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Abstract

We present a multi-conclusion natural deduction calculus character-
izing the dynamic reasoning typical of Adaptive Logics. The resulting
system AdaptiveND is sound and complete with respect to the proposi-
tional fragment of adaptive logics based on CLulN. This appears to be
the first tree-format presentation of the standard linear dynamic proof
system typical of Adaptive Logics. It offers the advantage of full trans-
parency in the formulation of locally derivable rules, a connection between
restricted inference rules and their adaptive counterpart, and the formula-
tion of abnormalities as a subtype of well-formed formulas. These features
of the proposed calculus allow us to clarify the relation between defeasible
and multiple-conclusion approaches to classical recapture.

1 Introduction

In this paper we describe a multiple-conclusion natural deduction calculus in
which the dynamics of standard (Fitch-style) dynamic proofs of Adaptive Log-
ics [7] can be reconstructed. Adaptive logics are a family of logics that can be
used to formalise a wide range of defeasible reasoning forms. Their consequence-
relations rely on the standard idea of interpreting premises as normally as pos-
sible through the selection of models of its premises, but it is only at the level of
its proof-theory that its distinctive approach comes to the fore. Adaptive log-
ics, namely, reconstruct defeasible reasoning patterns as dynamic proofs; proofs
in which steps performed earlier may later be retracted when the assumptions
they were based on no longer hold. In particular, an inconsistency adaptive logic
captures paraconsistent reasoning avoiding triviality in the face of inconsistency,
while trying to make up for its deductive weakness by provisionally applying
classical inference-rules when there is no explicit indication that inconsistencies
are involved in that inference.
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The dynamics of retracting earlier lines in a proof can be captured in a rather
natural way in linear proof-formats, including standard axiomatic and Fitch-
style natural deduction proofs, but is much less straightforward in a tree-like
proof-format. Consider, for instance, the following retraction in an application
of Ex Contradictione Quodlibet:

(1) »p Prem 0
(2) pVvg  Addition 0
3) -» Prem 0
4 q DS {rt =
(5) pA-p Adjunction 0

Here, at line (4) the disjunctive syllogism (DS) is applied on the condition that
p behaves normally, i.e. that the contradiction pA—p hasn’t been derived. When
this contradiction is effectively derived at line (5), line (4) is marked (here and
in the following by ®) and is from then on no longer assumed to be part of
the proof. This type of reasoning illustrates the idea of provisional applications
of classical inference-rules to paraconsistent logics that reject the disjunctive
syllogism, but in which the restricted form ¢ V 1), =@ /¥ V (¢ A ~¢) is retained.

Contrast this, now, with the following attempt to reconstruct a similar
reasoning-process in a Gentzen-Prawitz-style proof-tree:
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When in this proof an explicit contradiction is derived in the right-hand branch,
the assumption of its invalidity (stated explicitly in the left-hand branch) no
longer holds. In this format, however, the order used to construct the proof
cannot be read off the proof itself (an issue that could easily be fixed). But
also, more importantly, it isn’t even clear what it might mean to retract the
line where ¢ is derived, since the result of removing that line from the proof is
in itself no longer a well-formed proof.

The proof-format we propose solves this problem by making two changes:
first, we add indices to judgements to keep track of stages in the construction
of a proof; and second, we exploit the fact that judgements that are ‘marked’ at
a certain stage do not have to be removed, because there is simply no need to
prevent their implicit re-use since every assumption or premise should explic-
itly be written down in the place it is used. Instead, it is the derivation of the
same judgement at a later stage that is (or may be) blocked, because the original
assumption that led to its initial derivation probably no longer holds. We there-
fore provide, for the first time, an appropriate Natural Deduction translation of
adaptive reasoning, whose proofs have hitherto been presented in a linear for-
mat. We do so by formulating a general approach to Adaptive Reasoning that
accommodates the two strategies that are standardly used to retract previously



derived judgements. While the reformulation of the Reliability Strategy is a
much easier task, Minimal Abnormality is a more daunting one given the com-
plexity of its procedural translation in a proof tree. Nonetheless, we show that
it can in principle be done within our logic, although more efficient procedures
might be devised.

Because this system uses multiple-conclusion judgements, it also explicitly
captures the connection between unconditional derivations of certain disjunc-
tions in the paraconsistent logic and the conditional deductions of one of their
disjuncts in the adaptive logic. Moreover, the choice of modelling inconsistency
adaptive reasoning brings us closer to the original motivations for the develop-
ment of adaptive logic [4], but also allows us to engage with current philosophical
debates of relevance to Graham Priest’s work and in particular how one should
best approach the question of classical recapture in paraconsistent logics. The
latter problem can be summarised as follows. When one adopts a logic that
is strictly weaker than classical logic, the question of how one should account
for epistemically useful classical inference-forms that are invalidated by one’s
preferred logic almost immediately arises. In the case of paraconsistent logic,
this question is often deemed urgent, as the practical and epistemic usefulness
of the inference-forms that are lost, like the disjunctive syllogism, is almost
undisputed. Inconsistency-adaptive logics present one possible answer to this
challenge under the form of defeasible inference-forms that allow one to use clas-
sical inference-steps on the condition that certain assumptions are not violated.
It is also a response that Graham has endorsed [12] [13, Ch. 16]. His specific
proposal on how this should be implemented has, in recent years, become the
focus of a renewed interest in the problem of how dialetheists should account for
classical recapture. We contend that the combination of a multiple-conclusion
calculus with the reconstruction of the defeasible dynamics of adaptive proofs
can further clarify this debate.

The paper is structured as follows. We introduce in Section 2 a basic natural
deduction system called minimalND, which acts as the Lower Limit Logic of our
adaptive system. In Section 3, we extend the system to account for adaptive
reasoning through the definition of an appropriate abnormal form of expressions
and appropriate adaptive rules; the new system is called AdaptiveND. In Sec-
tion 4 we define marking strategies to identify derivation steps that need to be
retracted. In Section 5 we define basic meta-theoretical properties. We return
to comment on the challenge of classical recapture in Section 6.

2  minimalND

We start by defining the type universe for the {—, —, A, V} fragment of intu-
itionistic propositional logic corresponding to minimal logic. We call this logic
minimalND and use it as the equivalent of a Lower Limit Logic—the paracon-
sistent logic that governs the unconditional steps in a proof. Contrary to what
is standard in an intuitionistic setting, we do not allow the deduction of 1 from
an explicit contradiction. Whereas 1 can be eliminated via Ex Falso Quodli-



bet, there is no introduction-rule for 1, and this is what makes our base-logic
paraconsistent. It is only when the assumption of consistency is introduced that
the connection between negation-inconsistency and absolute inconsistency can
provisionally be recreated.

