
Hamming Distance Kernelisation via Topological
Quantum Computation

Alessandra Di Pierro1, Riccardo Mengoni1, Rajagopal Nagarajan?,2 and David
Windridge??,2

1 Dipartimento di Informatica, Università di Verona, Italy
2 Department of Computer Science, Middlesex University, London, UK

Abstract. We present a novel approach to computing Hamming dis-
tance and its kernelisation within Topological Quantum Computation.
This approach is based on an encoding of two binary strings into a topo-
logical Hilbert space, whose inner product yields a natural Hamming
distance kernel on the two strings. Kernelisation forges a link with the
field of Machine Learning, particularly in relation to binary classifiers
such as the Support Vector Machine (SVM). This makes our approach
of potential interest to the quantum machine learning community.

Keywords: quantum computing, topology, kernel function

1 Introduction

The Hamming distance of two strings is defined as the number of positions in
which the strings are different. It was introduced in the context of error detect-
ing and error correcting codes [8]. The concept is widely applicable to diverse
areas such as information theory, coding theory, cryptography and telecommuni-
cation. As well as its use throughout computer science, the Hamming distance is
interesting from the perspectives of statistical data analysis and machine learn-
ing in that it constitutes a simple (in fact the simplest) instance of a kernel
distance. Kernel distances are built from kernel functions via the metric relation
D(x, y) = K(x, x) +K(y, y)− 2K(x, y). Critically, from our perspective, kernel
functions can be shown to be equivalent to an inner product within a space
produced via the kernel function’s implicit feature mapping, thereby enabling
e.g. linear learning algorithms to learn highly non-linear decision boundaries.
In many applications where data classification is based on dissimilarity mea-
sures (e.g. string matching for pattern recognition), kernels provide a method
for classification and regression in the absence of obvious features.

In this paper we show that there is a strong relationship between Ham-
ming distance and Topology and we use it to define a quantum algorithm that
? Partially supported by EU ICT COST Action IC1405 “Reversible Computation—
Extending Horizons of Computing".

?? Supported by EU Horizon 2020 research project No. 731593 “Dream-like simulation
abilities for automated cars (DREAMS4CARS)".

computes a Hamming distance based kernel. Topology is the branch of Math-
ematics in which two objects are identified whenever one can continuously be
deformed into the other. It has been used in physics to define a very particular
class of quantum field theories, namely the Topological Quantum Field Theo-
ries (TQFTs), modelling phenomena such as the fractional quantum Hall effect.
Quantum computers can benefit from the use of topological properties in as
far as they can guarantee a form of robustness [14]. This is possible because in
a topological quantum computer information is encoded in the collective states
of many quasi-particles, so-called anyons, which are naturally protected from
decoherence by their braiding behaviour.

Topological Quantum Computation (TQC) is equivalent in computational
power to other standard models of quantum computation such as the quantum
circuit model and the quantum Turing machine model. However, certain algo-
rithms are more naturally implementable on a topological quantum computer.
A well known example of such an algorithm is the one for evaluating a knot
invariant called the Jones polynomial [7,2]. The quantum algorithm we present
is essentially the application of the Jones polynomial algorithm after an appro-
priate problem reduction. This is obtained by an encoding of binary strings as
some special braiding in TQC and deriving their Hamming distance as the Jones
polynomial of a particular link. We can then exploit the computational features
of TQC for comparing two strings and obtain an estimation of the Hamming dis-
tance between them. Moreover, the encoding function corresponds to the feature
map of a kernel defined as the dot product in the Hilbert space of the topological
quantum algorithm (i.e. the feature space). This demonstrates the suitability of
TQC for defining kernel methods in a natural way.

2 Preliminaries

In this section we briefly review the main concepts in Topology that are relevant
for the work presented in this paper, namely those of knots/links, braiding and
related results.

Knot theory [1,12] studies the topological properties of mathematical knots
and links. A knot is an embedding of a circle in the 3-dimensional Euclidean
space R3, up to continuous deformations, and a link is a collection a knots that
may be linked or knotted together. A fundamental question in knot theory is
whether two knot diagrams, i.e. projections of knots on the plane, represent
the same knot or rather they are distinct. The Reidemeister theorem [16] says
that two links can be continuously deformed into each other if and only if any
diagram of one can be transformed into a diagram of the other by a sequence of
moves called Reidemeister moves [17]. If there exists such a transformation the
two links are said to be isotopic.

