For example, sometimes there may be
reasons to keep the lights on and also reasons to keep
them off. Time also plays an important practical role, in
particular preferences changing over time. For example,
we prefer different levels of lighting at night or day and
through different seasons we prefer different ambient
temperatures. Computer Science has long investigated
both these features of handling conflicts and time han-
dling in Argumentation Systems [21, 22, 23, 24]. We
believe time-based argumentation is an option worth ex-
ploring, offering advantages that the methods in the pre-
vious section could not. We use this section to introduce
some basics of argumentation, and in particular tempo-
ral argumentation. We later show with example scenar-
ios how desirable features in AmI are more naturally
captured by the Argumentation System we describe.

The basic idea of argumentation is to create argu-
ments in favour of and against a statement in order to
determine if that statement can be acceptable or not
and why. Amongst other features argumentation of-
fers a way to represent defeasible reasoning, character-
izing the skill that allows us to reason about a changing
world where available information is incomplete, or not
very reliable. Argumentation systems have the ability
to change conclusions in response to new information
that comes to the system. The conclusions obtained by
the system are “justified” through arguments support-
ing their consideration. In addition, an argument could
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be seen as a “defeasible proof” for a conclusion. The
knowledge of new facts can lead to a change in pref-
erence, or to consider a previous inference no longer
correct. In particular, there could exist an argument for
a conclusion C and a “counter-argument”, contradict-
ing in some way the argument for C. An argument is a
valid justification for a conclusion C if it is better than
any other counter-argument for C. To establish the pref-
erence of an argument over the others, a definition of
preference criteria is required. Several preference meth-
ods are possible, and one of the more widely used is
“specificity” [25], favouring more specific information,
i.e. better informed arguments. It is important to high-
light that Argumentation Systems emphasize the role of
inference justification and the dialectical process related
to reasoning activities.

Given the limitations we have noticed in the handling
of preferences by state of the art systems, including both
handling of inconsistency and time-related information,
we will use an Argumentation System which allows us
to explicitly refer to time [26]. We refer the reader to the
original article for a detailed description of the underly-
ing theoretical framework. Here we provide only a short
overview of the notation that is required to understand
the description of the scenarios later in our article.

The system L(T) presented in [26] is actually an ex-
tension of MT DR, a previous well-known argumenta-
tion framework [27]. The extension includes addition
of a temporal language LT. This temporal language
allows reification over time, properties, events and ac-
tions, which have been considered in the AI literature
as key concepts to model a rational agent in a dynamic
world. The system used to represent knowledge is based
on a many-sorted logic [28], where different sorts are
used to formalize the different concepts represented in
the system. The fundamental building blocks such as
time, properties, events and actions listed above are only
examples of possible sorts. Others can be added de-
pending on need. We do so in Section 3.

The temporal language allows association of knowl-
edge to either “instants” (T ) or “intervals” (I) so that
we can express developments in real-world scenarios
that happen (or are perceived to happen) instantaneously
as well as developments requiring a non-atomic dura-
tion to complete. An example of an instant could be
something that happened in a second in a system where
seconds are the minimum time granularity, and an ex-
ample of an interval will be a whole minute in that sys-
tem. So if a Passive Infrared Sensor (PIR) is triggered
only once in a second, e.g. at 17:06PM, then we can de-
scribe that as an instantaneous occurrence. If the same
sensor is activated continuously for 15 seconds we can

say that the activation of the sensor lasted for a while
and those 15 seconds will become an interval of time,
e.g. from 17:06PM to 17:21PM. We can define familiar
order relationships between units of time. So for ex-
ample the following relationship between instants rep-
resents the notion of ‘earlier time’ <: T × T such that
we can say 17:06PM < 17:21PM. We can also define
the notion of interval as a sequence of consecutive in-
stants I = {[i1, i2] ∈ T × T |i1 < i2} so that, for ex-
ample, [17:06PM, 17:21PM] can be the interval where
the sensor was continuously active. Auxiliary useful
functions like begin, end : I → T can be defined to
obtain the beginning and ending points of an interval:
begin([i1, i2]) =de f i1 and end([i1, i2]) =de f i2. We
will consider a set of well-known relations in the lit-
erature as those between intervals initially explored by
Hamblin [29] and later adopted by Allen [30].

We assume the world can be described as a set
of elements or entities with specific properties, for
which we will use the following predicate: Holdsat(p, i),
Holdsat ⊆ P × T , and Holdson(p, I), Holdson ⊆ P × I,
denoting that p is a property that is true in the moment
i or interval I respectively. Holdson and Holdsat are re-
lated in the following way:

Holdson(p, I) =de f ∀T i (In(i, I)→ Holdsat(p, i))

We will assume “homogeneity” of properties over an
interval, meaning that if a property holds in an interval
then it also holds in any of its subintervals. For example,
if a sensor was activated for 15 minutes in a row, in
particular it was activated in each minute of that interval
(and each second of each minute):

∀T i ∀I I (Holdson(p, I) ∧ In(i, I)→ Holdsat(p, i))

∀I I, I′ (Holdson(p, I) ∧ I′ v I)→ Holdson(p, I′))

We consider “weak negation” of properties over inter-
vals that can be obtained directly from the negation of
the previous definition:

¬Holdson(p, I) =de f ∃T i (In(i, I) ∧ ¬Holdsat(p, i))

We will consider events as noticeable occurrences
of the real world that can have an effect on a given
situation. For example, the system sending a command
to the light causes it to light up the room. We will use
a predicate Occursat(e, i) (Occurson(e, I)) to indicate
that an event e has occurred in an instant i (interval
I), for example: Occursat(TurnOnLight, 7:00:05AM),
(Occurson(Microwavecooling, [16:10:05,16:12:35])).
Mirroring explicit time references through instants and
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intervals, we assume non-durative and durative events
defined in sorts N andD respectively.