We start by defining the syntax of our language:

Definition 1 (minimalND). Our starting language for minimalND is defined by
the following grammar:

Type := Prop

Prop:=A| L[=¢|¢1 = d2| 1 Aga| 1V o
FZZ {¢17---7¢n}

A= {¢17-~~7¢n}

The type universe of reference is the set of propostions Prop, construed by
atomic formulas closed under negation, implication, conjunction, disjunction
and allowing L to express absolute contradictions. Formula formation rules are
given in Figure 1.

¢ € Prop
———— ATOoM _ 1 _
A € Prop 1 € Prop —¢ € Prop
¢1 € Prop @2 € Prop ¢1 € Prop ¢2 € Prop R
_>
¢1 — ¢2 S Prop (Z)l A\ ¢2 S PI’Op

¢1 € Prop ¢o € Prop
¢1 \Y (bz S PI’Op

Figure 1: Formula Formation Rules

Definition 2 (Judgements). A multiple conclusion minimalND-judgement is of
the form T';- Fs A, where: T' is the usual set of assumptions, A is a set of
formulas of the language and s is a positive integer.

The set I' on the left-hand side of the derivability sign is to be read con-
junctively. Similarly for the semi-colon symbol, which is introduced here but is
only used in Section 3 to separate standard assumptions in I' from conditions
(in the adaptive sense). At this stage, the symbol - following the semi-colon
is used to express an empty set of adaptive conditions. The set A and the
comma (if it occurs) on the right-hand side of the derivability sign are both
to be read disjunctively. This characterizes our calculus as multiple-conclusion.
Standard context formation rules are, as usual in a proof-theoretic setting, in-
ductively given for both left and right-hand side set of formulas, as shown in
Figure 2, see e.g. [17, pp.5-6] and [11, sec.2.3] for a formulation closer to ours.



Nil establishes the base case of a valid empty context, we use wf as an abbrevia-
tion for ‘well-formed’; I'-Formation allows extension of contexts by propositions;
Prem establishes derivability of formulas contained in context and this rule, in
particular, defines the equivalent of the adaptive Premise rule.

I s wf ¢ € Prop
NIL '-FORMATION
e wf [, ;- Foyr wf

I B wf peTl
[5obsi1 ¢

PREM

Figure 2: Context Formation Rules

The derivability sign is enhanced with a signature s that corresponds to a
counter of the ordered derivation steps executed to obtain the corresponding
ND-formula in a tree. This annotation plays a role in the extension of the
calculus developed in Section 3.

The semantics of connectives is given in the standard proof-theoretic way by
Introduction and Elimination Rules in Figure 3. Introduction of — corresponds
to conditional proof, while its elimination formalises Modus Ponens. Rules for
A are standard; notice that V-Elimination makes the disjunctive reading of the
comma on the right hand-side of the turnstile explicit. L can be eliminated by
Ez Falso, but cannot be introduced. Dually, our paraconsistent negation — can
be introduced, but not eliminated.

Finally, we introduce in Figure 4 a set of rules to enforce structural prop-
erties. WL is a Weakening on the left-hand side of the judgement: it allows
the monotonic extension of assumptions preserving already derivable formulas.
Notice that this rule requires an empty set of formulas ;- following I'. As will
become clear in the next section, this means that weakening is only valid when
the set of adaptive conditions is empty, that is, when no provisional assumptions
are made that depend on the premises. We do not need to formulate a WR rule
for weakening of the set A of derivable formulas, as this can be obtained by a
detour of V-Introduction and Elimination. CL for Contraction on the left allows
elimination of repeated assumptions and EL for Exchange on the left is valid
just by set construction, as there is no order. CR and ER do a similar job on
the right-hand side of the judgement. Finally, Cut (also known as Substitution
in some Natural Deduction Calculi) guarantees that derivations can be pasted
together, and in general it requires that there are no clashes of free variables in
.

The resulting system is equivalent to the propositional fragment of CLuN,
the logic obtained by adding Excluded Middle to the positive fragment of clas-
sical logic. This is a very weak paraconsistent (but not paracomplete) logic that
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Figure 3: Rules for I/E of connectives
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Figure 4: Structural Rules

does not validate any of the usual De Morgan rules [3], and which has been used
as the Lower Limit Logic of one of the first adaptive logics.

Theorem 1. minimalND s sound and complete w.r.t. to the propositional frag-
ment of CLuN.

Proof. Soundness can be shown as usual, with the key step verifying that (—I)
is sound in view of the completeness-clause for negation

If v(¢) = False, then v(—¢) = True (C)

Completeness follows from the provability of all CLuN-axioms. Below, we only



give the proofs for Excluded Middle and Peirce’s Law.
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3 AdaptiveND

We now extend minimalND to characterize a new logic called AdaptiveND to

allow for inconsistency adaptive reasoning. To this aim one needs:

1. the explicit formulation of an 2 set of propositions;
2. the formulation of judgements including an adaptive condition;

3. the formulation of a rule that allows the derivation of new formulas inde-

pendent from such an adaptive condition;

4. the formulation of a rule that allows the derivation of new formulas that

depend on such an adaptive condition.

We offer accordingly new definitions for the syntax of this logic and the related

form of judgements.

Definition 3 (AdaptiveND). The language of AdaptiveND is as follows:

Type := Prop

Prop:=A| L[=¢|d1 = d2| 1 A2 |1V
i={¢1,...,0n}

AZ: {¢17~--7¢n}

Q:={pN-¢]|¢ec Prop}

Definition 4 (Judgements). An AdaptiveND-judgement is of the form I'; ©~

A, where:

—I



1. the left-hand side of s has T’ as in minimalND;
2. the semicolon sign on the left-hand side of b is conjunctive;

3. © refers to a finite subset of Q, i.e. a set of formulas of a specific in-
consistent logical form; we write ¢ instead of {¢} when © is the singleton
{#}; below we introduce an appropriate Q2-formation rule;

4. the last place of the left-hand side context is always reserved for negated
formulas of type QU; we shall use ¢~ to refer to the negation of ¢, and O~

for{¢7 |9 €O}

5. the right-hand side is in disjunctive form.

When the second place on the left-hand side of I is empty, we shall write
I';- F, thus reducing to the form of a minimalND-judgement. Moreover, in
AdaptiveND, the annotation on the proof stage s is optionally followed by one
of the following two marks:

K to mark that at the current stage some previously derived formula
is retracted; the meaning of this annotation is given for the Reliability
Strategy by a corresponding rule XR, presented in Section 4.1; for the
Minimal Abnormality Strategy, its meaning is given by two rules ®M1
and XM2, presented in Section 4.2;

v/ to mark that at the current stage some previously derived formula is
now finally derived, i.e. will no longer be marked by X; the use of this
annotation is formally given below in Definition 14.

