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Abstract

A novel homogeneity-based method for music structure analysis is proposed.

The heart of the method is a similarity measure, derived from first princi-

ples, that is based on the matrix elastic net (EN) regularization and deals

efficiently with highly correlated audio feature vectors. In particular, beat-

synchronous mel-frequency cepstral coefficients, chroma features, and audi-

tory temporal modulations model the audio signal. The EN induced simi-

larity measure is employed to construct an affinity matrix, yielding a novel

subspace clustering method referred to as elastic net subspace clustering

(ENSC). The performance of the ENSC in structure analysis is assessed by

conducting extensive experiments on the Beatles dataset. The experimental

findings demonstrate the descriptive power of the EN-based affinity matrix

over the affinity matrices employed in subspace clustering methods, attaining

the state-of-the-art performance reported for the Beatles dataset.
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1. Introduction1

The musical form refers to the structural description of a music piece2

at the time scale of sections. That is, a music piece is described in terms3

of shorter, possibly repeated sections, which are often labeled according to4

their musical function in the piece. In Western pop/rock music and other5

related genres, common section labels are intro, verse, chorus, bridge, etc.6

(Paulus et al., 2010).7

Automatic music structure analysis aims at describing a music piece in8

terms of sections by analyzing the audio signal. It employs low-level feature9

sequences extracted from the audio signal in order to model the timbral,10

melodic, and rhythmic content over time (Paulus et al., 2010). The under-11

lying hypothesis is that, the structure is induced by the repetition of similar12

audio content (Dannenberg and Goto, 2008). Repetition implies that, there13

is some notion of similarity among the audio features, which can be exploited14

to segment the music into sections. That is, contiguous regions of similar mu-15

sic can be grouped together into segments and the resulting segments can be16

clustered together, defining the music sections. Technically, the segmenta-17

tion of audio feature sequences into structural parts (i.e., the music sections)18

is achieved by employing methods detecting either homogeneity/novelty or19

repetition in a recurrence plot or a self-distance matrix (SDM) of audio fea-20

tures (Chen and Ming, 2011; Kaiser and Sikora, 2010; Levy and Sandler,21

2008; Maddage, 2006; Paulus and Klapuri, 2009; Paulus et al., 2010; Weiss22
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and Bello, 2010). Apart from a few exceptions e.g., (Maddage, 2006; Paulus23

and Klapuri, 2009), the majority of the aforementioned methods represent24

the music structure in terms of tag sequences, instead of assigning musically25

meaningful labels to the sections. For instance, the sequence of tags describ-26

ing the structure of Oh! Darling by The Beatles is ABCBCBD as depicted27

in Fig. 1. Such a representation of the music structure is sufficient for mu-28

sic information retrieval applications (Dannenberg and Goto, 2008). For a29

comprehensive review on automatic music structure analysis, the interested30

reader is referred to (Dannenberg and Goto, 2008; Paulus et al., 2010) (and31

the references therein).32

Figure 1: Structural description of Oh! Darling by The Beatles. The song contains 7
segments from 4 different section-types namely, A,B,C, and D or intro (black segment),
verse (red segment), bridge (blue segment), and outro (gray segment) in musical terms.

Here, we focus on the structure analysis of pop/rock music. In these33

genres, a music section is often characterized by some sort of inherent homo-34

geneity. That is, the instrumentation, tempo, or harmonic content is similar35

within the section (Paulus et al., 2010). Since the content of a music sig-36

nal is modeled by appropriate audio feature vectors, a conventional way to37

reveal the desired within-section similarities is to construct an SDM contain-38

ing the pairwise distances between all feature vectors and then to cluster the39

similar feature vectors into the same music section (Dannenberg and Goto,40
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2008; Paulus et al., 2010). However, similarity measures, such as the Eu-41

clidean distance, the inner product, the cosine distance, and the normalized42

correlation, which are often used to construct the SDM for music structure43

analysis, ignore the subspace structure of the music sections (Cheng et al.,44

2012). Such subspace structures are known to be valuable for feature vector45

similarity measures in many clustering and classification problems (Cheng46

et al., 2012; Vidal, 2011; Liu et al., 2013). Moreover, the aforementioned47

similarity measures are extremely fragile in the presence of outliers (Vidal,48

2011), hindering a reliable segmentation.49

To exploit the hidden subspace structure and to increase robustness, re-50

construction-based (as opposed to distance-based) similarity measures, such51

as the sparse (SR) (Vidal, 2011), the low-rank (LRR) (Liu et al., 2013),52

and the ridge regression representation (RR) (Panagakis and Kotropoulos,53

2012b) of audio features are employed. The aforementioned representations54

measure the similarities among the feature vectors by decomposing each fea-55

ture vector as s a linear combination of all other feature vectors seeking a56

sparse representation, a low-rank representation, or a representation mini-57

mizing the least squares error. That is, they minimize a proper norm of the58

representation matrix Z, requiring X = X Z, where X is the data matrix,59

by solving a convex optimization problem indicated on the top of Fig. 2. If60

the data live in unions of independent subspaces (Vidal, 2011; Liu et al.,61

2013) any of the aforementioned three representations reveals the hidden62

subspace structure, since it exhibits nonzero within-subspace affinities and63

zero between-subspace affinities as illustrated in Fig. 2 (a)-(e).64

However, due to the homogeneity within the music sections, it is ex-65
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pected groups of contiguous audio feature vectors to be highly correlated.66

