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Abstract. We consider a finite dimensional kG-module V of a p-group G over

a field k of characteristic p. We describe a generating set for the corresponding
Hilbert Ideal. In case G is cyclic this yields that the algebra k[V ]G of coinvari-

ants is a free module over its subalgebra generated by kG-module generators
of V ∗. This subalgebra is a quotient of a polynomial ring by pure powers of

its variables. The coinvariant ring was known to have this property only when

G was cyclic of prime order, [8]. In addition, we show that if G is the Klein 4-
group and V does not contain an indecomposable summand isomorphic to the

regular module, then the Hilbert Ideal is a complete intersection, extending a

result of the second author and R. J. Shank [10].

1. Introduction

Let k be a field of positive characteristic p and V a finite-dimensional k-vector
space, and G ≤ GL(V ) a finite group. Then the induced action on V ∗ extends to
the symmetric algebra k[V ] := S(V ∗) by the formula σ(f) = f ◦σ−1 for σ ∈ G and
f ∈ k[V ]. The ring of fixed points k[V ]G is called the ring of invariants, and is the
central object of study in invariant theory. Another object which is often studied is
the Hilbert Ideal, H, which is defined to be the ideal of k[V ] generated by invariants
of positive degree, in other words

H = k[V ]G+k[V ].

In this article we study the quotient k[V ]G := k[V ]/H which is called the algebra
of coinvariants. An equivalent definition is k[V ]G := k[V ] ⊗k[V ]G k, which shows

that this object is, in a sense, dual to k[V ]G.
As k[V ]G is a finite-dimensional kG-module, it is generally easier to handle than

the ring of invariants. On the other hand, much information about k[V ]G is encoded
in k[V ]G. For example, Steinberg [13] famously showed that dim(C[V ]G) = |G| if
and only if (G,V ) is a complex reflection group. Combined with the theorem of
Chevalley [2], Shephard and Todd [11], this shows that dim(C[V ]G) = |G| if and
only if C[V ]G is a polynomial ring. Smith [12] later generalized this by showing
that dim(k[V ]G) = |G| if and only if G is a (pseudo)-reflection group, where k is
any field. Further, the polynomial property of C[V ]G is equivalent to the Poincaré
duality property of C[V ]G, by Kane [6] and Steinberg [13].

Before we continue we fix some terminology. Let x0, . . . , xn be a basis for V ∗. We
will say xi is a terminal variable if the vector space spanned by the other variables
is a kG-submodule of V ∗. Note that if G is a p-group, then V G 6= 0 and there
is a choice of a basis for V that contains a fixed point. Then the dual element
corresponding to the fixed point is a terminal variable in the basis consisting of
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dual elements of this basis. For any f ∈ k[V ] we define the norm

NG(f) =
∏

h∈G·f

h.

For every terminal variable xi, we choose a polynomial N(xi) in k[V ]G which, when
viewed as a polynomial in xi is monic of minimal positive degree. While N(xi) is
not unique in general, its degree is well-defined. Since NG(xi) is monic of degree
[G : Gxi

] the degree of N(xi) is bounded above by this number. By “degree of xi”
we understand degree of N(xi) as a polynomial in xi and denote it by deg(xi). We
will show that the degree of a terminal variable is always a p-power.

The algebras of modular coinvariants for cyclic groups of order p were studied by
the second author [8] and previously by the second author and Shank [9]. Note that
there is a choice of basis such that an indecomposable representation of a p-group
is afforded by an upper triangular matrix with 1’s on the diagonal and the bottom
variable is a terminal variable. In [8] the following was proven.

Proposition 1. Let G be a cyclic group of order p and V a kG-module that contains
k + 1 non-trivial summands. Choose a basis x0, x1, . . . , xn in which the variables
x0, x1, . . . , xk are the bottom variables of the respective Jordan blocks, and let A be
the kG-subalgebra of k[V ] generated by xk+1, . . . , xn. Denote the image of xi in
k[V ]G by Xi. Then:

(1) The Hilbert Ideal of k[V ]G is generated by NG(x0), NG(x1), . . . , NG(xk),
and polynomials in A.

(2) k[V ]G has dimension divisible by pk+1.
(3) k[V ]G is free as a module over its subalgebra T generated by X0, X1, . . . , Xk.
(4) T ∼= k[t0, . . . , tk]/(tp0, . . . , t

p
k), where t0, . . . , tk are independent variables.