We now introduce the rules for AdaptiveND. In Figure 5, we describe the
formation and use of formulas ¢ € (2. By 2-Formation, the explicit contradiction
¢ N ¢, with ¢ any proposition, is a formula of the Q2 type. In the Adaptive
tradition a formula of type 2 is called an abnormality or abnormal formula.
By Adaptive Condition Formation, given a valid context I" and a formula ¢ of
the Q type, a context I' followed by the Adaptive Condition that expresses the
defeasible assumption that ¢ is false, is a well-formed context. This corresponds
to the use of syntactic restrictions that are applied to the use of conditions as
additional elements of a proof line in the standard linear format of adaptive
logics. By Adaptive Condition Extension, a newly constructed formula of type Q2
can be added to an existing non-empty Adaptive Condition.

In Figure 6, the calculus is extended by introducing the conditional rule RC,
which states that if a disjunction 1, ¢ is derivable from I', with ¢ an abnormal
formula, then v can also be derived alone under I'" and the Adaptive Condition
that ¢ be false. Because the application of RC can be delayed by keeping formu-
lae of type Q2 on the right hand-side of the turnstile, the role of the unconditional
rules of the standard calculus is subsumed under the Cut rule. The single and
multi-premise versions of the unconditional rules displayed in Figure 7 can thus
be treated as derived rules as shown by the procedures for rewriting a succession
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Figure 5: Q2 Formation rules

of RC and RU applications as a succession of Cut and RC applications in Figure
8.

The marking of a judgement in an AdaptiveND proof signals that the marked
judgement cannot be used as a premise for any other rule. In that sense, the
marking of a judgement expresses a dead-end in a proof-tree. To preserve infor-
mation about retracted judgements within a proof, and to facilitate the prac-
tice of cutting and pasting proofs together without having to renumber the
judgements, we extend the standard formalisation of proofs as trees, and define
adaptive proofs as sequences of proof-trees.

Definition 5 (Proof Tree). A well-formed AdaptiveND tree is a finite proof tree
obtained by deriving AdaptiveND judgements from other AdaptiveND judgements
where

1. the top leaves of the tree are instances of the Prem rule and

2. each next step is obtained by applying one of the minimalND proof rules or
one of the AdaptiveND proof rules.

Definition 6 (Adaptive Proof). An AdaptiveND proof is a sequence (T;)icr of
AdaptiveND trees with each i € I equal to the highest numbered judgement in
T;.

As a notational short-hand, we will sometimes include marked judgements
as unused premises to incorporate dead-ends in a single proof-tree, and include
final judgements of an earlier proof tree as top leaves of a new proof tree.

07 F¢,9 ¢

TOU)) Fone C

Figure 6: Conditional Rule
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Figure 7: Unconditional Rules

The Adaptive strategies developed in the next Section have the aim of estab-
lishing which abnormal formulas can no longer be safely considered as conditions
in the application of the Conditional Rule RC, in turn requiring the retraction
of the previously derived formulas. To this aim, three elements need to be
introduced:

1. minimal disjunctions of formulas of type €, denoted by \/(A)™", with
A CQ

2. the union of (all) abnormalities that occur as a disjunct of some \/(A)™"

derived up to a certain stage from I', denoted by UnRel(T');

3. the set of choice sets of a set of sets Ajp,...,A,, corresponding to all
\/(A;)™" derived up to a certain stage from I', denoted by ®(T").

The rules in Figure 9 establish these three constructions.

Rule MinDab says that a disjunctive formula of the €2 type derived at some
stage s of a derivation can be considered minimal at stage s’ if at no previous
stage t < s’ a shorter one was derived under the same context I". Note that
the superscript min works as an annotation indicating that the A in the first
premise of the MinDab rule satisfies the side condition of the same rule, but it
does not indicate that A™" and A are two different sets.

Rule UnRel says that given minimal disjunctions of abnormalities, each de-
rived according to MinDab at stages s-n up to s-1, the union of (all) such formulas
can be derived at stage s, defined as follows:

Definition 7 (Set of unreliable formulas). UnRel(T') derived at stage s from T
denotes the conjunction of the union of some Ay, ..., A, derived from T" up to
stage s-1 according to MinDab.

Keep in mind that UnRel(T") denotes a conjunction and not a set of formulae.
As such, when it occurs on the right-hand side of the turnstile it should not be
read as a disjunction of abnormalities (which is the intended reading for a set
A of abnormalities in that position). The side condition for the Rule UnRel
ensures that each A" used as a premise is still minimal at stage s-1. Contrary
to how unreliable formulae at a stage are defined in standard adaptive proofs,
this rule does not require that all minimal disjunctions of abnormalities derived

10
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Figure 9: Deriving Minimal Disjunctions of Abnormalities, Unreliable Formulae,
and Minimal Choice Sets of Abnormalities

at a given stage need to be used as its premises, but the side-condition of this
rule does refer to all disjunctions of abnormalities that occur at earlier stages
of the proof.

Choice sets provide selections of abnormalities that might turn out to be
true at a stage s, defined as follows:

Definition 8 (Choice set of {Aq1,...,A,}). ®(T) derived at stage s from T de-
notes the set of choice sets of some {A1,...,A,} derived from T up to stage s-1

MINCHOICE

according to MinDab. We denote each such choice set with choice;({Aq, ..., Ay}).

The choice set of an empty set of minimal disjunction of abnormalities is
empty. This notion of choice set is procedurally implemented by the rule Choice
in Figure 9, where again each premise must be intended as the conclusion of a
MinDab rule and the side condition ensures that each A" used as a premise
is still minimal at stage s-1. Here too, it is not required to use all minimal A’s
that are already derived as premises. The Rule MinChoice allows the selection
of a minimal choice set out of ®(I'), denoted by choice;({A1, ..., A, })™".

The derivation of a minimal disjunction of abnormalities and the formation
of their union and choice set is a process that occurs along with the development
of the proof-tree, and the marking procedure depends on the derivation of these
types of judgements. Unlike for the standard definitions of unreliable formulae
and minimal choice-sets, the conclusions of the rules UNREL and CHOICE do
not necessarily coincide with the minimal choice-sets and sets of unreliable for-
mulae as they are used in the standard proof-format. The following propositions

12



guarantee that this does not lead to further complications: if an abnormality
occurs in UnRel(T"), but is not unreliable according to ', then UnRel(T") was de-
rived from a A; that isn’t minimal; similarly, if an abnormality occurs in some
choice;({A1,...,A,})™™, but isn’t verified by a minimally abnormal model,
then it was derived from a A; that isn’t minimal. The key to these results is
that the side-conditions that apply to the premises of UNREL and CHOICE refer
to all disjunctions of abnormalities that occur unconditionally in the proof, and
not only to those used as premises.

Proposition 1. IfT;- ks UnRel(T") occurs in a proof and A is the set of all A™"
derived up to stage s that are minimal at s, then each conjunct of UnRel(T") is

in J(A).