In this case, the SR, the LRR, and the RR can not reveal accurately the67

hidden subspace structure of audio feature vectors, hindering their reliable68

segmentation into music sections. Indeed, the SR does not discriminate be-69

tween correlated feature vectors adequately (Tan et al., 2011). The low-rank70

constraint in the LRR does not take into account explicitly the relationships71

between contiguous audio feature vectors, since the nuclear norm applies72

sparsity constraints on the spectrum (i.e., the singular values) of the repre-73

sentation matrix and the RR does not perform feature vector selection by74

shrinking together the coefficients of the correlated feature vectors. The de-75

graded performance of the aforementioned representations in handling highly76

correlated feature vectors is demonstrated in Fig. 2 (g)-(j).77

In this paper, to alleviate the inability of the SR, the LRR, and the RR-78

based similarity measures to cope with correlated feature vector sequences,79

as those emerging in music structure analysis, a novel reconstruction-based80

similarity measure, namely thematrix Elastic Net induced similarity measure81

of audio features is proposed. The contributions of the paper are:82

• The matrix Elastic Net induced similarity measure is derived from first83

principles by extending the elastic net (EN) (i.e., the sum of ℓ1-norm84

and squared ℓ2-norm) regularized regression in compressive sensing85

(Zou and Hastie, 2005) to the more general setting of matrix subspace86

recovery (Liu et al., 2013). The main motivation behind this, is that87

the EN is not only able to cope with data drawn from independent sub-88

spaces shown in 2 (a), but can also handle efficiently highly correlated89

feature vector sequences as analyzed in (Tan et al., 2011) and depicted90
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Figure 2: For illustrative purposes, 6 linear pairwise independent subspaces are constructed
whose basis {Ui}6i=1 are computed by Ui+1 = RiUi, i = 1, 2, . . . , 5. U1 ∈ R100×10 is a
column orthonormal random matrix and Ri ∈ R100×100 is a random rotation matrix.
Consequently, the data matrix X = [X1,X2, . . . ,X6] ∈ R100×600 is drawn from a union
6 independent subspaces, where Xi = UiMi ∈ R100×100, i = 1, 2, . . . , 6. Mi ∈ R10×100,
i = 1, 2, . . . , 6, is a random mixing matrix. Clearly the representation matrix Z is block-
diagonal ((a)-(d)) if the the EN, the SR, the LRR, or the RR is applied onto X. This
does not hold for the SDM in (e) where non-zero between subspace affinities are ob-
served. Next, to simulate the case of highly correlated feature vectors, the data matrix
X̂ = [X̂1, X̂2, X̂3] ∈ R100×192 is constructed as follows: X̂s = [X̄1

s, X̄
2
s, . . . X̄

8
s] ∈ R100×64,

s = 1, 2, 3, where X̄k
1 = [x1k + α1x2k,x1k + α2x2k, . . . ,x1k + α8x2k] ∈ R100×8, X̄k

2 =
[x3k + α1x4k,x3k + α2x4k, . . . ,x3k + α8x4k] ∈ R100×8 and X̄k

3 = [x5k + α1x6k,x5k +
α2x6k, . . . ,x5k+α8x6k] ∈ R100×8, ai are random weights, and xij denotes the jth column

of Xi. In other words, X̂s is drawn from a union of 2 subspaces containing in its columns
highly correlated vectors and thus the columns of X̂ live in 3 unions of subspaces. It is
clear form (f)-(j) that only the EN, is able to reveal the hidden subspace structure of X̂s.

in Fig. 2 (f). In that sense, the EN-based similarity measure of feature91

vector sequences (represented as matrix columns) is obtained by solv-92

ing a convex optimization problem, which involves the minimization of93

the matrix EN regularizer (i.e., the sum of matrix ℓ1-norm and squared94
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Frobenius-norm).95

