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Abstract—Here the Newton’s Method direct action selection
approach to continuous action-space reinforcement learning is
extended to use an eligibility trace. This is then compared to
the momentum term approach from the literature in terms of
the update equations and also the success rate and number of
trials required to train on two variants of the simulated Cart-
Pole benchmark problem. The eligibility trace approach achieves
a higher success rate with a far wider range of parameter values
than the momentum approach and also trains in fewer trials on
the Cart-Pole problem.

I. INTRODUCTION

Reinforcement learning (RL) [1] has had many successes,
however, when the action-space is continuous it becomes dif-
ficult to select the greedy action. One approach to overcoming
this problem is by directly optimising the value function [2],
[3].

A popular approach to accelerating training in RL is to
apply an eligibility trace, but in [2], [3] a momentum term
was applied to the update of the value function. When the
update equations of these two techniques are compared they
are very similar. Here, the update equations of both eligibility
and momentum based approached are compared, then both
approaches are applied to the well known simulated Cart-
Pole benchmark problem and the double pole variant for
comparison, both in terms of trials to train and sensitivity to
parameter values.

The rest of this paper is organised as follows. Section II
gives the background about reinforcement learning and the
use of eligibility in continuous action-space. The details of
the approach applied here are described in Section III. Then,
Section IV explains the details of the experiment carried out,
followed by the results (Section V). Finally, the conclusion
and future work are in Section VI.

II. BACKGROUND

A. Reinforcement Learning

An RL agent learns to perform a task by experimenting
on that task and receiving feedback based on its current
performance. At any given time-step, the agent is in state
st ∈ S and must select an action at ∈ A. After applying
at to the environment, the agent receives a reward rt+1 ∈ R
from the environment and transitions to st+1 ∈ S.

In order to improve its performance on the task, the RL
agent seeks to maximise the sum of long-term discounted
rewards it receives

T−1∑
t=0

γtrt+1, (1)

where t is the time-step; rt+1 is the reward received in time-
step t+1, after taking at from st; and γ ∈ (0, 1] is the discount
rate. Normally γ < 1 to ensure the sum of rewards remains
finite and to assign more weight to rewards received sooner.

The optimisation of the sum of discounted rewards is
achieved by the construction of a value function Q : S×A →
R, which approximates the expected sum of long term rewards
when taking a from s and then following the learned policy
π : S → A. The learned policy is a mapping of which action
to take from a given state. The Q function is defined as the
sum of the immediate reward and the expected sum of rewards
which will be received resulting from taking the next action
from the next state and can be recursively defined as

Q(st, at) = rt+1 + γQ(st+1, at+1). (2)

The learnt policy involves selecting the greedy action w.r.t.
the value function. In small, discrete action-space the agent
can select the greedy action a∗ using

a∗ = arg max
a

Q(s, a), ∀a ∈ A. (3)

The agent must also perform exploratory actions in order to
update the value function in unexplored areas of the state- and
action-space, which may lead to an improved policy. There are
several exploration methods commonly applied, in the discrete
action-space this may involve selecting a random action with a
small probability or selecting actions proportionately to their
value. These methods are known as ε-greedy and Softmax
exploration respectively [1].

The value function can be updated on-line by temporal
difference (TD) methods, in which the TD error

δt = rt+1 + γQ(st+1, at+1)−Q(st, at) (4)

is minimised. In the SARSA algorithm [1] this is achieved by
using δt to update the Q using

Q(st, at)← Q(st, at) + αδt, (5)

where α is a step-size parameter.



B. Continuous State- and Action-Space

When the state-space is continuous it is not possible to store
Q values in a lookup table; therefore, function approximation
is often applied to approximate the Q function. However,
when the action-space is also continuous it is impossible
to compare the values of all actions, thus alternative action
selection methods must be employed.

Possible approaches to overcoming the action selection
problem in continuous action-space include applying a func-
tion approximator to approximate the policy function π : S →
A, which can be used alone [4] or together with a value
function [5]; or by directly optimising the Q function [2], [6].