We will assume the following about event instances:
Occurson(e, I) =de f ∀T i (In(i, I) → ¬Occursat(e, i))
with In(i, I) =de f Start(i, I) ∨ Divides(i, I) ∨ Ends(i, I)
where these three predicates are true when an instant is
at the beginning, ‘inside’, or the end of an interval. The
definition given above for Occurson(e, I) means the oc-
currence of a specific event in an interval implies it does
not occur inside the interval (this is usually called “non-
homogeneity”). We consider “weak negation” over du-
rative events. That is, consequently with the concept
of non-homogeneity explained above, an event will be
considered not to have occurred if a fragment (even just
an instant) of it has not occurred.

We will ascribe actions only to humans, so humans
usually acting on their free will perform actions which
typically cause some events to occur which in turn po-
tentially change some properties of the world. We
will consider that each human agent a from the sort
of agents A has a repertoire W of possible actions g:
∀A a ∃W g Agent(a, g). There could be instantaneous
actions Doat (e.g. switching the light on) and durative
actions Doon (e.g. getting up from bed).

The explanations above mostly refer to the time re-
lated representation of the world. Now we turn focus
more properly to inconsistency handling through the ar-
gumentation system. That is how information about a
dynamic world can be grouped together to form argu-
ments.

We will assume our knowledge base is composed of
a non-defeasible knowledge part KT which in turn is
organized in two subsets, one set of facts KT

G (general
knowledge) and one set of rules KT

P (particular knowl-
edge), where KT

P ∪ K
T
G = KT and KT

P ∩ K
T
G = ∅.

K
T
P represents the safe facts of the world such as the ex-

istence of a specific bedroom in a specific house and a
week in the calendar having seven days, and KT

G rep-
resents general laws, e.g. that if Monday is a day of a
week then it has 24 hours. There is also a finite set ∆T of
temporal defeasible rules representing knowledge that
our AmI system agent AT is prepared to accept unless
it finds counter-evidence. Rules in ∆T have the form
α >−− β , where α and β are sets of literals of LT. ∆

T↓

will denote the set of basic instances of members of ∆T.
Given space restrictions, our simplified explanation of
later sections will actually only use ∆

T↓
instead of the

usually preferable ∆T as we merely want to illustrate
the potential of argumentation to capture certain key as-
pects of preference handling.

We will largely adhere to the notation used in [26]
and use (KT,∆T) to denote a temporal defeasible struc-

ture, where KT is a temporal context and ∆T is a finite
set of temporal defeasible rules. We will also adopt the
same notion of temporal defeasible consequence, “ |∼ ”,
and the notion of A of ∆

T↓
as a temporal argument for a

temporal literal h and the associated notion of a subar-
gument. Let (KT,∆T) be a temporal defeasible structure
of AT. TAStruc(∆

T↓
) will be the set of temporal argu-

ments that can be constructed from (KT,∆
T↓

).
Our notion of disagreement is related to time, so

given a temporal function ρ({h1, h2}) which determines
whether two temporal literals h1 and h2 intersect in
their time references, and given two temporal argu-
ments 〈A1, h1〉 and 〈A2, h2〉, A1 for h1 and A2 for
h2 are in disagreement at least about an instant i,
〈A1, h1〉 ./T〈A2, h2〉, if and only if ρ({h1, h2}) , ∅ and
KT ∪ {h1, h2} ` ⊥. So at least a common temporal ref-
erence is required between the temporal references of
the arguments involved in the conflict.

A temporal argument 〈A1, h1〉 counterargues another
temporal argument 〈A2, h2〉 in a basic literal h, if and
only if there exists a subargument 〈A, h〉 of 〈A2, h2〉

such that 〈A1, h1〉 and 〈A, h〉 are in disagreement (in
at least an instant i). Let � be a partial order de-
fined over elements of TAStruc(∆

T↓
), we will say that

a temporal argument 〈A1, h1〉 defeats another 〈A2, h2〉,
〈A1, h1〉 �tdef 〈A2, h2〉 , if and only if there exists a subar-
gument 〈A, h〉 of 〈A2, h2〉 such as 〈A1, h1〉 counterargues
〈A2, h2〉 in h and 〈A1, h1〉 � 〈A, h〉.