Proof. Immediate from the fact that if I';- by (1) A™" is a premise used
to derive T'; - - UnRel(T) then (i) AT € A, and (ii) A" is minimal at stage
s—1. O

Proposition 2. IfT';- s ®(T") occurs in a proof and A is the set of all A™"
derived up to stage s that are minimal at s, then each choice-set in ®(T') is a
subset of a choice-set from A.

Proof. If Ty - by, 4 (;_1y) A"™ is a premise used to derive I';- k¢ ®(I), adding
a premise [';- g, ;1) A" for some A; that was already derived at some
stage s — (n + m) would not lead to the violation of the side-condition for
the application of CHOICE. Let T';- ks ®'(T") be the conclusion obtained by
adding this premise, and note that each choice-set in ®'(T") can be obtained by
extending a choice-set from ®(I") with some member of A;. O

Proposition 3. If T';- b choicei({A1, ..., A,})™" is derived from T';- Fs_1
®(T) and A is the set of all A™™ derived up to stage s that are still minimal at s,
then choice;({A1, ..., Ay )™M is a subset of some minimal choice-set from A, and
for each minimal choice-set choicej({A1,..., Ay, ..., Apim })™™ from A there
is a choicex({A1, ..., A, })™" € ®(T) such that choicex({Aq,...,A,})™" C
choicej({Al, ey An, ey Aner})"Lin.

Proof. Assume T'; - I choicei({A1, ..., A, })™™ is obtained by an application of
MINCHOICE to a judgement with ®(T") as a consequent. Let A, 1 be minimal at
stage s, and assume that ®'(T") is derivable from judgements with Ay, ... A, as
consequent. By Proposition 2 we know that choice;({Aq, ..., A, })™"™ is a subset
of one or more members of ®'(T"). Let 11, ..., ¥, be an enumeration of the mem-
bers of A,1. (i) If some ¥; € A, 41 is a member of choice;i({Ag, ..., A, })™™",
then the latter is also minimal in ®'(T"). (ii) If no ¢; € Ap41 is a member of
choice;({A1, ..., A, })™", then, because A, 1 is not included in any A;, any
choice;({A1, ..., Ap})™™ U {¢;} must be minimal in ®'(T"). O

3.1 A simple example

We present here a simple derivation in AdaptiveND, where I' = {(-pVq),p, (p —
), (p = —p)}:

13
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In the above derivation, all judgements up to stage 4 are obtained by minimalND

RC

rules. Stage 5 derives a formula on condition of the abnormality (p A —p) being
false. This corresponds to changing a multiple conclusion judgement at stage
4 into a single conclusion one at stage 5 by turning one of the conclusions into
an adaptive condition. This move is justified by the syntactical form of the
abnormality, stated as the side condition (p A —p) € Q for the application of the
RC rule.

4 Adaptive Proofs and Rules for Marking

In standard Adaptive Logics, one introduces strategies to tell which applica-
tions of the RC rule should be retracted in view of the Minimal Disjunction
of Abnormalities that have been derived. Adaptive Logics come with marking
mechanisms that allow such retractions, according to different possible strate-
gies. The two ‘standard’ strategies and their rationale are [6]:

e Reliability: once UnRel(T") is derived at some stage s, every formula 1)
derived at some prior stage s’ on the assumption that some ¢ € UnRel(T")
is false, needs to be retracted;

e Minimal Abnormality: once ®(T") is derived at some stage s, a formula v
is marked if either (i) it is derived at some prior stage s’ on an assumption
© which intersects with every minimal choice-set choice;({4A;,...,A,}) €
®(I'); or (ii) for some minimal choice-set choicei({A;,...,Ay}) € (),
there is no derivation of 1) on another condition ©’, such that the inter-
section of © with choicej({A;,...,A,}) is empty.

4.1 Marking Rule for Reliability

Reliability is the adaptive strategy that takes the most cautious interpretation
of abnormalities: any formula that in view of the premises might behave abnor-
mally, because it occurs in a minimal disjunction of abnormalities, is deemed
unreliable and should not be assumed to behave normally. This means in prac-
tice that a formula v derived on the assumption that ¢ behaves normally will
be ‘marked’ as soon as the unreliability of ¢ is established. The result of this
marking is that 1 should no longer be treated as a formula that was derived.

In Figure 10, we define a new rule ®R that depends on the derivation of a
set of unreliable formulas.

14



[0 k.9  T;-kg UnRel(l)  ©N UnRel(T) # 0

xR
T e~ l_max(s,s')+1®R 1/)

Figure 10: Marking for Reliability

4.2 Marking Rules for Minimal Abnormality

Minimal abnormality is the marking strategy that reflects the following condi-
tion: a formula ¢ derived on a condition ©~ is retracted if, either (i) every
minimal choice-set includes some condition in O, or (ii) there is a minimal
choice-set choice;({A1,...,A,}) such that every derivation of 1) is based on a
condition that is shown to be violated by choice;({Aq, ..., Ay}). We offer rules
for this strategy in Figure 11.

F; e~ }_s 'l/} F; ! '_s’ (I)(F) (T)

07 Fhax(ss)+1ama ¥ =
such that for each choice;({Aq, ..., A,})™" € ®(T):
O N choicei({Ay, ..., A, )™ £ (1)
00 kv ... T30, ket Ty ke choici({Ar, ..., A D™ ()
[0 Frax(stn, s)+1mma P
such that for each ©; € (©4,...,0,) we have:
©; N choicei({A1, ..., A )™ £ (1)
and there is no © ¢ {©4,...,0,} for which
[0 Fies . (1)

Figure 11: Marking for Minimal Abnormality

The first marking rule ®M reflects the following condition: if a formula 1 is
derived at stage s under an adaptive condition ¢ which is part of all minimal
choice-sets in ®(T") at stage s, then at the next stage the formula 1 can be
retracted.

The second marking rule KM2 reflects the following condition: if a formula
1 is derived always under an adaptive condition that intersects with the same
minimal choice-set in ®(T"), then at the next stage the formula 1) can be re-
tracted. Here the adaptive condition of the conclusion should be intended as
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saying that the retraction applies to all stages where the derivation of ¢ was
obtained under one of the listed conditions.

II

’
— — _ CHOICE I
L Fan (1) MINCHOICE .
07 H ;- Fepo choice; ({A1, ..., A ™™ .. : © Nchoice; # 0 o 1y
07 Fspntiama ¥
I
S Yoot CHOICE
B B > c _ MINCHOICE
;07 kst 0, bFon ¥ T+ beqq choice; ({Aq, ..., A, D)™™ ©1,...,0, Nchoice; # 0

b g2

507 Fmax(stn, s +1)+1mMA ¥

Figure 12: Marking-trees for Minimal Abnormality

In Figure 12 we illustrate with two trees the intended use of the marking-rules
for Minimal Abnormality. In the first tree, it is shown how the derivation of a
formula 1) under an adaptive condition © is followed by a series of derivations I1
for all possible choice sets of minimally abnormal formulas; if the side condition
that requires © to occur in each such set holds, then marking can be applied. In
the second (dual) tree, it is shown how a formula ¢ derived under an adaptive
condition © is marked if either (i) no alternative conditional derivation of
occurs in the proof, or (ii) every alternative conditional derivation of ¢ that
occurs in the proof depends on a condition ©’ that intersects with the same
minimal choice-set choice; ({A1, ..., A, })™".