The goal of this article is to generalize the above, as far as possible, to the case
of all finite p-groups. In particular we show in section two:

Theorem 2. Let G be a finite p-group and V a kG-module that contains k+1 non-
trivial summands. Choose a basis x0, x1, . . . , xn in which the variables x0, x1, . . . , xk
coming from each summand are terminal variables. Let di denote deg(xi) for 0 ≤
i ≤ k. Retain the notation in the proposition above, then:

(1) There is a choice for polynomials N(x0), N(x1), . . . , N(xk) such that the
Hilbert Ideal of k[V ]G is generated by N(x0), N(x1), . . . , N(xk), and poly-
nomials in A.

(2) k[V ]G has dimension divisible by
∏k

i=0 di.

Suppose in addition that, one has di = deg(NG(xi)) for 0 ≤ i ≤ k. Then we have:

(3) k[V ]G is free as a module over its subalgebra T generated by X0, X1, . . . , Xk.

(4) T ∼= k[t0, . . . , tk]/(td0
0 , . . . , t

dk

k ), where t0, . . . , tk are independent variables.

In section three we describe the situation for a p-group, where the complete
intersection property of the Hilbert Ideal corresponding to a module is inherited
from the Hilbert Ideal of the indecomposable summands of the module. The final
section is devoted to applications of our main results to cyclic p-groups and the
Klein 4-group. In turns out that for a cyclic p-group the bottom variables xi of
Jordan blocks satisfy deg(xi) = deg(NG(xi)). Consequently, (3) and (4) above hold
for a cyclic p-group. Additionally for the Klein 4-group we show that the Hilbert
Ideal corresponding to a module is a complete intersection as long as the module
does not contain the regular module as a summand. This generalizes a result of
the second author and Shank [10], where the complete intersection property was
established for indecomposable modules only.
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2. Main Results

Throughout this section, we let G be a finite p-group, k a field of characteristic
p and V a kG-module, which may be decomposable. As trivial summands do not
contribute to the coinvariants, we assume no direct summand of V is trivial. Let
x0, x1, x2, . . . , xn be a basis of V ∗ and assume that x0 is a terminal variable. Then
x1, x2, . . . , xn generate a G-subalgebra which we denote by A. We can define a
non-linear action of (k,+) on k[V ] as follows:

t · x0 = x0 + t;(1)

t · xi = xi for any i > 0.(2)

The terminality of x0 ensures this commutes with the action of G. It is well-
known that any action of the additive group of an infinite field of prime character-
istic is determined by a locally finite iterative higher derivation. This is a family of
k-linear maps ∆i : k[V ]→ k[V ], i ≥ 0 satisfying the following properties:

(1) ∆0 = idk[V ].

(2) For all i > 0 and a, b ∈ k[V ] one has ∆i(ab) =
∑

j+k=i ∆j(a)∆k(b).

(3) For all b ∈ k[V ] there exists i ≥ 0 such that ∆i(b) = 0.

(4) For all i, j one has ∆j ◦∆i =

(
i+ j
j

)
∆i+j .

The equivalence of the group action and the l.f.i.h.d. is given by the formula

(3) t · b =
∑
i≥0

ti∆i(b).

See [14, 3] for more details on l.f.i.h.d.’s.
Let f ∈ k[V ]G be homogeneous of degree d in x0. We write

f = fdx
d
0 + fd−1x

d−1
0 + . . .+ f0,

where fi ∈ A. We have

(4) t · f = fd(x0 + t)d + fd−1(x0 + t)d−1 + . . .+ f0 =
∑
i≥0

ti∆i(f).

That is to say that ∆i(f) is the coefficient of ti in the above expression. As the
action of G commutes with the action of k, we see that ∆i(f) ∈ k[V ]G for all i ≥ 0.

Remark 3. (1) Clearly ∆1 = ∂
∂x0

. So the previous paragraph generalizes [8,

Lemma 1].

(2) Equation (4) gives that ∆j(xi0) =
(
i
j

)
xi−j0 provided i ≥ j. Then, from

Lucas’s theorem [5] on binomial coefficients in characteristic p, we see that

we can think of ∆pj

as “Differentiation by xp
j

0 ”: if the coefficient of pj in
the base p expansion of m is a, then we have

∆pj

(xm0 ) =

{
axm−p

j

0 a > 0;
0 a = 0.