When there is a conflict between arguments, prefer-
ence criteria are used to understand whether some ar-
guments may be preferable to others, e.g. specificity.
Specificity is based on the structure of the arguments.
It has the advantage of being independent from the ap-
plication domain. Still, there are several other criteria
which can be used to compare and select arguments. In
some cases Persistency over time could be used as a rea-
son to prefer an explanation over another. We assume
properties persist unless we have reasons to believe
otherwise. We will use predicates Change+ −

at (p, i) and
Change+ −

in (p, I) to indicate that a proposition p changes
its truth value from being true to false at an instant i or in
an interval I respectively. The following axioms allow
the detection of these situations:

∀P p ∀T i(Holdsat(p, i − 1) ∧ ¬Holdsat(p, i)

→ Change+ −
at (p, i))

∀Pp∀II, I′(MEETS(I, I′)∧Holdson(p, I)∧¬Holdson(p, I′)

→ Change+ −
in (p, I′)
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where “MEETS” should be considered as in [29, 30].
We can also consider analogous axioms for Change− +

at
and Change− +

in for properties changing from being false
to being true. Let 〈A1, h1〉,〈A2, h2〉∈ TAStruc(∆

T↓

), we
say that A1 for h1 is preferred under persistency to A2
for h2, noted 〈A1, h1〉 �tpers 〈A2, h2〉, if and only if 〈A2, h2〉

use persistency and 〈A1, h1〉 does not.
In the next sections we assume the following prece-

dence order [31] between the preference criteria:
< = {�tspec ,�tpers },�tspec > �tpers . This means we apply
specificity first. When the arguments are incomparable
under specificity or they are equi-specific we apply the
persistency criteria. The next section complements this
with a more user personalised preference criterion.

A conclusion C is “justified” when there is at least an
argument in support of C and there are no other better
counter-argument(s). For a more formal explanation of
the notion of “support”, see [26].

3. User Preference Architecture for Argumentation

Figure 1 depicts an overall architecture of how our
argumentation system works in handling users prefer-
ences. We assume our system gets information from the
external world, including information from sensors and
information through web services. This information is
represented in the knowledge base (top left area of the
figure). Depending on the information the system may
detect a conflict during decision making and arguments
will support the different options (top right area of the
figure). Argument comparison strategies will be trig-
gered (right centre of the figure). The heuristics used to
compare arguments is decided by the precedence order
which defines a hierarchy amongst the different com-
parison criteria available to the system (left centre of
the figure). If this argument comparison process resorts
to user preferences then the User Preference Handling
Module analyses the arguments detecting parts of the
argument which directly relate to user preferences and
needs (lower right part of the figure). The comparison
of the arguments based on user preferences resorts to
the User Preference Order (lower left), which in turn
when created or modified is based on the User Prefer-
ences Ontology (centre left). The User Preferences On-
tology can be provided initially by developers. The user
preference order can be changed from time to time by
the user. Users preferences can be influenced by the ex-
ternal world.

Imagine the argumentation system wants to compare
two arguments A and B (as shown in the upper part of
the diagram). The argument comparison module indi-
cates that the arguments A and B are compared with

< = {�
tspec

, �
tpers

, �
tpref
}

�
tspec

> (�
tpers

, �
tprefs

)

Knowledge Base

User Preference Handling Module

Argumentation System

∆T

User Preference Ontology

External World

vs

A: B:

A �
tpref

B

B �
tpref

A

Argument Comparison

A 6�
tsec

B
B 6�

tsec
A

A 6�
tpres

B

B 6�
tpers

A

A �
tpref

B ?

B �
tpref

A ?

Undecided

External World

User Preference Order

Preference Criterion

P1

P2 P3

A:
B:

P1

P2

P3

Figure 1: Overall preference Architecture

specificity and persistency established to know which is
preferred over the other. The output shows that there is
no preferable outcome from the two arguments. When
arguments are compared (as shown in the User Prefer-
ence Handling Module), the options are that either one
argument is preferred over the other, or it is undecided.
One argument can be preferred over the other due to the
relative value in preference. For example, B maybe pre-
ferred over A because the relative value combined of P2
and P3 is greater than that of P1. We assume P1, P2
and P3 can be syntactically or semantically linked to
the User Preference Ontology module.

The argumentation theory we introduced in the pre-
vious section included sorts T , I, N , D, P, and A.
We introduce a new sort Pref which we use to spec-
ify user preferences. This sort is defined through the
User Preferences Ontology. Consequently we extend
LT to relate those preferences to time. We will use it
in a similar way as for other sorts, by means of a pred-
icate Prefon(Pr, I)(Prefat(Pr, i)) to indicate a preference
which applies to a period I (to an instant i).

An agent a can have multiple preferences, repre-
sented with a set, Pre fa = {pr1, pr2, pr3, . . .} and we
assume they can be represented in a partial order O.
This partial order can produce a structure O(Pre fa).
For example: O(Pre fa) = (pr3; pr1; pr2) meaning pr3
is preferable to pr1 and this one to pr2, and with
O(Pre fa) = ((pr1, pr3); pr2) we can represent that pr1
and pr3 are equally preferable and these are preferable
to pr2. This order in practice will typically be partial, as
sometimes we have equal preference over two or more
aspects of our lives.

Personal preferences also change over time. However
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here we do not look in detail at these “belief dynamics”.
Instead, we deal with the consequences of those changes
as we show in the last example at the end of this pa-
per. That is, we show that in the case of a change of
preferences our system can provide different results, but
it does not handle changes of preference itself. We as-
sume there is an interface where a change in preferences
can be indicated for a specific agent a and it translates
this change in a recalculation of O(Pre fa). We assume
each agent has at least one preference criterion and the
comparison of arguments taking place is for one sin-
gle agent. For a system considering several users in the
same environment, see [21].