4.3 Extending the example

Let us now extend the example from Section 3.1 with a new branch to illustrate
the derivation step obtained by applying the Marking Rule ®R. Let D be the
derivation from our initial example that ended with the derivation at stage 5 of
¢ in context I' and with (p A —p)~ as a condition. We extend it now as follows:

Iiobgp Iyobrp——p
— B
D Iy g —p It p .
AN
Li(pA—p)” Fsq L;-FiopA-p
;- Fiigr ¢

xR

In this derivation a new abnormality is derived at stage 10, namely the
same that is assumed to be false at stage 5. Note that we avoid the superflous
inference step from the formula (p A —p) to the corresponding singleton set of
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unreliable formulas; moreover, it is essential that this abnormality be derived
under an empty condition, i.e. under context I';-, as explained above for the
required strict condition on WL. A difference between standard (i.e. linear)
adaptive proofs and the proposed tree-style Natural Deduction derivation proof
format becomes evident here. In the former, a marking rule implies the need to
proceed backwards on the derivation, to mark all lines that were derived on an
assumption that is shown to be violated and thus can no longer be considered
derived. In the latter, on the other hand, there is no need to remove formulas
because the result obtained at stage 5 cannot be reused in an extension of
this proof. Instead a new derivation step is performed (stage 11), where the
conclusion ¢ is marked. Moreover, if we were ever to get again I'; (pA—p)~ F; ¢, it
would be obtained as the result of some new derivation I’ and be the conclusion
at some stage i > 11, where an additional step would again be required to mark
it at a later stage.

4.4 An example with \/(A™")-selection

The previous example is rather simple, in that it shows a formula that is first
derived under an adaptive condition (referring to an abnormal formula assumed
to be false), and then retracted after that condition is validated again.

Let us consider now a slightly more complex example. We want to show a
situation in which a disjunction of two abnormalities can be derived: accord-
ingly, there might be more than one formula to be marked. Let us start with a
premise set I' = {(p VvV r),—p, (p V ¢), ~q, (—p — ¢)}. Now consider the following
derivation, dubbed D:

— PREM
I;-k1(pVvr)
VE —  PREM
Ly Fop,r Iy k3 —p K
Ls-bq (pA—p),r (pA-p) €

_ RC
Li(pA-p)” bsr

At stage 4 a disjunction of an abnormality with r is derived, and by RC at
stage 6 the formula r is derived alone, assuming the relevant abnormality to be
false. Consider now a second derivation, dubbed DD :

— _ PREM
;- F6 (PVa) VE —— PREM
T:-F7p.q I tg —p AL .
I o (pA-p),q ‘ L F02g o
Is-F ((p A —p), (g A —g)) ™" UNREL

T;- b1z UnRel({p A —p,q A —q})

17



Here the abnormality (p A —p) that was previously assumed to be false is
unconditionally derived in disjunctive form with a new abnormality (g A —¢q) at
stage 11, where the latter is obtained by Al from stages 7-9. If we join now the
two branches D, to form E, we can apply the marking-rule (where UnRel(T")

is the set {(p A —p), (¢ A —q)}):

D D’
Ti(pA-p)~ Fsr Tk UnRel({pA-p,gA—q})  (pA-p) €| JIAD))
L;(pA=p)” Fizgr 7

At stage 13 the formula r is no longer derived, because its adaptive condition
is in the set of unreliable formulas derived at stage 12. Now we can provide a
further extension of this derivation dubbed D":

—  PREM —  PREM
I 14 —p Iy b5 p—gq o PREM

I';-Fie g ;-7 —g
I Fig (g A —q)

Al

D" derives a single abnormality at stage 18, for which, as before, we skip
the redundant step of deriving the singleton set of unreliable formulas. This
also means that if we obtain a copy of derivation ), where each step is re-
numbered consecutively, and join it to D" and E, it is possible to deduce r anew
with (p A —p) as its adaptive condition and accordingly leave this judgement
unmarked at stage 20:

E D" D
Ti(pA—p)” Fizgr T ;- Fig (g A —g)™ ™ [y (pA—p),r
T;(pA—p)~ boor

RC*

where x is the side condition that (p A —p) € Q.

18
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4.5 Another Example

In the following example, the abnormalities are even more connected. For the
sake of brevity, we do not derive a set of unreliable formulas when there is a
single minimal disjunction of abnormalities. Let

I'={pVq,q,
(gA=q)V (rA=r),(gA—q) = (r A-r),
(@N=q) V(s A=s),(gA—g) = (sA—s)}

Consider first the derivation D:

PREM

Lt (pva) VE —— PREM
;- Fap,g Iy k3 g AL
Iy-Fa (@A —q),p (gN—q) €Q

[i(gA—q)” Fsp

Which we extend as follows to form E:

RC

PREM

D ke (gA—q)V (r A—r) VE
T;(gA—q)" Fsp ;-7 (g A =q), (r A =)™ (gA—q) € A™"
5 (gA—q)” Fegr P

xR

We then construct F to show that a shorter disjunction of abnormalities can
be derived:

PREM
T;-Fo (gA—q)V (rA-r)

VE
T;-Fio (@A —q), (r A ) ;- 11 (@A —q) = (r A )
L bk (r A=), (r A-r)
I bFisr A

PREM
—E

CRrR

As in the previous example, we put these branches together (and re-use a
renumbered copy of D) to obtain G and re-derive p on condition (g A —¢q)~:

E F D
I (gA—q)” Feer D ;- b3 (1 A )™ Ik (gA—q),p
Li(gA—q)” Fisp

RC*
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But consider then the following variant of E, denoted by E*:

PREM

G I |_16 (q A —\q) V (5 A —\5) VE
L (gn =) " Fisp ;17 (g A —g), (s A—s))™" (g A —g) € A™ =R
(g A —q)” Fiszr P

and then a variant F* of F:

PREM
T 10 (gA—q) V (s A —s)
VE PREM
T;-bao (g A—q), (s A —s) T;-Fo1 (@A —g) = (s A —s) B
;- b (s A—s), (s A—s)
Cr
I';-bFoz s A s
which can once more be used to re-derive p:
F F*
E* ;- b3 (r A—r) T o3 (s A ) D
— UNREL
T;(gA—q)” Fisgr P T;- o4 UnRel({r A —r, s A —s}) T;-F1g (A —q),p

Ii(gA—q)” Fasp

4.6 An Example Based on Minimal Abnormality

Let ' ={pVr,pVgqqVr —p, —q}, and consider first a derivation A that ends
with an application of RC.