The approximation of the Q function can be achieved by an
artificial neural network (ANN). When an ANN is employed
to approximate the value function, the update is then applied
to the parameters of the ANN (the synaptic weights) rather
than directly updating the value associated with the specific
state and action. The update equation is then

~θ ← ~θ + αδt∇~θQ(st, at), (6)

where ~θ is the parameter vector for the ANN.
In the continuous action-space setting exploration is often

applied through Gaussian exploration [5], whereby a Gaussian
random variable is added to the greedy action before applying
it to the environment. This is more appropriate than ε-greedy
and Softmax when the action-space is continuous.

C. Eligibility Trace

In the standard version of the TD update (5) only the Q
values of a single state and action will be updated. In order
to also allocate credit to previous states and actions which led
to the reward an eligibility trace can be applied [1]. This is
achieved by assigning an eligibility value to states and actions
as they are encountered which is reduced as time progresses.

When function approximation is applied to the Q function
rather than a lookup table the eligibility trace is a vector
~e, where each element of ~e relates to one of the function
approximator parameters rather than to an entry in a lookup
table. The parameter update with eligibility trace is

~θ ← ~θ + αδt~et, (7)

where δt is as (4),

~et = γλ~et−1 +∇~θQ(st, at) (8)

and ~e0 = ~0.

III. APPROACH

The approach used here is based on [2], but uses an
eligibility trace rather than a momentum term. As with [2], the
Q function was approximated using a multi-layer perceptron,
with 7 hidden nodes using a hyperbolic tangent activation
function. The initial weights were uniformly selected in the
range [−0.2, 0.2]. Inputs to the ANN were scaled to be within
[−1, 1] and outputs rescaled to be applied to the environment.
The value function was updated using the SARSA algorithm
with an eligibility trace.

Greedy actions were selected using the iterative Newton’s
Method approach a = a − ∇aQ(s,a)

∇2
aQ(s,a) , which was then con-

strained to be within [−1, 1]. A maximum of 10 iterations (15
for Double Cart-Pole) were applied, but this was terminated
early if two iterations result in actions which differ by less
than 0.0001. As Newton’s Method is unable to distinguish
between maxima and minima, this was repeated from several
initial actions in {−1,−0.5, 0, 0.5, 1}. Actions were rescaled
to the range of the dynamic system after being selected.

Although the original approach in [2] did not apply an
eligibility trace it did apply a momentum term [7] to the
ANN update. By rearranging the update equations of both
approaches into a similar form we can see the differences and
similarities more clearly.

Firstly the momentum update formula, the usual form is

~θt+1 = ~θt + ∆~θt+1 (9)

where
∆~θt+1 = αδt∇~θtQ(st, at) + µ∆~θt. (10)

Which, taking into account ∆~θ0 = ~0, can be combined to form

~θt+1 = ~θt + α

t∑
k=0

µkδt−k∇~θt−k
Q(st−k, at−k). (11)

Then, by substituting (4) and (8) into (7), and taking into
account the fact that ~e0 = ~0, we can arrive at a similar form
to the momentum update (11) for the eligibility trace

~θt+1 = ~θt + α

t∑
k=0

γkλkδt∇~θt−k
Q(st−k, at−k). (12)

If we set µ = γλ the only difference between eligibility
trace (12) and momentum (11) is that eligibility trace uses the
current TD error δt for each of the terms, whereas momentum
uses a different TD error in each term: the TD error from the
time-step of the term.

Intuitively, it makes sense to use the most recent knowledge
(from rewards) in RL to update the previous actions which
led to it, rather than the knowledge the agent had at the time-
step after taking those actions. Similar conclusions have been
drawn in [8] albeit on adaptive critic designs. Also, here the
comparison includes the impact of parameter values on both
approaches, which was not included in [8].

Therefore using an eligibility trace would be expected to
give improved results over standard SARSA with a momentum
term when updating the ANN. In the following experiments
the momentum approach is also applied for comparison pur-
poses.