We assume a function which measures the relevance
of preferences, function fPre f , which can be defined in
various domain dependent ways. One possible defini-
tion is: fPre f : D → W, where D is a non-empty
set of all possible combinations of O(Pre fa) × 〈A, h〉,
O(Pre fa) is a partial order as explained further up, 〈A, h〉
is an argument, and W is a weight (which can be a
number or label). This function takes a set of prefer-
ences and an argument and measures the level of pref-
erence importance in the argument as follows. Let as-
sume an argument 〈A, h〉 where A = {R1, . . . ,Rn} and
Ri = pi

1 ∧ . . . ∧ pi
m >−− headi where pi

1 ∧ · · · ∧ pi
m and

headi are predicates, some of them possibly of type
Prefon(Pr, I) or Prefat(Pr, i). We define the preference
weight w(pr j,a) for pr j inO(Pre fa) as a number reflecting
its level in the partial order. For example we can trans-
form ((pr1, pr3); pr2) into {(2, pr1), (2, pr3), (1, pr2)} re-
flecting both pr1 and pr3 are equally preferable and
rank higher in the preferences than pr2. We define
the preference weight of a predicate p j, Wp(p j), where
1 ≤ j ≤ m, as the weight given for p j in O(Pre fa) as
above. If p j < (Pre fa)s then Wp(p j) = 0. Then we de-
fine the preference weight of a rule Ri, Wr(Ri); as the
addition of all preference weights of the predicates in
its body. Now we can define the preference weight of
an argument 〈A, h〉, Wa(〈A, h〉); as the addition of the
preference weight of the rules in the argument. That is:
Wa(〈A, h〉) = Σn

i=1Wr(Ri) and Wr(Ri) = Σm
j=1Wp(pi

j).
Based on this function which allows us to measure the

importance of preferences taking part in an argument we
can define another preference criterion:

Definition 1. Let a be an agent, 〈A1, h1〉 and 〈A2, h2〉∈

TAStruc(∆
T↓

) two arguments and a personal preference
measuring function fpre f . Then A1 for h1 is user prefer-
able than A2 for h2 in an instant i for agent a, denoted
as 〈A1, h1〉 �Upref(a) 〈A2, h2〉, iff fPre fa (A1) > fPre fa (A2).

Since we have a new way to compare arguments,
we have to redefine the precedence order between the

preference criterion: < = {�tspec ,�tpers ,�Upref(a) },�tspec >
�tpers > �Upref(a) . This means we give priority to domain
independent criteria.

As the new precedence order indicates the system
considers epistemic conflicts first [18] and if no clear
choices arise then it tries to disambiguate the situation
looking at conflicts at a more practical level. Unusually
for traditional AI approaches, the precedence order al-
lows to change that. We discharge all responsibility of
the careful use of that resource to the developers. This
can be used as an exception handler in extraordinary cir-
cumstances. For example, the Intelligent Environments
community operates under strong user-centred princi-
ples [32] which secure humans rights over the system
and reassures the human to be in control of the system
and not the other way around [33]. Similar principles
have been considered for robotics. As an simple exam-
ple, consider you live in a smart home or you are driving
a smart car, and this Intelligent Environment is behaving
erratically, or at least in a way you consider unaccept-
able. Then you would like to have the right to shut the
system off with an order, the system may argue against
it, but cannot prevent it, because humans are in control
and the human preference should prevail.

4. Modelling multiple preferences

To illustrate how our system works we assume a
smart home with a light management system that is ca-
pable of understanding the activities in a room, so as
to make reasonable decisions for an inhabitant named
Sara. We will be considering a complex description in-
volving three aspect of Sara’s life: lighting, entertain-
ment and health management. We will also be consid-
ering a description involving the health management as-
pect of Joe’s (Sara’s son) life.

4.1. Modelling Sara’s Preferences

Sara is a 65 years old woman living in a smart
environment. She would like the system to
turn the lights off any time she leaves home
and forget to switch off the light. Sara still
want the system to be aware of her health cir-
cumstances, and provide her with information
on food consumption especially her favourite
brown-cake which she buys online, despite
being diabetic. The system should further
manage Sara’s television programmes, mak-
ing suggestions on potentially interesting pro-
grammes.

6



The above description provides a complex problem to
deal with. The light, health and television programme
scenario offers three ways of representing users’ prefer-
ences. The rest of this section will illustrate how argu-
mentation will deal with these scenarios.

Health

Safety

Pleasure Finance Fun

Informed

Figure 2: Ranking of Sara’s Preferences

According to Figure 2 which depicts Sara’s ranking
of life style choices, we assume that for her, health is
more important than safety, and safety more important
than pleasure, finance and fun (all of them with equal
level of importance) and those are more important than
being informed (news). Then we can represent that in
our system, using the motion introduced in Section 3,
as follows:

Pre fS ara = { f inance, in f ormed, sa f ety,
health, f un, pleasure}

O(Pre fS ara) = { (4, health),
(3, sa f ety),
(2, pleasure), (2, f inance), (2, f un),
(1, in f ormed)}

where a pair (N, P) indicates the value of preference
weight N for a preference P.