The Reidemeister moves can be of three types, as depicted in Figure 2. Move
I undoes a twist of a single strand, move II separates two unbraided strands and
finally move III slides a strand under a crossing. A powerful knot invariant is
the Jones polynomial VL(A) [9] which is a Laurent polynomial in the variable A

Move I

←→

Move II

←→

Move III

←→

Fig. 1. The Reidemeister moves

with integer coefficients. Given two links L1 and L2 and their respective Jones
polynomials VL1(A) and VL2(A), the following relation holds true:

L1 = L2 ⇒ VL1
(A) = VL2

(A) or, equivalently, VL1
(A) 6= VL2

(A) ⇒ L1 6= L2.

A useful formulation of this polynomial due to Kauffman [10,11] is given in
terms of the so-called bracket polynomial or Kauffman bracket, defined in the
following section. Crucial for our work is that such a polynomial can be efficiently
computed in TQC [2].

2.1 Kauffman Bracket

Definition 1. The Kauffman bracket of any (unoriented) link diagram D, de-
noted 〈L〉 , is a Laurent polynomial in the variable A, characterized by the three
rules:

1.
〈 〉

= 1, where is the standard diagram of the loop
2.
〈
D t

〉
= (−A2 − A−2)〈D〉 = d〈D〉, where t denotes the distant union3

and (−A2 −A−2) = d.
3.
〈 〉

= A
〈 〉

+A−1
〈 〉

where and represent some regions of link diagrams where they differ as
shown.

Rule 3 expresses the skein relation: it takes in input a crossing ri and dissolves
it generating two new links that are equal to the original link except for ri, and
therefore with a smaller number of crossings. By applying it recursively to a
link we obtain at the end a number of links with no crossings but only simple
3 The distant union of two arbitrary links L and M, denoted by LtM is obtained by
first moving L and M so that they are separated by a plane, and then taking the
union.

loops, though this number is exponential in the number of crossings. Rule 1 and
Rule 2 show how to calculate the polynomial after the decomposition achieved
by applying Rule 3.

Note that the Kauffman bracket of a link diagram is invariant under Reide-
meister moves II and III but it is not invariant under move I.

Proposition 1. For every two links L and M, the distant union LtM has the
property:

〈L tM〉 = (−A2 −A−2) 〈L〉 〈M〉 = d 〈L〉 〈M〉

The Kauffman Bracket of the Hopf link We show here the calculation
of the Kauffman bracket for the simplest non-trivial link with more than one
component, i.e. the Hopf link depicted below [15].

By applying Rule 3 of Def. 3.2 to the upper crossing we get

〈 〉
= A

〈 〉
+A−1

〈 〉
Now we use also Rules 1 and 2 of Def. 3.2 to compute the new two brackets
separately:

〈 〉
= A

〈 〉
+A−1

〈 〉
= Ad+A−1 = (−A)3

〈 〉
= A

〈 〉
+A−1

〈 〉
= A+ dA−1 = (−A)−3

Finally we get

〈 〉
= A

〈 〉
+A−1

〈 〉
= −A4 −A−4

It is worth noting that the Hopf link calculated here and the one obtained by
reversing all the crossings have the same Kauffman brackets, i.e.〈 〉

=

〈 〉

2.2 Braids and Links

A braid can be visualised as an intertwining of some number of strands, i.e.
strings attached to top and bottom bars such that each string never turns back.

Given n strands, the operator σi performs a crossing between the ith strand
and the (i + 1)th, keeping the former above the latter. In a similar way, the
operator σ−1i denotes a crossing of the ith strand below the (i+ 1)th. A generic
braid B on n strings is obtained by iteratively applying the σi and σ−1i operators
in order to form a braid-word, e.g. σ1σ2σ−11 σ4. It is well-know that the operators
σi and σ−1i on n strands define a group Bn called braid group [18].

Definition 2. (Markov trace) Given a braid B, its Markov trace is the closure
obtained connecting opposite endpoints of B together, as shown below.