For later use we also note the following consequence: for a homogeneous
f ∈ k[V ], ∆j(f) contains a non-zero constant if and only if the monomial

xj0 appears in f .
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(3) In [4] a G-equivariant map is constructed from polynomials whose x0-degree
is at most epr (0 < e < p) to polynomials whose x0-degree is at most pr.
This map turns out to be a nonzero scalar multiple of ∆(e−1)pr

.

We have the following statement generalizing [8, Lemma 2]:

Lemma 4. Let f ∈ k[V ] be a homogeneous polynomial of degree d in x0. Write

f = fdx
d
0 + fd−1x

d−1
0 + . . .+ f0, where fi ∈ A. Then we have

d∑
i=0

(−1)ixi0∆i(f) = f0.

Proof. Write f = f(x0, x1, x2, . . . , xn). For any t ∈ k we have

t · f = f(t · x0, t · x1, . . . , t · xn) = f(x0 + t, x1, x2, . . . , xn).

As this holds for all t it also holds when t is replaced by (−x0), and hence by

Equation (3) we have
∑d

i=0(−1)ixi0∆i(f) = (−x0) · f = f(0, x1, x2, . . . , xn) = f0 as
required. 2

We also note that the degree of a terminal variable is a p-power.

Lemma 5. For any terminal variable x0 ∈ V ∗, deg(x0) is a power of p.

Proof. Let d denote the degree of x0 and suppose f ∈ k[V ]G is monic as a polyno-
mial in x0 of degree d = drp

r + dr−1p
r−1 + · · ·+ d0 with 0 ≤ di < p and dr 6= 0. If

dj 6= 0 for some j < r, then ∆pj

(f) ∈ k[V ]G has degree d− pj > 0 as a polynomial
in x0 and its leading coefficient is in k. Similarly, if dj = 0 for j < r and dr > 1,

then ∆pr

(f) ∈ k[V ]G has degree d− pr > 0 in x0 and its leading coefficient is in k.
Both cases violate the minimality of d. 2

Lemma 6. Let d denote the degree of x0. Then ∆j(H) ⊆ H for j < d.

Proof. Let f ∈ k[V ]. From the second assertion of Remark 3 we get that ∆j(f)

contains a non-zero constant if and only if the monomial xj0 appears in f . Therefore,
by the minimality of d we have ∆j(k[V ]G+) ⊆ H for j < d. Now the result follows
from property (2) of l.f.i.h.d.’s. 2

From this point on, we adopt the notation of the introduction. This means
that x0, x1, x2, . . . , xk are terminal variables coming from different summands, and
A = k[xk+1, xk+2, . . . , xn]. For each i = 0, . . . , k let di = pri be the degree of xi.
Since setting variables outside of a summand to zero sends invariants to invariants
of the summand, we may also assume that N(xi) depends only on variables that
come from the summand that contains xi. We denote by ∆i the l.f.i.h.d. associated
to xi. We use reverse lexicographic order with xi > xj whenever 0 ≤ i ≤ k and
k + 1 ≤ j ≤ n.

Theorem 7. H is generated by N(x0), . . . , N(xk) and polynomials in A. Moreover,

the lead term ideal of H is generated by xp
r0

0 , xp
r1

1 , . . . , xp
rk

k and monomials in A.

Proof. Let f ∈ k[V ]G. Since N(x0) is monic in x0 we may perform polynomial
division and write f = qN(x0)+r where r has x0-degree< pr0 , and it is easily shown
that q, r ∈ k[V ]G. Then dividing r by N(x1) yields another invariant remainder r′

that has x1-degree < pr1 . Since x0-degree of N(x1) is zero, it follows that x0-degree
of r′ is still < pr0 . Thus, by repeating the process with each terminal variable, and
replacing f with the final remainder we assume that xi-degree of f is < pri for
0 ≤ i ≤ k.

Let i be minimal such that f has nonzero degree d < pri in the terminal variable
xi. We apply Lemma 4 with ∆ = ∆i to see that
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f = f0 − (

d∑
j=1

(−1)jxji∆
j
i (f)),

where f0 is the “constant term” of f , i.e., f0 ∈ k[xi+1, . . . , xn]. So from the previous
lemma we get that f0 ∈ H since d < pri . Moreover, since ∆i decreases xi-degrees
and does not increase degrees in any other variable, the xi-degree of each ∆j

i (f) in
the expression above is strictly less than d, and the xl-degree for every i < l ≤ k
remains strictly less than prl . Thus, by induction on degree, f can be expressed as a
k[V ]-combination of elements ofH whose degrees in the terminal variables x0, . . . , xi
are all zero and degrees in the remaining terminal variables xl for i < l ≤ k are
strictly less than prl , respectively. Repeating the same argument with the remaining
terminal variables gives us that f can be written as a k[V ]-combination of elements
of H ∩ A together with N(x1), . . . , N(xk) as required. The first assertion of the
theorem follows.