4.1.1. Light Scenario for Sara
Table 1 shows the development of the light sce-

nario through time. The next set of rules are extracted
from ∆

T↓
:

MEETS (I0, I1) ∧ MEETS (I1, I2) ∧ MEETS (I2, I3)
Holdson(Movement, I0) ∧ ¬Holdson(S leeping, I0)∧
¬Holdson(OnBed, I0) ∧ Holdson(LightsOn, I0)

L-R1: Doon(LeavingHome, I0)
>−−Occursat(Le f tHome, begin(I1))

L-R2: Occursat(Le f tHome, begin(I1))
>−−¬Holdson(Movement, I1)

L-R3: ¬Holdson(Movement, I1) ∧ Length(I1) > 15 ∧
¬Holdson(OnBed, I1)>−−¬Holdson(Home, I2)

L-R4: ¬Holdson(Home, I2)>−− Pre fon(LightO f f , I2)
L-R5: Pre fon(LightO f f , I2)

>−−Occursat(S ystemTurnsLightO f f , end(I2))
L-R6: Occursat(S ystemTurnsLightOn, end(I2))

>−−¬Holdson(LightsO f f , I3)

Argument for LightsOn@I3: As seen from the initial
facts, the lights are on, as Sara is in the room. So be-
cause of persistency, there is a possibility that the lights
will remain on.

L.On = 〈{Holdson(LightsOn, I0)∧
notChange+−

in (LightsOn, [end(I0), end(I3)])
>−−Holdson(LightsOn, I3)},

Holdson(LightsOn, I3)〉

The argument is reflected in figure 3B.

Argument for ¬LightsOn@I3: Considering an alter-
native explanation, given that the system has been pro-
grammed to understand when the lights are not needed.
The argument indicates that Sara is leaving home at I0
and is out of home at beginning of I1. As a result of this
no movements were detected from there onwards. If
continued for the next 15 minutes and there is no pres-
sure on the bed at the same time, the system has reasons
to believe that Sara is not at home at I2. When Sara
is not at home over that period, she usually prefers the
lights off. So at that moment, the system infers that it is
reasonable to turn the lights off. As a result, the lights
are off at I3.

L.Off = 〈{Doon(LeavingHome, I0)>−−Occurson(Le f tHome, I1),
Occurson(Le f tHome, I1)>−−¬Holdson(Movement, I1),
¬Holdson(Movement, I1) ∧ Length(I1) > 15 ∧
¬Holdson(OnBed, I1)>−−¬Holdson(Home, I2),
¬Holdson(Home, I2)>−− Prefon(LightsO f f , I2),
Prefon(LightsO f f , I2)

>−−Occurson(S ystemTurnsLightO f f , I2),
Occurson(S ystemTurnLightO f f , I2)

>−−¬Holdson(LightsOn, I3)},
¬Holdson(LightsOn, I3)〉

The argument is depicted in figure 3A
From Sara’s light scenario, there are two main con-

tending arguments, L.On ./T L.O f f . Neither specificity
nor persistency can be applied and we will explain how
the system applies users’ preferences to decide. Note
L.On is based on persistency rule P and Wr(P) = 0 be-
cause there is no preference predicate contained in P,
therefore WS ara(L.On) = 0.

Argument L.O f f is based on rules L-R1, L-R2,
L-R3, L-R4, L-R5, L-R6 and Wr(L-R1) = 0,
Wr(L-R2) = 0, Wr(L-R3) = 0, Wr(L-R4) = 0,
Wr(L-R6) = 0.
Now Wr(L-R5) = V where V indicates the value of pref-
erence of having the lights off. Lights off is not explic-
itly mentioned in Sara’s preference ranking in Figure 2,
we assume that the general preference ontology (as seen
in lower left of figure 1) contains the information that

7



Table 1: Lighting Scenario World Dynamics
MEETS (I0, I1) ∧ MEETS (I1, I2) ∧ MEETS (I2, I3)

Holdson(Movement, I0) ∧ ¬Holdson(S leeping, I0)∧ ¬Holdson(OnBed, I0) ∧ Holdson(Home, I0) ∧ Holdson(LightsOn, I0)

Lighting
Scenario

Movement ¬Movement ¬Movement ¬Movement
¬Sleeping ¬Sleeping ¬Sleeping ¬Sleeping
¬OnBed ¬OnBed ¬OnBed ¬OnBed

Home Home ¬Home ¬Home
LightsOn LightsOn LightsOn ¬LightsOn

Transition
Cause

Doon(LeavingHome, I0) System Inference from: L-R3 Occursat(System
TurnsLightOff, end(I2))

I0 I1 I2 I3

¬LightsOn@I3

¬Home@I2

¬Movement@I1
Length@I1 > 15

LightsOn@I3

SystemTurnsLightOff@I2

LightsOn@I0 NotChange+−(LightsOn@I3)

A :

B :

¬OnBed@I1

PrefLightsOff@I2

LeavingHome@I0

LeftHome@beginI1
NotChange+−(LeftHome@I1)

Figure 3: Argumentation Trees for Sara’s Light Scenario

connects lights off and Finance ⊂ Pre fS ara. Accord-
ing to O(Pre fS ara), Wp(Finance) = 2, so Wr(L-R5) =

2. Now we can calculate the weight for the argument
which is WS ara(L.O f f ) = 0 + 0 + 0 + 0 + 2 + 0 = 2.

L.O f f �Upref(Sara) L.On because Sara is not at home and
from a financial point of view she prefers the lights off.
Therefore, L.O f f�tdef L.On.