••

•

•

• •

••

•

•

• •
−→B

The relation between links and open ended strands is defined by two important
theorems [3,4].

Theorem 1 (Alexander’s theorem). Every link (or knot) can be obtained as
the closure of a braid.

The result of the Markov closure of a braid B is a link that we will denote by
L = (B)Markov.

Theorem 2 (Markov’s theorem). The closure of two braids B1 and B2 gives
the same link (or knot) if and only if it is possible to transforms one braid into
the other by successive applications of the Markov moves:

1) conjugation: B = σiBσ
−1
i = σ−1i Bσi , where B ∈ Bn

2) stabilization: B = Bσ−1n = Bσn , where σn , Bσn and Bσ−1n ∈ Bn+1.

3 Topological Quantum Computation

Topological Quantum Computation (TQC) [6,13,14] is related to the presumable
existence of some special particles, called anyons, whose statistics substantially
differ from the more common physical particles observed in nature. They were
discovered at the end of the 1970’s when Leinaas and Myrheim observed that
these particles could not be identified neither with bosons nor with fermions; in
fact their behaviour could be described by the statistics generated by the ex-
changing of one particle with another. This exchange rotates the system quantum
state and produces non trivial phases [19].

In the following we give a quick explanation of the basic features of the TQC
computational paradigm, which we will use for defining our algorithm for the
Hamming distance and its kernelisation.

In order to perform a topological quantum computation we need to fix an
anyon system, i.e. a system with a fixed number anyons for which we specify: (1)
the type, i.e. the anyon physical charge, (2) the fusion rules N c

ab (i.e. the laws of
interaction), (3) the F -matrices, and (4) the R-matrices. The role of these latter
will be made clear in the following.

The fusion rules, give the charge of a composite particle in terms of its
constituents. The fusion rule a⊗ b = N c

a bc indicates the different ways of fusing
a and b into c; these are exactly N c

a b. Dually, we can look at these rules as
splitting rules giving the constituent charges of a composite particle.

An anyon type a for which
∑
cN

c
a b > 1 is called non-Abelian. In other words,

a non-Abelian anyon is one for which the fusion with another anyon may result in
anyons of more than one type. This property is essential for computation because
it implies the possibility of constructing non trivial computational spaces, i.e.
spaces of dimension n ≥ 1 of ground states where to store and elaborate infor-
mation. Such spaces correspond to so-called fusion spaces. The fusion space, V cab,
of a particle c, or dually its splitting space V abc , is the Hilbert space spanned by
all the different (orthogonal) ground states of charge c obtained by the different
fusion channels. The dimension of such a space is called the quantum dimension
of c; clearly this is 1 for Abelian anyons.

Considering the dual splitting process, a non-Abelian anyon can therefore
have more than one splitting rule that applies to it, e.g. a⊗ b = c and e⊗ b = c.
Given an anyon of type c we can split it into two new anyons a, b and obtain a
tree with root c and a, b as leaves. By applying another rule to a, say a = c⊗ d,
we will obtain a tree with leaf anyons c, d, b and root c. The same result can also
be obtained by splitting the original anyon c into e, b and, supposing that there
exists a fusion rule of the form c⊗ d = e, we can again split e into the leaves c
and d. The two resulting , which have leaf anyons and root anyon of same type
and differ only for the internal anyons a, e, represent two orthogonal vectors of
the Hilbert space V cdbc .

Applying the fusion rules in different order generates other (non orthogonal)
trees which have different shapes but contain the same information. This is be-
cause the total charge is conserved by locally exchanging two anyons, a property
that deserves the ‘topological’ attribute to anyon systems and that determines
the fault-tolerance of the quantum computational paradigm based on them.

3.1 Computing with Anyons

The idea behind the use of anyons for performing computation is to exploit
the properties of their statistical behavior; this essentially means to look at the
exchanges of the anyons of the system as a process evolving in time, i.e., looking
at an anyon system as a 2+1 dimensional space. This corresponds to braiding
the threads (a.k.a. world-lines) starting from each anyon of the system. Particle
trajectories are braided according to rules specifying how pairs (or bipartite

subsystems) behave under exchange. The braiding process causes non-trivial
unitary rotations of the fusion space resulting in a computation. Equivalently, a
topological quantum computation can be seen as a splitting process (creating the
initial configuration) followed by a braiding process (the unitary transformation)
followed by a fusion process (measuring the final state). The latter essentially
consists in checking whether the initial anyons fuse back to the vacuum from
which they were created by splitting.