Note that the leading monomial of N(xi) is xp
ri

i for 0 ≤ i ≤ k. So it remains to
show that all other monomials in the lead term ideal of H lie in A. Recall that by
Buchberger’s algorithm a Gröbner basis is obtained by reduction of S-polynomials
of a generating set by polynomial division, see [1, §1.7]. By the first part, H has
a generating set consisting of N(xi) for 0 ≤ i ≤ k and polynomials in A. But the
S-polynomial of two polynomials in A is also in A, and via polynomials in A, it also
reduces to a polynomial in A. Finally, the S-polynomial of N(xi) and a polynomial
in A and the S-polynomial of a pair N(xi) and N(xj) with 0 ≤ i 6= j ≤ k reduce
to zero since their leading monomials are pairwise relatively prime. 2

Corollary 8. The vector space dimension of k[V ]G is divisible by
∏

0≤i≤k di =

p
∑k

i=0 ri .

Proof. The set of monomials that are not in the lead term ideal of H form a vector
space basis for k[V ]G. Let Λ denote this set of monomials. By the previous theorem
a monomial M ∈ A lies in Λ if and only if Mxa0

0 · · ·x
ak

k lies in Λ for 0 ≤ ai < pri

and 0 ≤ i ≤ k. It follows that the size of the set Λ is divisible by p
∑k

i=0 ri . 2

The following generalizes the content of [8, Theorem 5] partially for a p-group.

Theorem 9. Let xi be a terminal variable of degree d, and write N(xi) = xdi +∑d−1
j=0 fjx

j
i , where xi-degree of fj is zero for 0 ≤ j ≤ d− 1. Then xdi + f0 ∈ H.

Proof. Consider N̄ = N(xi) − xdi . This is a polynomial of degree e < d in xi. By
Lemma 4,

e∑
j=0

(−1)jxji∆
j
i (N̄) = f0

since f0 is the constant term of N̄ . Now recall that ∆j
i (x

d
i ) is the coefficient of tj

in (xi + t)d = xdi + td (note that d is a p-power by Lemma 5). Thus, ∆j(xdi ) = 0 for

all 0 < j < d. As ∆j
i is a linear map for all j it follows that ∆j

i (N(xi)) = ∆j
i (N̄)

for all 0 < j < d. Therefore

e∑
j=1

(−1)jxji∆
j(N(xi)) = f0 − N̄ .

As ∆j
i (N(xi)) ∈ H for all j < d by Lemma 6, we get that f0 − N̄ ∈ H. Therefore

xdi + f0 = N(xi)− N̄ + f0 ∈ H as required. 2
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Lemma 10. Suppose that for each i = 0, . . . , k we have xdi
i ∈ H. Then k[V ]G

is free as a module over its subalgebra T generated by X0, X1, . . . , Xk, and T ∼=
k[t0, . . . , tk]/(td0

0 , . . . , t
dk

k ), where t0, . . . , tk are independent variables.

Proof. The hypothesis on the xi is equivalent to Xdi
i = 0 in k[V ]G. Let t0, . . . , tk

be independent variables and consider the natural surjective ring homomorphism
from k[t0, . . . , tk] to k[X0, . . . , Xk]. Since Xdi

i = 0, the kernel of this map contains

(td0
0 , . . . , t

dk

k ). If this ideal is not all the kernel, then H must contain a polynomial in

x0, . . . , xk such that no monomial in this polynomial is divisible by xdi
i for 0 ≤ i ≤ k.

This is a contradiction with the description of the lead term ideal in Theorem 7.
Secondly, let Λ denote the set of monomials in k[V ] that are not in the lead term

ideal of H. Then the set of images of monomials in Λ′ = Λ ∪ A generate k[V ]G
over T . Further, they generate freely because Mxa0

0 · · ·x
ak

k ∈ Λ for all M ∈ Λ′ and
0 ≤ ai < di and 0 ≤ i ≤ k and the images of monomials in Λ form a vector space
basis for k[V ]G. 2