4.1.2. Television Scenario for Sara
Table 2 shows the development of the television sce-

nario through time. The next set of rules are extracted
from ∆

T↓
:

MEETS (I0, I1) ∧ MEETS (I1, I2)
Holdson(WatchTV, I0) ∧ ¬Holdson(WatchingNews, I0) ∧
¬Holdson(WatchingSports, I0)

T-R1: Occurson(DisastrousEvent, I0)
>−− Pre fon(WatchingNews, I1)

T-R2: Pre fon(WatchingNews, I1) ∧ Holdson(WatchTV, I1)
>−−Doon(WatchingNews, I2)

T-R3: Occurson(FootballMatch, I0)

>−− Pre fon(WatchingSports, I1)
T-R4: Pre fon(WatchingSports, I1) ∧ Holdson(WatchTV, I1)

>−−Doon(WatchingSports, I2)

Argument for Watching News at I2: From the initial
facts, there are reasons to believe that Sara will watch
the news at I2. The reason to believe this is because,
when a disastrous (important) event occurs, she will pre-
fer to watch news. If Sara watches television at I1 and
a disastrous event happens at I1, the system infers that
she prefers watching news at I2.

N = 〈{Occurson(DisastrousEvent, I0)>−− Prefon(News, I1),
Prefon(News, I1) ∧ Holdson(WatchTV, I1)>−−

Doon(WatchingNews, I2)},
Doon(WatchingNews, I2)〉

Figure 4A represents the above argument.

Argument for Watching Sports at I2: An alterna-
tive explanation shows why Sara will be watching the
Sports. I0 indicates that there is a football match going
on, and the system is aware that Sara is a football fan.
So when Sara is watching television at I1 and prefers to
watch sport because there is a football event going on,
the system will believe that Sara will prefer watching
sports at I2.

S = 〈{Occurson(FootballMatch, I0)>−− Prefon(S ports, I1),
Prefon(S ports, I1) ∧ Holdson(WatchTV, I1)

>−−Doon(WatchingS ports, I2)},
Doon(WatchingS ports, I2)〉

This argument is shown in figure 4B.
From Sara’s Television scenario, there are two main

contending arguments, N ./T S . Neither specificity nor
persistency can be applied and we will explain how the
system applies users’ preferences to decide.

N is based on two rules T-R1 and T-R2, Wr(T-R1) = 0
because there is no preference predicate contained in the
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Table 2: Television Scenario World Dynamics
MEETS (I0, I1) ∧ MEETS (I1, I2)

Holdson(WatchTV, I0) ∧ ¬Holdson(WatchingNews, I0) ∧ ¬Holdson(WatchingS ports, I0)

Television
Scenario

WatchTV WatchTV WatchTV
¬WatchingNews ¬WatchingNews ¬WatchingNews
¬WatchingSports WatchingSports WatchingSports

Transition
Cause Occurson(FootballMatch, I0) Occurson(DisatrousEvent, I1)

I0 I1 I2

WatchingNews@I2

Pref(News)@I1

WatchTV@I1Pref(Sports)@I1

DisastrousEvent@I0

WatchTV@I1

WatchingSports@I2

A :

B :

FootballMatch@I0

Figure 4: Argumentation Trees for Sara’s Television Scenario

antecedent of T-R1. However, Wr(T-R2) = V where
V measures the level of preference for watching news.
Watching news or watching sports is not explicitly men-
tioned in Sara’s preference ranking in figure 2, we as-
sume that the general preference ontology (as seen in
lower left of figure 1) contains the semantic knowledge
that connect watching news to being “Informed” and
watching sport to “Fun”, both in Pre fS ara. In this case
Wr(T-R2) = 1, therefore WS ara(N) = 0 + 1 = 1.

Argument S is based on two rules T-R3 and T-R4,
so Wr(T-R3) = 0 because there is no preference predi-
cate contained in in the antecedent of T-R3. Although,
Wr(T-R4) = V where V measures the level of prefer-
ence for watching sports. Watching sport is not explic-
itly mentioned in Sara’s preference ranking in figure 2,
we assume that the general preference ontology (as seen
in lower left of Figure 1) contain information that con-
nects watching sport to “Fun” indicated in Pre fS ara. In
this case Wr(T-R4) = 2, therefore WS ara(S ) = 0 + 2 = 2.

From Sara’s television scenario, N ./T S , S �Upref(Sara) N
because in Sara’s preference ranking, pleasure and fun
have priority over being informed. Therefore, S�tdef N.

4.1.3. Health Scenario for Sara (Buying Cake Online)
Table 3 shows the development of the health scenario

through time. The next set of rules are extracted from
∆
T↓

:
MEETS (I0, I1) ∧ MEETS (I1, I2) ∧ MEETS (I2, I3)
¬Holdson(BuyCake, I0) ∧ Holdson(Diabetic, I0)∧
¬Holdson(CakeOnS ales, I0) ∧ ¬Holdson(HighS ugar, I0)

H1-R1: Occurson(CakeOnS ales, I0)
>−−Holdson(CakeOnS ales, I1)

H1-R2: Holdson(CakeOnS ales, I1) ∧ Pre fon(Pleasure, I1)
>−−Holdson(BuyCake, I1)

H1-R3: Occurson(HighS ugarDetected, end(I1))
>−−Holdson(HighS ugar, I2)

H1-R4: Holdson(Diabetic, I2) ∧ Holdson(HighS ugar, I2) ∧
Holdson(CakeOnS ales, I2) ∧ Pre fon(Health, I2)
>−−Occurson(S ystemAdvicesNotBuyCake, I3)

H1-R5: Occurson(S ystemAdvicesNotBuyCake, I3)
>−−¬Holdson(BuyCake, I3)

Argument for Buying Cake at I3: As seen from the
initial facts, Sara is not buying cake at that moment. The
Argument BC expresses the possibility of her buying
cake at I1, as the argument shows that she prefers to buy
cake when on sale.