— PREM
I;-FipVvr
v E — PREM
;- p,r I k3 —p
- FapA-p,r
Li(pA—-p)” ks

A1

RC

Next, let B be the following derivation, where  refers to the application of A
I followed by the application of MINDAB, and x refers to the application of
CHOICE followed by the application of MINCHOICE to single out p A —p from
the only minimal disjunction of abnormalities:

20
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PREM

I FepV
ljp# 1 VE o PREM
) 70,9 ) 8 P Al PREM
Ii-FopA-pg I';- 10 7q .
Iy Fu (pA—pg A g™ X
I'; - 12 choicer ({{p A =p, ¢ A =g} })™™"
Combining both with an application of M2 gives us the derivation C:
A RC B MiINC
: . INCHOICE
C;(pA—-p)” ks T; - F12 choice; ({{p A —p, g A —q}})™" M2

Ti(pA—p)” Fisgma T

The side-condition for the application of this marking-rule is satisfied because
no other conditional derivation of r occurs earlier in the proof, and a fortiori, no
deduction of  on a condition that does not intersect with the choice-set p A =p
has been given.

Derivation ID now provides a proof of r that relies on a different condition:

PREM

F; . "14 q Vr
v E — PREM
I k15 q,7 I F16 g

I-bFi7gA—g,r
[i(@gNA—q)” Fisr

Al

RC

At this point, we can see that neither of the following attempts to mark con-
ditional deductions of r using the minimal abnormality marking-rule complies
with the side-conditions for ®M?2:

A’ B’
RC - —— MINCHOICE
T;(pA—p)” ks ;- k¢ choices ({{p A —p, ¢ A —q}})
5 BM2
]D) BH
— RC - — MINCHOICE
T;(gN—q)” Fig7 I'; - ¢ choice({{p A =p,q A =q}} A2
?

For the first attempt, it is the presence of judgement 18 elsewhere in the proof
that shows that a derivation exists that does not depend on the underivability
of p A =p. For the second attempt, it is the presence of judgement 5 that
(notwithstanding the marked judgement 12!) signals that a derivation of r that
does not depend on the underivability of ¢ A —q exists.
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4.7 Reconstruction of linear adaptive proofs

Before we consider the question of final derivability, which is needed to relate
what is provable in dynamic proofs to a semantic consequence relation, we first
show that every proof in AdaptiveND can, with the help of the numbering of the
judgements, be mapped onto an (albeit somewhat redundant) adaptive proof in
a linear format. This relates what can be derived at a stage in an AdaptiveND-
proof to what can be derived at a stage in a linear proof.

We illustrate the procedure by reconstructing the linear proof that corre-
sponds to the example from Sections 3.1 and 4.3:

(1) —-pVg Prem 0
@) Viwg  VEQ) 0
3) »p Prem 0
4 V{pA-pap AL(2,3) D
(5) a RC, (4) {r} =Y
6) p Prem 0
(7 p—>-p Prem 0
®) -p SE (6,7 0
9 »p Prem 0
(10) pA-p AL (8,9) 0

In this proof, the application of VE on line (2) is based on the representation of
the disjunctive comma by a ‘super-imposed’ classical disjunction (a device that
effectively plays the same role in adaptive logic, see [16, §2.2, 2.7]), whereas
the application of AI is valid in virtue of the CLulN-validity of —p V ¢,p F
(p A —p) V q which warrants the application of the unconditional rule (with
empty conditions). The final marking is not added as a separate line, but is
instead added in the fifth place on line 5 and labelled with the number of the
line or stage at which the relevant abnormality was derived.

As illustrated in a second example based on the proof from §4.4, there is
no guarantee that the translation of an AdaptiveND proof into a linear adaptive
proof will contain all the markings required by the latter.

(1) pvr Prem 0
(2)  Vipr} VE, (1) 0
(3) -p Prem 0
(4) \/{p A —p, r} N (27 3) 0
(5) RC, (4) {r} ®”
(6) pVyg Prem 0
(1) V(pa) VE, (6) 0
(8) - Prem 0
9 VeA-paq) AL (7,8) 0
(10) —q Prem 0
(11) \/(p/\—'p,q/\—'q) N, (97 10) 0

Indeed, the above proof is a straightforward translation of the tree-form proof up
to stage 11, but the marking of line 5, which should be added to the linear proof

22



once \/(p A —p, g A —q) is derived, cannot be added by a mechanical translation
procedure. This is because in the standard proof-format marking is governed
by a definition, which simply stipulates when a line is marked, whereas in Adap-
tiveND marking is governed by rules and therefore requires the execution of
additional inferential steps.! To show that proofs in AdaptiveND correctly cap-
ture the adaptive dynamics, we will therefore have to show that such “missing
markings” can always be obtained by a further extension of a proof.

In the next section we complete our system with the required meta-theoretical
analysis needed to define derivability at stage and final derivability.

5 Derivability

In the example from the previous section we have illustrated how the marking
condition establishes a dynamic derivability relation, which allows to derive
formulas and retract them. Whenever a certain formula is derived on some
¢ € A™" adaptive condition, it might still be marked afterwards. Consequently,
a judgement of the form I'; ©~ k¢ ¢ only expresses what is derived at a stage.
This gives us the notion of derivability at a stage:

Definition 9 (Derivability at stage). A formula ¢ is derived at stage s iff
;0™ kg 1 where s’ <s and it is not the case that T';- Fgx 1 for some
s’ <s" <s.

A more stable notion of derivability, called final derivability, holds when
marking is no longer possible. This notion is customarily defined with a refer-
ence to possible extensions of a proof.? By only taking finite premise-sets into
consideration, we can pursue a more explicit characterisation of final derivabil-
ity.

To this aim, one requires that the stage s at which a formula 1 is derived
remains unmarked in all the extensions of the derivation tree which can be ob-
tained by using all relevant abnormalities as adaptive conditions. This relevance
criterion is essential if one wants to guarantee finite surveyability of the proof
tree to establish whether a formula is never marked (again). We define therefore
a set of abnormalities relevant to T'. To do so, we first identify the union set of
all subformulas of the premise set I':

Definition 10 (Subformulas of the premise set). Sf(I') = Uyep{t) | ¥ is @
subformula of ¢}.

From Sf(I') we then construe all the possible abnormalities that can be
obtained from its members:

Definition 11 (Abnormalities relevant to the premise set). Q') = {Yy A €
Q| est)}.

ISee also footnote 10 of [2] for a discussion of this distinction.