IV. EXPERIMENT

The experiments here use two variants of the Cart-Pole
problem. The Cart-Pole problem is a very well known control
benchmark problem often used by the RL community [1], [9]–
[11]. The problem consists of a cart on a limited track with a
pole attached, but free to swing. The objective is to maintain
the pole in a balanced position without reaching the ends of
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Fig. 1. The two Cart-Pole variants. The distance of the cart from the centre of
the track is x and θ (θi) is the angle of the pole(s) from the vertical position.

the track. Often actions are limited to discrete values [11],
here, however, continuous ranges are permitted. The double
pole variant of the problem is also used, as described in [5].

Both problems were run for 1000 trials. A trial consists
of a maximum of 120 s, which is terminated immediately if
the agent fails, i.e. the cart reaches the end of the track or
the pole (one of the poles) falls. At each 0.02 s time-step, the
agent selects an action, applies it to the environment (which is
updated using the Runge Kutta fourth order method) and the
agent receives the resulting state and the computed reward.
The reward is -1 on failure and zero at all other times. The
pole was considered to have fallen if |θ| > π/15, and the
cart was considered to have reached the edge of the track if
|x| > 2.4.

Gaussian exploration was applied by selecting a random
exploration value from the normal distribution with mean 0
and standard deviation 1. This exploration term was then
multiplied by an exploration size parameter and added to
the selected action. The exploration size started at 1 at the
beginning of each trail and was reduced by 0.001 (0.01 for
the Double Cart-Pole) at each time-step until it reached 0.

All experiments are repeated for 100 runs, and the mean
average number of trials taken before the agent could suc-
cessfully balance the pole(s) for the full simulated time was
recorded. The percentage of runs where the agent was able
to learn to successfully balance the pole was the success rate.
This was then repeated for all values in {0, 0.1, . . . , 1} for γ
and λ (µ for momentum) and for various values of α.

A. Cart-Pole

The state vector comprises the pole angle, pole angular
velocity, cart distance from centre of track and cart velocity
s = [θ, θ̇, x, ẋ]T. The action is the force applied to the cart
a = F ∈ [−10, 10] N.

The initial state at the beginning of each episode was [0 +
o, 0, 0, 0]T, where o was a uniformly randomly generated offset
in the range [−0.05, 0.05]. The selected action, including any
exploration, was limited to the allowable range before being
applied to the simulation. The parameters used for the Cart-
Pole simulation are given in Table I. The equations of motion
used to update the environment, the same as those used in [11],

TABLE I
CART POLE PARAMETERS

Parameter Value
Cart mass (mc) 1 kg

Pole mass (m) 0.1 kg

Gravitational constant (g) 9.81 m/s2

Half pole length (l) 0.5 m

Cart friction (µc) 5 × 10−4

Pole friction (µp) 2 × 10−6

Time increment (∆t) 0.02 s

Maximum force (Fmax) 10 N

TABLE II
DOUBLE CART-POLE PARAMETERS

Parameter Value
Cart mass (mc) 1 kg

Pole one mass (m1) 0.1 kg

Pole two mass (m2) 0.01 kg

Gravitational constant (g) 9.81 m/s2

Pole one length (l1) 1 m

Pole two length (l2) 0.1 m

Cart friction (µc) 5 × 10−4

Pole one friction (µ1) 2 × 10−6

Pole two friction (µ2) 2 × 10−6

Time increment (∆t) 0.02 s

Maximum force (Fmax) 40 N

are given by

φ = −F −mlθ̇2 sin θ + µc sgn (ẋ),

θ̈ =
g sin θ + φ cos θ − µpθ̇

ml

l
(

4
3
− m cos2 θ

mc+m

) ,

ẍ =
F +ml

(
θ̇2 sin θ − θ̈ cos θ

)
− µc sgn (ẋ)

mc +m
.