BC = 〈{Occurson(CakeOnS ales, I0)
>−−Holdson(CakeOnS ales, I1),

Holdson(CakeOnS ales, I1) ∧ Prefon(Pleasure, I1)
>−−Holdson(BuyCake, I1)},

Holdson(BuyCake, I1)〉

Due to persistency the system will advice to buy cake
at I2 and I3. This is shown in Figure 5A.

Argument for not Buying Cake at I3: Having consid-
ered the initial facts that the user is diabetic and this time
she has a high sugar level, the system will infer that Sara
will not buy cake at I3. This is because her ranking in
figure 2 indicates that Sara is more concerned about her
health compared to her other preferences. This will bet-
ter inform the system in understanding that Sara’s health
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Table 3: Health Scenario World Dynamics
MEETS (I0, I1) ∧ MEETS (I1, I2) ∧ MEETS (I2, I3)

¬Holdson(BuyCake, I0) ∧ Holdson(Diabetic, I0) ∧ ¬Holdson(HighS ugar, I0),∧¬Holdson(CakeOnS ales, I0)

Health
Scenario

¬BuyCake ¬BuyCake ¬BuyCake ¬BuyCake
Diabetic Diabetic Diabetic Diabetic
¬HighSugar ¬HighSugar HighSugar HighSugar
¬CakeOnSales CakeOnSales CakeOnSales CakeOnSales

Transition
Cause

Occurson

(CakeOnS ales, I0)
Occursat

(HighSugarDetected, end(I1))
Occurson(SystemAdvices

NotBuyCake, I3)
I0 I1 I2 I3

is a priority and it will give the system reasons to be-
lieve that she will not buy cake and will also suggest to
the user against buying the cake.

¬BC= 〈{Occurson(HighS ugarDetected, end(I1))
>−−Holdson(HighS ugar, I2),

Holdson(Diabetic, I2) ∧ Holdson(HighS ugar, I2) ∧
Holdson(CakeOnS ales, I2) ∧ Prefon(Health, I2)

>−−Occurson(S ystemAdvicesNotBuyCake, I3),
Occurson(S ystemAdvicesNotBuyCake, I3)>−−
¬Holdson(BuyCake, I3)},

¬Holdson(BuyCake, I3)〉

This argument is depicted in Figure 5B.

BuyCake@I1

CakeOnSales@I1

A :

PrefPleasure@I1

¬BuyCake@I3

Diabetic@I2

CakeOnSales@I2

HighSugar@I2

B :

PrefHealth@I2

HighSugarDetected@end(I1)

CakeOnSales@I0

BuyCake@I2

NotChange−+(BuyCake@I2)

BuyCake@I3

NotChange−+(BuyCake@I3)

¬SystemAdvicesNotBuyCake@I3

Figure 5: Argumentation Trees for Sara’s Health Scenario

From Sara’s Health scenario, there are two main con-
tending arguments, BC ./T ¬BC. Neither specificity nor
persistency can be applied and we will explain how the
system uses users preferences to decide. BC is based

on two rules H1-R1 and H1-R2, so Wr(H1-R1) = 0 be-
cause there is no preference predicate contained in the
antecedent of H1-R1. However, Wr(H1-R2) = V where
V measures the level of preference for pleasure as indi-
cated in O(Pre fS ara), in this case Wr(H1-R2) = 2 and
WS ara(BC) = 0 + 2 = 2.
¬BC is based on three rules H1-R3, H1-R4 and

H1-R5, with Wr(H1-R3) = 0 and Wr(H1-R5) = 0
because there is no preference predicate contained in
H1-R3 nor in H1-R5. However, Wr(H1-R4) = V where
V measures the level of preference for health as indi-
cated inO(Pre fS ara). In this case Wr(H1-R4) = 4, there-
fore WS ara(¬BC) = 0 + 4 + 0 = 4.

From Sara’s health scenario, BC ./T ¬BC,
¬BC�Upref(Sara) BC because in Sara’s ranking prefer-
ence, her health and safety are of higher priority than
her other preferences. Therefore, ¬BC�tdef BC.

4.2. Modelling Joe’s Preferences

Sara has a teenage son, Joe, who cares about
pleasure and fun above everything else. He
also likes being informed. He prefers being
informed over health, safety and finance.

Figure 6 depicts Joe’s preference ranking.

Fun Pleasure

Informed

Health Safety Finance

Figure 6: Ranking of Joe’s Preferences

Next we represent Joe’s preferences using the notation
introduced in section 3. Then we can represent this pref-
erence ranking in our system as follows:
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Table 4: Joe’s Health Scenario World Dynamics
MEETS (I0, I1) ∧ MEETS (I1, I2)

¬Holdson(BuyCake, I0) ∧ ¬Holdson(Diabetic, I0) ∧ ¬Holdson(HighSugar, I0) ∧ ¬Holdson(CakeOnSales, I0)

Television
Scenario

¬BuyCake ¬BuyCake BuyCake
¬Diabetic ¬Diabetic ¬Diabetic
¬HighSugar ¬HighSugar ¬HighSugar
¬CakeOnSales CakeOnSales CakeOnSales

Transition
Cause Occurson(CakeOnS ales, I0) System Inference from: H2-R2

I0 I1 I2

Pre fJoe = { f inance, in f ormed, sa f ety,
health, f un, pleasure}

O(Pre fJoe) = { (3, f un), (3, pleasure),
(2, in f ormed),
(1, health), (1, sa f ety), (1, f inance)}