2«A is finally derived from I" on line i of a proof at stage s iff (i) A is the second element
of line 4, (ii) line ¢ is not marked at stage s, and (iii) every extension of the proof in which
line ¢ is marked may be further extended in such a way that line ¢ is unmarked.” [7, 229]
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For AdaptiveND, CLulN", and CLulN™ the requirement that all ¥y A —
should be in € is trivially satisfied. This condition becomes mandatory when €
is based on a restricted logical form; e.g. when abnormalities are contradictions
of the form ¢ A —p with ¢ atomic. In that case, our definition of Q(T) is
co-extensive with the more basic {¢p A =) | ¢ € At(T')}.

Theorem 2. If \/(A) is a minimal disjunction of abnormalities derivable from
T, then A C Q(T).

Proof. We consider the possible ways of deriving a minimal disjunction of ab-
normalities by examining the structure of the proof-rules of minimalND.

1. Applying (VI) (or WR) can never result in a minimal disjunction of ab-
normalities. This excludes all proof-rules that can be used to deduce a
judgement with a formula on the right that isn’t yet a formula or sub-
formula in one of the judgements it relies on.

2. A formula of the form ¢ A —¢ can be derived on the right of the turn-style
if it is already a sub-formula of some premise, or the result of (AI).

3. If ¢ A —¢ is the result of (AI), each of its conjuncts should be derivable.
We focus on the proof-paths to formulae of the form —¢, of which there
are four:

(a) —¢ is a premise;

(b) —¢ can be obtained by (AE) from some —¢ A ¢ on the right;
(¢) —¢ can be obtained by (—E) from some 1) — —¢ on the right;
(d) —¢ can be obtained by (—1I) from ¢ on the left.

Cases (a-c) imply that —¢ should be a positive part of a previously de-
rived formula on the right, and hence ¢ should be a negative part of
that formula. By induction over the length of proofs (with the rule
PREM as the base-case), these three cases can be retraced to ¢ being
a negative part of some premise.

Case (d) requires the presence or deduction of some ¢ on the left, either
because the left-hand side is of the form I', ¢ and thus the result of
applying (WL), or because it is of the form I with ¢ € T'. In each
of these cases, this can never lead to a judgement where (i) the left-
side consists only of the premise-set, and (ii) the right-side has no
more formulae than before the application of (—I). This implies that
case (d) cannot lead to the deduction of a minimal disjunction of
abnormalities.

Consequently, for every abnormality ¢ A —¢ that occurs in a minimal disjunction
of abnormalities, we can show that ¢ must occur as the negative part of some
premise. A fortiori, this means that only abnormalities that can be formed from
a member of Q(T") can occur in a minimal disjunction of abnormalities. O

The focus on positive and negative parts of formulae goes back to [15], and
was previously used for the development of goal-directed proof-strategies for
adaptive logics [8]. The fact that we should pay attention to all negative parts
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of the premises should also be obvious in view of the semantics for CLulN, as the
truth-value of negative formulae does not need to depend on the truth-values of
its sub-formulae.

Theorem 2 helps us to characterise finite proof-trees to decide whether a
formula is finally derived by identifying the abnormalities derivable in view of
the syntactical form of the premises. But it can also be seen as a CLulN-
specific variant of the Derivability Adjustment Theorem from [7]. This result
can be stated in multiple-conclusion form as follows:

I'kuyLL ¢ iff T Frpy, ¢, A for some finite A C

Or yet it can be seen as a CLuN-alternative of a result from [9] that relates LP Y,
the multiple-conclusion extension of LP, and CPL™, the multiple-conclusion
extension of classical logic:

X Eépr YViff X Efp Y U(X) (LP/CPL)

with «(X) ={pA-p:pe At(X)}.

Here, we do not use such connections to bridge different approaches to clas-
sical recapture, but instead rely on it to introduce the notion of a complete
proof-tree with respect to derivable relevant disjunction of abnormalities:

Definition 12 (Completeness relative to relevant abnormalities). Let P be an
AdaptiveND proof. We say that P is complete relative to Q(T) at stage s if for
every derivable \/(A™™) with A C Q(T) there is an s’ <s such that T;- kg

Definition 13 (Completeness relative to marking). Let P be an AdaptiveND
proof. We say that P is complete relative to marking iff

Rel for every I'; 0~ b5 ¢ occurring in a tree T; € P, if P can be extended so
that it includes a judgement T';- g UnRel(T) with |JA(T) N O # (), then
there is a tree Ty~; € P that ends with T'; ©~ g ¢.

MinAbl for every I'; ©~ k¢ ¢, if every derivable choice;({Aq,...,A,}) inter-
sects with ©, then there is a tree Ti~; € P that ends with I'; 0~ Fx ¢.

MinAb2 for every I'; 0~ bs ¢, if for every other derivable T';©'~ 5 ¢, some
derivable choice;({Aq,...,A,}) intersects with each ©,...,0’, then there
is a tree Ty~; € P that ends with I'; 0~ kyx ¢.

We can now formulate our notion of final derivability:

Definition 14 (Final Derivability). A formula ¢ is finally derived T;0~ F, 9
iff ;07 ks ¢ occurs in an abnormality and marking complete proof P, where
;07 Fog ¥ does not occur for any s’ > s.

Theorem 3. I';©~ +, ¥ in AdaptiveND if and only if there is a final derivation
of ¥ from I in a standard linear adaptive proof.
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Proof. — By assumption % is finally derived, therefore there is an abnormal-
ity and marking complete proof P in which it is derived. Then P, by
definition, contains unconditional judgements for every deducible minimal
disjunction of abnormalities in Q(T") and % is not contained in any of those.
Now consider the translation P of P in a linear adaptive proof: the same
minimal disjunctions of abnormalities as in P are also unconditionally
derived in P. By Theorem 2, this implies that all minimal disjunctions
of abnormalities are unconditionally derived in P, and further extensions
of the proof cannot lead to additional unconditionally derived minimal
disjunctions of abnormalities. Because P contains all possible markings,
every formula which is marked in P will be marked in P, and P will
therefore be in accordance with the standard marking definitions. As 1
is not in any adaptive conditions of P which induces a marking, it will
be derived in P as well. Moreover, 1 will be finally derived in P because
further extensions would not lead to newly derived minimal disjunctions
of abnormalities, and would not lead to additional marking either.

< Assume that v is finally derived in some linear adaptive proof P; then

for CluN® T Fejan ¥V ¢ with ¢ U(I') = (). By Theorem 1 there is a provable
AdaptiveND judgement I';- ¢ v, ¢. By applying RC, we obtain a
judgement I'; ¢~ kg1 ¥. If at some later stage s’ an abnormality
complete proof is obtained, any | JA(T") derived thereafter will, by
Proposition 1 be a sub-set of U(I"). Consequently, any application
of ®R to a judgement with condition ¢~ would from that point also
require ¢ € |JA(T). Since this would contradict our assumption that
¢ NU(T) # B, no such marking can be applied.

for CluN™ T Folun ¥ V O, with © C Q(F) and
1. either for every choicej({Aq,...,A,}) € ®(T") we have

O N choicei({A1,...,A,}) =0.