Proof of Theorem 2. The first two assertions of the theorem are contained in The-
orem 7 and its corollary. Next assume that di = deg(NG(xi)) for 0 ≤ i ≤ k. So

we can take N(xi) = NG(xi). Then from Theorem 9 it follows that xdi
i ∈ H for

0 ≤ i ≤ k since the constant term of NG(xi) (as a polynomial in xi) is zero. Now
the third and the fourth assertions follow from Lemma 10. 2

3. Complete intersection property of H

In this section we show that if the Hilbert Ideals of two modules are generated
by fixed points and powers of terminal variables, then so is the Hilbert Ideal of the
direct sum. As an incidental result we prove that the degree of a terminal variable
does not change after taking direct sums. We continue with the notation and the
convention of the previous section. Let V1 and V2 be arbitrary kG-modules. We
choose a basis x1,1, . . . xn1,1, y1,1, . . . , ym1,1 for V ∗1 and x1,2, . . . , xn2,2, y1,2, . . . , ym2,2

for V ∗2 such that x1,1, . . . , xn1,1, x1,2, . . . , xn2,2 are fixed points. Note that both k[V1]
and k[V2] are subrings of k[V1 ⊕ V2] and we identify

k[V1 ⊕ V2] = k[x1,1, . . . , xn1,1, x1,2, . . . , xn2,2, y1,1, . . . , ym1,1, y1,2, . . . , ym2,2].

Note that if yi,j is a terminal variable in V ∗j for some 1 ≤ i ≤ mj , 1 ≤ j ≤ 2, then
it is also a terminal variable in V ∗1 ⊕ V ∗2 .

Lemma 11. Assume the notation of the previous paragraph. Let yi,j ∈ V ∗j be a
terminal variable. Then the degrees of yi,j in V ∗j and V ∗1 ⊕ V ∗2 are equal.

Proof. Since k[Vj ]
G ⊆ k[V1 ⊕ V2]G, we have that the degree of yi,j in V ∗j is bigger

than its degree in V ∗1 ⊕ V ∗2 . On the other hand, the restriction map k[V1 ⊕ V2]G →
k[Vj ]

G given f → f|Vj
preserves any power of the form ydi,j . This gives the reverse

inequality. 2

We denote the Hilbert Ideals k[V1⊕V2]G+k[V1⊕V2], k[V1]G+k[V1] and k[V2]G+k[V2]
with H, H1 and H2 respectively.

Theorem 12. Assume that H1 and H2 are generated by the powers of the variables
in V ∗1 and V ∗2 , respectively and that the variables y1,1, . . . , ym1,1, y1,2, . . . , ym2,2 are
terminal variables. Then H is generated by the union of the generating sets for H1

and H2.

Proof. Assume that H1 is generated by x1,1, . . . , xn1,1, y
d1,1

1,1 , . . . , y
dm,1

m1,1
and H2 is

generated by x1,2, . . . , xn2,2, y
d1,2

1,2 , . . . , y
dm,2

m2,2
. We show that di,j is equal to the

degree of the variable yi,j for 1 ≤ i ≤ mj and 1 ≤ j ≤ 2. For simplicity we set
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i = j = 1 and denote the degree of y1,1 with d. Since H1 is generated by monomials,
each monomial in a polynomial in H1 is divisible by one of its monomial generators.

So we get d1,1 ≤ d. On the other hand, since y
d1,1

1,1 is a member of H1 there is a

positive degree invariant with a monomial that divides y
d1,1

1,1 . So by the minimality
of d, we get d ≤ d1,1 as well. By Lemma 11, di,j is also equal to the degree of yi,j in
k[V1⊕V2]G. We claim that the union of the generating sets for H1 and H2 generate
H. Otherwise, there exists a polynomial f in H that contains a non-constant
monomial

∏
1≤i≤mj ,1≤j≤2 y

ei,j
i,j with 0 ≤ ei,j < di,j . Let ∆i,j denote the derivation

with respect to the terminal variable yi,j . Then applying ∆
ei,j
i,j successively to f

for 1 ≤ i ≤ mj , 1 ≤ j ≤ 2 yields an invariant with a non-zero constant. This is a
contradiction by Lemma 6 since ei,j < di,j . 2

We end this section with an example which shows that the degree of a terminal
variable may be strictly less than the degree of its norm:

Example 13. Let H = 〈σ, τ〉 be the Klein 4-group, k a field of characteristic 2 and
m ≥ 2. Let Ω−m(k) be a vector space of dimension m = 2n + 1 over k. Choose a
basis {x1, x2, . . . , xm, y1, y2, . . . , ym+1} of V ∗. One can define an action of H on V
in such a way that its action on V ∗ is given by σ(yj) = yj +xj , σ(xj) = xj , τ(yj) =
yj + xj−1, τ(xj) = xj using the convention that x0 = xm+1 = 0.