3.2 Calculation of the Kauffman Bracket via TQC

Consider n pairs of anyons created (via splitting) from the vacuum. Each anyonic
pair is in the vacuum fusion channel with initial state denoted by |ψ〉. The final
state 〈ψ| corresponds to a fusion of these anyons back into the vacuum [15].

I

|ψ〉

〈ψ|

a)

B

b)

|ψ〉

〈ψ|

Fig. 2. Two anyonic quantum evolutions. In both cases pairs of anyons are created from
the vacuum and then fused back into it. In a) no braiding, i.e the identity operator, is
performed, in b) some braiding operator is applied.

As shown in Figure 2 part a, if no braiding is performed on the anyons (I
stands for the identity), then the probability that they fuse back to the vacuum
in the same pairwise order is trivially given by

〈ψ| I |ψ〉 = 〈ψ|ψ〉 = 1.

Consider instead the situation represented in Figure 2 part b , where, after
creating n = 8 anyons in pairs from the vacuum, we braid half of them with each
other to produce the anyonic unitary evolution represented by the operator B.
In this case, the probability amplitude of fusing the anyons in the same pairwise
order to obtain the vacuum state is given by

〈ψ|B |ψ〉 =
〈
(B)Markov

〉
dn−1

, where d = (−A2 −A−2). (1)

This equation expresses the relation between the probability amplitude of
obtaining the vacuum state after the braiding given by the operator B and the
Kauffman bracket of the link obtained from the Markov trace of braid B, i.e.
(B)Markov.

4 Topological Quantum Calculation of Hamming
Distance between Binary Strings

In this section we define a topological quantum algorithm for the approximation
of the Hamming distance between two binary strings. This will be the base for
the definition of a distance based kernel.

Definition 3. (Hamming distance) Given two binary strings u and v of
length n, the Hamming distance dH(u, v) is the number of components (bits)
by which the strings u and v differ from each other.

4.1 Encoding Binary Strings in TQC

Given a binary string u, we associate to each 0 and 1 in u a particular braiding
between two strands as follows:

- 0 is identified with the crossing σi

• •

• •
0 −→

- 1 is identified with the crossing σ†i
• •

• •
1 −→

Note that, using this encoding, a given binary string of length n is uniquely
represented by a pairwise braiding of 2n strands i.e. by a braid B ∈ B2n as
shown below.

••• • ••

•• • •• •
010... −→ ...

4.2 Hamming Distance Calculation: Base Case

Given two binary strings of length one (n = 1), u and v, we consider the braiding
operators, Bu and Bv, associated to u and v, respectively. Then we construct
the composite braiding operator BuB†v and apply the Markov trace, obtaining
a link. Our aim is to calculate the Hamming distance dH(u, v) by exploiting the
properties of the Kauffman brackets associated to these links. All the possible
cases are shown below.

As we can see from Figure 3,

• •

• •

••
B†

0 −→

B0 −→
• •

• •

••
B†

1 −→

B0 −→

• •

• •

••
B†

0 −→

B1 −→
• •

• •

••
B†

1 −→

B1 −→

Fig. 3. Links associated to the Hamming distance between two single-digit binary
strings.

– dH(0, 0) and dH(1, 1) can be continuously transformed in two loops (using
the Reidemeister moves of Section 2) with Kauffman brackets (using rules
in Section 2.2) 〈

t
〉
= (−A2 −A−2)〈 〉 = d〈 〉 = d

– dH(1, 0) and dH(0, 1) are both represented by the Hopf link with Kauffman
brackets (calculated as in Section 2.1)

〈Hopf〉 = (−A4 −A−4)
If we could perform the calculation of such Kauffman brackets using anyons, as
discussed in Section 3.2, we would get:

– for dH(0, 0) and dH(1, 1)