By Theorem 1 there is a provable AdaptiveND judgement T';- I
1,0, and by repeated applications of RC, we obtain the judge-
ment ['; O~ g1 . Let t > s+m be a stage at which this proof
is marking and abnormality-incomplete, and assume, for reduc-
tio that it ends with a judgement I'; ©~ Figma . Consequently,
this judgement must occur as the final node of a marking-tree
for minimal abnormality:

II
o 7,y Cuoice
T, te1 @ (T) —
MINCHOICE .

;07 ks ;- oo choiceg ({A], ..., Al }ymin ... : © N choice; # 0
07 Figma ¥

&M
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To complete our argument, we rely on the fact that every choice-
set derivable from ®'(T") is used as a premise for the applica-
tion of the marking-rule, but we do not need to assume that
®'(T") is identical to ®(T'). Because ®'(T') is derived at a stage
of the proof that is already abnormality-complete, we know that
{A],..., AL} C {Aq,...,A,} (each A} is equal to some A;,
but not vice-versa). Proposition 3 then guarantees that each
choicej({A1, ..., Ay}) is a superset of some choice;({Af, ..., AlL}).
Consequently, since the marking at stage ¢ required that © N
choice;({A], ..., Al }) # 0 for each choice-set in ®'(T"), it should
also hold that © N choice;({A1,...,A,}) # 0 for each choice-set
in ®(T'), which contradicts our initial assumption.

2. or for every choicej({A1,...,A,}) € ®(T), if choicei({A1, ..., AN
O # (), there is a ©' such that I’ Fcpun ¥ V O with

O’ Nchoicei({A1, ..., Ay}) = 0.

By Theorem 1 there are provable AdaptiveND judgements I'; -
1,0 and T'; - k¢ 1, ©' for © and each such ©’. As in the previous
case, by repeated applications of RC we can derive corresponding
[507 Foim ¥ and T;0'~ Fgo . Let ¢ be a stage at which
this proof is extended to an abnormality and marking complete
proof, and assume, for reductio, that it ends with a judgement
I'; ©7 Figma ¥. Consequently, this judgement must occur as the
final node of a marking-tree for minimal abnormality:

0
T, Fe &(T)
T0  betp ... T30 ket T Feoq choice({AL, .. A ™ "(@...0) N choice; # B
07 Fgma ¥

CHOICE

RM

But then, by the same reasoning as above, Proposition 3 en-
tails that if choice;({AY], ..., Al }) intersects with every condition
0,...,0’, it must also intersect with some choice;({A1,...,A,}) €
®(T'), which contradicts our initial assumption.

Therefore, I'; ©~ Figma ¥ cannot occur at any stage ¢ of a proof that
is abnormality-complete at .

O

6 Concluding remarks

To conclude, we would like to highlight certain distinctive features of the pro-
posed calculus, and briefly discuss how these features can be used to reconsider

27



the question of classical recapture. As we see it, the defeasible reasoning-forms
formalised in our AdaptiveND system have three primary virtues:

1. they are formulated in a tree-format that forces one to state all information
used in an inference-step explicitly, and this restricts the reliance on global
features of a proof to a minimum (e.g. when checking that a disjunction
of abnormalities is minimal);

2. the multiple-conclusion format leads to a transparent connection between
the restricted inference-rules that are valid in minimalND (i.e. the lower-
limit-logic) and their use as a premise of the conditional rule;

3. the explicit individuation of abnormalities as a sub-type of the well-formed
formulae.

The explicit connection between multiple-conclusions and defeasible inferences
brings a recent disagreement over the problem of classical recapture in the logic
LP into focus.® In several papers, Graham Priest has explicitly endorsed the
adaptive approach to classical recapture. To that effect, he has proposed his own
minimally inconsistent LP: an adaptive logic based on a stronger paraconsis-
tent logic (but without a detachable implication) and the minimal abnormality
strategy [12]. This approach has been criticised by JC Beall, another prominent
defender of the logic LP, on the ground that any all-purpose logic should at any
cost prevent one to step from truth to falsehood [10]. This is a task that cannot
in general be fulfilled by an adaptive logic, and indeed a task we shouldn’t im-
pute on adaptive logics in the first place [14]. By contrast, Beall’s preferred take
on classical recapture is that it should be handled with extra-logical means. The
multiple-conclusion extensions of classical logic and LP already mentioned in
the previous section provide formalisms in which this idea can be made precise,
since (LP/CPL) can be seen as a minimalist expression of how paraconsistent
logics like LP incorporate classical logic in a restricted form. Given the cen-
tral role of similar multiple-conclusion judgements in AdaptiveND, results like
(LP/CPL) should really be understood as agnostic between the different strate-
gies for classical recapture. Indeed, whereas Beall advocates the view that LPT
only presents us with logically viable options, these same options work as the
motor behind any defeasible inference mechanism that allows one to favour one
of them in the first place. Presentations of defeasible approaches to classical re-
capture based on the selection of minimally abnormal models bypass references
to logical options: but their use in dynamic proofs relies implicitly or explicitly
on the individuation of logical options that conform to a particular logical form.
When adaptive logics are formulated according to the standard format, this
type of connection is already made visible (Priest’s minimally inconsistent LP
is not formulated in this generic format) through the Derivability Adjustment
Theorem mentioned in the previous section. AdaptiveND makes this connection
even more explicit by formulating its conditional rule with a multiple-conclusion
judgement as a premise, and by enforcing the condition that a logical option
must have a particular logical form to be moved from the right-hand side where

3See [1, 18ff] for a more detailed reconstruction of this debate.
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it is a logical possibility to the left-hand side where it is used as a negative
condition.

The formal approach taken in the development of AdaptiveND signals an-
other crucial departure from the terms in which the Priest/Beall debate is car-
ried out, namely a departure concerning the individuation of abnormalities.
Within the adaptive logic tradition, abnormalities are understood as formulae
of a specific logical form, and the abnormality of models (e.g. how inconsis-
tent they are) is measured relative to the abnormal formulas they verify. When
compared to the road taken by minimally inconsistent LP, this has certain ad-
vantages (see [5] for a diagnosis of this problem in the first-order case). The
same syntactic approach to abnormalities is integrated in AdaptiveND through
the identification of a class of formulae of type 2 and the need to state member-
ship of € when the conditional rule is applied. This approach is more general
in the sense that it doesn’t have to appeal to semantic concepts like gluts in
its formulation, and it can explain how we step from logical options to defea-
sible inferences by only taking into account the logical form of the premises at
hand. From a proof-theoretic viewpoint, this could be seen as a more explicit
approach, whereas from the standpoint of the broader adaptive logic programme
it is definitely more flexible.
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