(13)

B. Double Cart-Pole

The double Cart-Pole problem is a variation of the standard
Cart-Pole problem, whereby the cart has two poles of differing
lengths, both of which must be balanced. The parameters used
for the double Cart-Pole simulation are given in Table II. The
equations of motion in this experiment were the same as that
of [5], which are

φ = F − µc sgn(ẋ),

ẍ =
φ+

∑2
i=1 2miθ

2
i sin θi + 3

4
mi cos θi

(
2 µiθ̇i
mili

+ g sin θi

)
mc +

∑2
i=1mi

(
1 − 3

4
cos2θi

) ,

θ̈i = −
3

8li

(
ẍ cos θi + g sin θi +

µiθ̇i

mili

)
.

(14)

The state vector comprised the angle and angular velocity of
each pole; cart distance from centre of track; and cart velocity
s = [θ1, θ̇1, θ2, θ̇2, x, ẋ]T, and the action was the force applied
to the cart a = F ∈ [−40, 40]N. The initial state for each
episode was [ π

180 , 0, 0, 0, 0, 0]T (as [5]).
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(a) Eligibility Trace α = 0.1
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(b) Momentum α = 0.1
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(c) Eligibility Trace α = 0.2
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(d) Momentum α = 0.2
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(e) Eligibility Trace α = 0.3
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(f) Momentum α = 0.3

Fig. 2. Cart-Pole success rate for various parameter values.

V. RESULTS

Figure 2 shows the success rate on the Cart-Pole problem
of both approaches for α ∈ {0.1, 0.2, 0.3}. When α ≥ 0.4
the region with high success rate continued to shrink. Each
subplot shows the success rate as a function of two other
parameters: in the eligibility trace approach this was γ and λ,
and in the momentum approach was γ and µ. Figure 3 shows
the same information for the double Cart-Pole problem. In
both problems α = 0.2 had a high success rate for the widest
range of parameter values, with the exception of the Cart-Pole
problem with momentum where α = 0.3 provided a higher
success rate.

Table III shows, for each approach on each problem, the
percentage of runs in which the RL agent succeeded, i.e.
was able to balance the pole(s) for the full 120 s, and the
mean average number trials it took the agent to succeed. The
parameter values used to produce these results for the Cart-
Pole were eligibility trace: α = 0.2, γ = 0.9 and λ = 0.5;
momentum: α = 0.3, γ = 0.8 and µ = 0.3. For the Double
Cart-Pole they were eligibility trace: α = 0.2, γ = 0.6 and
λ = 0.3; momentum: α = 0.2, γ = 0.9 and µ = 0.2.

The eligibility trace approach achieved a higher success rate
for a wider range of parameter values than the momentum
approach. Also, on the Cart-Pole problem eligibility trace
achieved training in fewer trials. On the double Cart-Pole the
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(b) Momentum α = 0.1
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(c) Eligibility Trace α = 0.2
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(d) Momentum α = 0.2
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(e) Eligibility Trace α = 0.3

γ
0.0

0.2
0.4

0.6
0.8

1.0
µ

0.0
0.2

0.4
0.6

0.8
1.0

S
u
cc
e
ss
 R
a
te
 (
%
)

0

20

40

60

80

100

(f) Momentum α = 0.3

Fig. 3. Double Cart-Pole success rate for various parameter values.

TABLE III
RESULTS

Problem Approach Success Rate Trials to Train
Cart-Pole Eligibility Trace 100% 49.56
Cart-Pole Momentum 98% 67.398

Double Cart-Pole Eligibility Trace 100% 94.4
Double Cart-Pole Momentum 100% 55

momentum approach did achieve training in less trials than
with an eligibility trace, but as with the Cart-Pole problem,
the range of parameters for which a high success rate could
be achieved was significantly smaller than with the eligibility
trace.

VI. CONCLUSION

Here the SARSA(λ) algorithm with direct action selection
using Newton’s Method was applied to the single and double
pole variants of the well known Cart-Pole problem. The
success rates are compared for various parameter values, and
the approach is compared to a previous approach using a
momentum term. The eligibility trace approach succeeds more
reliably for a wider range of parameter values. Moreover, it
achieves training in less trials on the Cart-Pole problem, which
requires generalisation (due to the random starting position).



Future work should apply this approach to a wider range of
problems and should also apply noise to the selected actions.
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