〈ψ|BuB†v |ψ〉 =

〈
(BuB†v)Markov

〉
d2n−1

=

〈
t

〉
d2−1

=
d

d
= 1

– for dH(1, 0) and dH(0, 1)

〈ψ|BuB†v |ψ〉 =

〈
(BuB†v)Markov

〉
d2n−1

=
〈Hopf〉

d

This means that, when the Hamming distance is zero (i.e in the cases dH(0, 0)
and dH(1, 1)), the probability of the anyons fusing back into the vacuum is 1.
When the hamming distance is 1 instead (i.e in both cases dH(0, 1) and dH(1, 0)),

this probability reduces to
∣∣∣∣ 〈Hopf〉

d

∣∣∣∣2.

4.3 Hamming Distance Calculation: General Case

What was shown in the previous paragraph can be easily generalised. Consider
two binary strings u and v of length n > 0 such that dH(u, v) = k.
This means that Markov trace of the 2n strand used in the encoding will give
a number 2(n − k) of loops and k Hopf links. Hence, the Kauffman bracket is
calculated considering the distant union t between all these k+2(n−k) = 2n−k
links. What we get from anyon braiding is the following:

〈ψ|BuB†v |ψ〉 =

〈
(BuB†v)Markov

〉
d2n−1

=

〈(⊔2(n−k)
i=1

)
t
(⊔k

j=1Hopf
)〉

d2n−1
=

= d2(n−k)

〈(⊔k
j=1Hopf

)〉
d2n−1

= d2(n−k)dk−1
〈Hopf〉k

d2n−1
=
〈Hopf〉k

dk

where Property 1.1.1 and the rules of the Kauffman brackets have been used.
Finally we can write

〈ψ|BuB†v |ψ〉 =
(
〈Hopf〉

d

)dH(u,v)

(2)

which means that, given two arbitrary binary string u and v, of length n, their
associated braiding Bu and Bv are such that the probability amplitude of 2n
anyons fusing back into the vacuum after a braid BuB†v is given by a constant
〈Hopf〉

d multiplied by itself a number of times equal to the Hamming distance
between the two strings dH(u, v).

From Equation 2 we can calculate an approximation to the Hamming dis-
tance dH(u, v) as follows (note that like in the case of the evaluation of the Jones
polynomials, the result is probabilistic):

dH(u, v) = log 〈Hopf〉
d
〈ψ|BuB†v |ψ〉 .

5 Kernel Functions

Kernel functions are generalised inner products that profoundly extend the ca-
pabilities of any mathematical optimisation that can be written in terms of a
Gram matrix of discrete vectors (for example, a Gram matrix of vectors over
training examples in machine-learning or samples requiring interpolation in re-
gression). In particular, the Gram matrix (xTi xj) may be freely replaced by any
kernel function K(xi,xj) that satisfies the Mercer condition, i.e. a condition
guaranteeing positive semi-definiteness. Many optimisation problems fall into
this category (e.g. the dual form of the support vector machine training problem
[5]). The Mercer space is given in terms of the input space x via φ(x), where
K(xi,xj) ≡ φ(xi)

T (φ(xj); the Mercer condition guarantees the existence of φ,
but the kernel itself may be calculated based on any similarity function that
gives rise to a legitimate kernel matrix. A kernel enforces a feature mapping of

the input objects into a Hilbert space; however, the feature mapping does not
need at any stage to be directly computed in itself; the kernel matrix alone is
sufficient. This can, for example, enable machine learning to apply in areas in
which there is not a readily apparent real vector space of feature measures (a
motivating example is genomics, for which it is much more straightforward to
compute a similarity measure between pairs of DNA strands than it is to embed
each strand individually into a vector space of feature measurements). More gen-
erally, the very large choice of kernels available effectively infinitely extends the
capabilities of kernelisable regression and machine-learning algorithms, allowing
them to apply to essentially arbitrary domains.

In the next we show how a kernel can be naturally defined using TQC. To
this purpose we use the Hamming distance as a demonstrative example of an
approach to the definition of kernel methods that may involve more complex
distance notions (note that the Hamming distance is essentially the simplest
case of an edit distance, which excludes edit operations such as insertion, deletion
and substitution; these clearly provide a more general and accurate measure of
sequence dissimilarities).