The variables y1, y2, . . . , ym+1 are terminal. One can readily check that

y22 + x2y2 + x1y2 + x2y1 + x1y3 + y1x3

is invariant under H (note the last term is zero if m = 2), so y2 has degree 2. On
the other hand, y2 is not fixed by either σ or τ , which means NH(y2) has degree 4.
It is interesting to note that x1y2 +x2y1 +x1y3 +y1x3 ∈ H, so we still have y22 ∈ H.

4. Cyclic p-groups and the Klein 4-group

In this section we apply the results of the previous sections to cyclic p-groups
and the Klein 4-group. Let G = Zpr denote a cyclic group of order pr. Fix a
generator σ of G. There are pr indecomposable kG-modules V1, . . . , Vpr over k,
and each indecomposable module Vi is afforded by σ−1 acting via a Jordan block
of dimension i with ones on the diagonal. For an arbitrary kG-module V , we write

V =

k⊕
i=0

Vni (with 1 ≤ ni ≤ pr for all i),

where each Vni
is spanned as a vector space by e1,i, . . . , eni,i. Then the action of

σ−1 is given by σ−1(ej,i) = ej,i + ej+1,i for 1 ≤ j < ni and σ−1(eni,i) = eni,i. Note
that the fixed point space V G is k-linearly spanned by en1,0, . . . , enk,k. The dual
V ∗ni

is isomorphic to Vni
. Let x1,i, . . . xni,i denote the corresponding dual basis,

then we have

k[V ] = k[xj,i | 1 ≤ j ≤ ni, 0 ≤ i ≤ k],

and the action of σ is given by σ(xj,i) = xj,i+xj−1,i for 1 < j ≤ ni and σ(x1,i) = x1,i
for 0 ≤ i ≤ k. Notice that the variables xni,i for 0 ≤ i ≤ k are terminal variables.
We follow the notation of Section 2 and denote xni,i with xi. We show that Theorem
2 applies completely to G by computing deg(xi) explicitly for 0 ≤ i ≤ k. For each
0 ≤ i ≤ k, let ai denote the largest integer such that ni > pai−1.

Lemma 14. We have deg(xi) = pai . In particular, We may take N(xi) = NG(xi).

Proof. From [7, Lemma 3] we get that deg(xi) is at least pai . On the other hand
since pai ≥ ni > pai−1, a Jordan block of size ni has order pai . That is, this block
affords a faithful module of the subgroup of G of size pai . It follows that the orbit
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of xi has pai elements and so that the orbit product NG(xi) is a monic polynomial
that is of degree pai in xi. 2

Applying Theorem 2, we obtain the following.

Proposition 15. Assume the notation of Theorem 2 with specialization G = Zpr .
We have an isomorphism

k[X0, . . . , Xk] ∼= k[t0, . . . , tk]/(tp
a0

0 , . . . , tp
ak

k ).

Moreover, k[V ]G is free as a module over k[X0, . . . , Xk]. 2

Now let H denote the Klein 4-group and p = 2. For each indecomposable kH-
module V there exists a basis of V ∗ with one of the terminal variables xi satisfying
deg(xi) = [H : Hxi ], see [10]. In this source it is also proven that, with the exception
of the regular module, each basis consists of fixed points and the terminal variables,
and the Hilbert Ideal of every such module is generated by fixed points and the
powers of the terminal variables. So we have by Theorem 2 and Theorem 12:

Proposition 16. Let V be a kH-module containing k + 1 indecomposable sum-
mands. There is a basis {x0, x1, . . . , xn} of V ∗ in which x0, x1, . . . , xk are terminal
variables, each coming from one summand, such that k[V ]H is free as a module
over its subalgebra T generated by the images X0, X1, . . . , Xk of the terminal vari-
ables. Moreover, T ∼= k[t0, . . . , tk]/(ta0

0 , . . . , t
ak

k ), where t0, . . . , tk are independent
variables, and for each i we have ai = 2 or 4.

Proposition 17. Let V be a kH-module such that V does not contain the regular
module kH as a summand. Then there exists a basis of V ∗ such that k[V ]H+k[V ]

is generated by powers of basis elements. In particular, k[V ]H+k[V ] is a complete
intersection.
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