Table 4 shows the development of Joe’s health sce-
nario through time. The next set of rules are extracted
from ∆

T↓
:

MEETS (I0, I1)
¬Holdson(BuyCake, I0) ∧ ¬Holdson(Diabetic, I0)∧
Holdson(CakeOnS ales, I0) ∧ ¬Holdson(HighS ugar, I0)

H2-R1: Holdson(CakeOnS ales, I1) ∧ Pre fon(Finance, I1)
>−−¬Holdson(BuyCake, I2)

H2-R2: Holdson(CakeOnS ales, I1) ∧ Pre fon(Pleasure, I1)
>−−Holdson(BuyCake, I2)

Arguments for Joe’s not BuyingCake at I2: From the
initial facts and also his preference ranking in figure 6,
it shows that Joe cares less about finance compared to
pleasure. If the cake is on sale and buying cake requires
spending money, and finance is one of the concerns for
Joe this could be a reason not to buy the cake at I1.

Arguments for Joe’s BuyingCake at I2: Figure 6 also
indicates that Joe has a high preference for pleasure, for
example eating chocolate cake is something he enjoys.
This provides a reason for Joe to buy the cake.

¬BC j = 〈{Holdson(CakeOnS ales,I0) ∧ Prefon(Finance, I0)
>−−Holdson(¬BuyCake, I1)},

Holdson(¬BuyCake, I1)〉

This argument is shown in Figure 7A.

BC j = 〈{¬Holdson(CakeOnS ales,I1) ∧ Prefon(Pleasure, I1)
>−−Holdson(BuyCake, I2)},

Holdson(BuyCake, I2)〉

This argument is illustrated in figure 7B.
From Joe’s health scenario, there are two main

contending arguments, ¬BC j ./T BC j. Neither

¬BuyCake@I2

CakeOnSales@I1

A :

PrefFinance@I1

BuyCake@I2

CakeOnSales@I1

B :

PrefPleasure@I1

Figure 7: Argumentation Tree for Joe’s Health Scenario

specificity nor persistency can be applied and we
will explain how the system decides using prefer-
ences. ¬BC j is based on one rule H2-R1, and
Wr(H2 − R1) = 1 according to the value of Finance in
O(Pre fJoe). In this case Wr(H2 − R1) = 1, then
WJoe(¬BC j) = 1.

BC j is also based on one rule Wr(H2 − R2) = 3 ac-
cording to the value of pleasure in O(Pre fJoe). There-
fore, in this case WJoe(¬BC j) = 3.

From Joe’s health scenario, BC j ./T¬BC j,
BC j�Upref(Joe)¬BC j because Pleasure is of higher
priority for Joe compared to Finance. Therefore,
BC j�tdef¬BC j.

5. Conclusions and Further Work

AAL systems are considered as one of the most active
research lines inside the Ambient Intelligence commu-
nity. Its service is essential and expected to improve the
satisfaction of users’ in the environment. To develop an
AAL system for a smart home that will increase users’
satisfaction, the system needs to understand and respond
to the preferences of users. Through effective manage-
ment of users’ preferences (which should require a rea-
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soning tool), the proposed system can automate and pro-
vide more viable decisions for the user.

Given that argumentation is a powerful tool for rea-
soning with inconsistent knowledge [34] and time [26]
in this paper we considered how argumentation can be
applied to manage users’ preferences. Our investiga-
tions enable us to conclude that we have found a suitable
mechanism to study the computational management of
preferences.

We complemented previous argumentation frame-
works with a user preference architecture showing how
the proposed system handles the reference to users’
preferences within arguments. This architecture con-
sists of different modules, a part of the architecture
will detect preferences, another will compare prefer-
ences and another will link the user specific preferences
with more general ontologies. For this to be effective,
the system will contain the users’ preferences. These
preferences will be ranked according to which life style
choices the user prefers over others.

The exploration conducted in this paper enables us
to validate the effectiveness of argumentation by il-
lustrating its applicability to several practical scenar-
ios. This first approach detects preferences within ar-
guments mostly by syntactical means. Subtler rela-
tions between predicates and users preferences can be
achieved through a more sophisticated use of ontolo-
gies.

Further work focuses on implementation of the
system, which will include the creation of a suitable
interface that facilitates the flow of preferences from the
user to the system, and the integration of the reasoning
system into a real smart home.
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[17] C. I. Chesñevar, A. G. Maguitman, R. P. Loui, Logical models
of argument, ACM Computing Surveys (CSUR) 32 (4) (2000)
337–383.

[18] P. Besnard, A. Hunter, Elements of Argumentation, MIT Press,
2008.

[19] J. C. Augusto, The logical approach to temporal reasoning, Ar-
tif. Intell. Rev. 16 (4) (2001) 301–333.

[20] A. Aztiria, A. Izaguirre, R. Basagoiti, J. C. Augusto, Learning
about preferences and common behaviours of the user in an in-
telligent environment, in: Behaviour Monitoring and Interpre-
tation - BMI - Smart Environments [an outgrow of BMI work-
shops], 2009, pp. 289–315.

[21] A. Muñoz, J. A. Botı́a, J. C. Augusto, Using argumentation to
understand ambiguous situations in intelligent environments, in:
Ambient Intelligence Perspectives II - Selected Papers from the
Second International Ambient Intelligence Forum 2009, Hradec
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