5.1 Hamming Distance Based Kernel

The topological quantum computation of the Hamming distance shown in Sec-
tion 4 can be used to define a kernel function. In fact, the encoding of binary
strings as vectors B |ψ〉 in the anyonic space allows us to define an embedding
φ into the Hilbert space H defined by the fusion space of the anyonic configura-
tions, i.e. for each string u, the mapping φ(u) is such that φ(u) = Bu |ψ〉 ∈ H.
With this, using Equation 2 we can define a string kernel by

K(u, v) ≡ 〈ψ|BuB†v |ψ〉 =
(
〈Hopf〉

d

)dH(u,v)

=

(
A4 +A−4

A2 +A−2

)dH(u,v)

If we work with so-called Fibonacci anyons, we have that A = eπi/10 and the
resulting kernel matrix is semi-definite positive. Thus it satisfies the Mercer
condition for a valid kernel. Moreover, we can show that the Euclidean distance
in the Mercer space, i.e. the fusion space H, can be defined in terms of 〈Hopf〉

d .
In fact, we have, using the fact that vectors in H are normailized to unity,

||φ(u)− φ(v)||2H = ||φ(u)||2H + ||φ(v)||2H − 2φ(u)Tφ(v) = 2− 2K(u, v).

Conclusions

We have presented an encoding of the Hamming distance problem into a link
invariant problem and we have shown how to solve it by means of topological
quantum computation. We have also shown that the anyonic encoding of the
string data and their braiding evolution naturally define a kernel function. The
choice of a simple distance such as the Hamming distance allowed us to focus on

the description of the approach rather than on the technicalities of the encodings
of more complex distance notions.

We are not aware of other approaches that similarly to ours associate some
topological properties to a given problem with no intrinsic topology, in order to
exploit TQC. Our aim is to further investigate the potential offered by topologi-
cal quantum algorithmic techniques for Machine Learning. It will be the subject
of future work to extend the range of applicability of topological quantum com-
putation to kernel methods.

References

1. Adams, C.: The Knot Book. W.H. Freeman (1994)
2. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approxi-

mating the jones polynomial. In: Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, Seattle, WA, USA, May 21-23, 2006. pp. 427–436 (2006)

3. Alexander, J.W.: A lemma on systems of knotted curves. Proceedings of the Na-
tional Academy of Sciences of the United States of America 9(3), 93–95 (1923)

4. A.Markoff: Uber die freie äquivalenz der geschlossenen zöpfe. Rec. Math. [Mat.
Sbornik] N.S. (1936)

5. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

6. Freedman, M.H.: P/NP, and the quantum field computer. Proceedings of the Na-
tional Academy of Sciences 95(1), 98–101 (1998)

7. Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological field theories by
quantum computers. Commun. Math. Phys. 227, 587–603 (2002)

8. Hamming, R.W.: Error detecting and error correcting codes. Bell System Tech J.
29, 147–160 (1950)

9. Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull.
Amer. Math. Soc. (N.S.) 12(1), 103–111 (01 1985)

10. Kauffman, L.H.: State models and the Jones polynomial. Topology 26(3), 395 –
407 (1987)

11. Kauffman, L.H.: New invariants in the theory of knots. Am. Math. Monthly 95(3)
(1988)

12. Kauffman, L.H.: Knots and physics; 4th ed. Series on Knots and Everything, World
Scientific, Singapore (2013)

13. Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96,
110404 (2006)

14. Kitaev, A.: Fault-tolerant quantum computation by anyons. Annals of Physics
303(1), 2 – 30 (2003)

15. Pachos, J.K.: Introduction to Topological Quantum Computation. Cambridge Uni-
versity Press (2012)

16. Reidemeister, K.: Knoten und Gruppen. Springer Berlin Heidelberg, Berlin, Hei-
delberg (1932)

17. Reidemeister, K.: Elementare begründung der knotentheorie. Abhandlungen aus
dem Mathematischen Seminar der Universität Hamburg 5(1), 24–32 (1927)

18. Satō, H.: Algebraic Topology: An Intuitive Approach. Iwanami series in modern
mathematics, American Mathematical Society (1999)

19. Wilczek, F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49,
957–959 (1982)