• The matrix EN is obtained by a novel algorithm, whose convergence is96

guaranteed and suits well for large scale optimization problems, since97

it is based on Linearized Alternating Directions Method (Lin et al.,98

2011).99

• Based on the matrix EN induced similarity measure, music structure100

analysis can be performed by applying the normalized cuts algorithm101

(NCuts) (Shi and Malik, 2000) to the EN-based affinity matrix of au-102

dio feature vector sequences. The above procedure is referred to as103

elastic subspace clustering (ENSC). By conducting extensive experi-104

ments on the manually annotated Beatles benchmark dataset (cf. Sec-105

tion 4.1), the descriptive power of the EN-based similarity measure106

is demonstrated over common reconstruction- and distance-based sim-107

ilarity measures with respect to several evaluation criteria. The best108

results reported here match those obtained by the state-of-the-art music109

structure analysis methods (Kaiser and Sikora, 2010; Levy and Sandler,110

2008; Paulus and Klapuri, 2009), which have also been evaluated in the111

same dataset following the same experimental protocol.112

2. Audio feature extraction113

The variations between different music segment-types are captured by114

extracting three audio features from each recording. In particular, the mel-115

frequency cepstral coefficients (MFCCs), the chroma features (Ryynanen and116

Klapuri, 2008), and the auditory temporal modulations (ATMs) (Panagakis117

7



et al., 2010) are employed in order to form sequences of beat-synchronous118

feature vectors using the beat tracking algorithm described in (Ellis, 2007).119

That is, the feature vectors between two consecutive beats are averaged to120

yield a single feature vector per beat. Beat-synchronous feature vectors un-121

dergo a normalization in order to have zero mean and unit ℓ2-norm.122

The MFCCs encode the timbral properties of the music signal. They are123

calculated by employing frames of duration 92.9 ms with a hop size of 46.45124

ms and a 42-band filter bank as in (Paulus and Klapuri, 2009). The zeroth125

order coefficient is discarded yielding a sequence of 12-dimensional MFCC126

vectors.127

The chroma features characterize the harmonic content of the music signal128

by projecting the entire spectrum onto 12 bins representing the 12 distinct129

semitones (or chroma) of a musical octave. Frames of 92.9 ms with a hop size130

of 23.22 ms were employed for their calculation, resulting into a sequence of131

12-dimensional chroma vectors.132

The ATMs are obtained by modeling the path of human auditory pro-133

cessing as a two-stage process. In the first stage, which models the early134

auditory system, the auditory spectrogram is obtained. The early auditory135

system is modeled by Lyons’ passive ear model (Lyon, 1982) employing 96136

frequency channels ranging from 62 Hz to 11 kHz. The auditory spectrogram137

is then downsampled along the time axis in order to obtain 10 feature vec-138

tors between two successive beats. The underlying temporal modulations of139

the music signal are derived by applying a biorthogonal wavelet filter along140

each temporal row of the auditory spectrogram, having previously subtracted141

its mean, for 8 discrete rates {2, 4, 8, 16, 32, 64, 128, 256} Hz ranging from142
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slow to fast temporal rates. By doing so, the entire auditory spectrogram is143

modeled by a three-dimensional representation of frequency, rate, and time,144

which is then unfolded along the time-mode in order to obtain a sequence of145

96× 8 = 728-dimensional ATM features.146

3. Elastic Net subspace clustering for music structural segmenta-147

tion148

As argued in Section 1, a critical issue in music structure analysis is to149

robustly measure the similarity between the feature vectors, revealing the150

hidden subspaces. That is, the feature vectors of a music section need to be151

similar with respect to a subset of attributes (captured by subspaces) only, a152

property ignored whenever the Euclidean or other related distance measure153

is employed (Cheng et al., 2012). To accomplish this, a novel reconstruction-154

based similarity measure, which is based on the matrix EN regularization, is155

proposed to exploit properly the correlations between the beat-synchronous156

feature vectors within time windows having duration of a few beats.157

3.1. Elastic Net induced similarity measure for clean data158

Let a given music recording of K section-types (i.e., intro, verse, chorus,159

bridge, etc.) be represented by a sequence of N beat-synchronous audio160

feature vectors of size d, i.e., X = [x1|x2| . . . |xN ] ∈ Rd×N . Two reasonable161

assumptions for X are as follows: 1) If the feature vectors belong to a music162

section, they will lie into the same union of subspaces. That is, the columns163

of X are drawn from a union of K unions of independent linear subspaces of164

unknown dimensions. 2) Groups of a few contiguous dictionary atoms (i.e.,165

columns ofX) are quite similar and thus are expected to be highly correlated.166
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Based on the aforementioned assumptions, one would like to learn the167

representation matrix Z ∈ RN×N , such that X = XZ, with zij = 0 if xi168

and xj lie on different unions of subspaces and nonzero zij otherwise. Such a169

representation matrix Z measures the similarity between all the features by170

unveiling the hidden subspace structure and it is obtained by solving:171

argmin
Z

λ1∥Z∥1 +
λ2

2
∥Z∥2F s.t. X = XZ, zii = 0. (1)

In (1), the matrix ℓ1-norm is defined as ∥Z∥1 =
∑

i

∑
j |zij| and ∥Z∥F =172 √∑

i

∑
j z

2
ij denotes the Frobenius norm. It is observed that (1) is a combi-173

nation of the matrix ℓ1-norm and squared Frobenius norm. Accordingly, it174

is actually an extension of the vector EN regularizer (Zou and Hastie, 2005)175

to matrices. The solution of (1), which is referred to as EN representation176

matrix, admits nonzero entries for within-subspace affinities and zero entries177

for between-subspace affinities. This fact is proved in Theorem 1, which is a178

consequence of Lemma 1 (Bhatia and Kittaneh, 1990).179

Lemma 1. Let the parametric norm ∥.∥λ = λ1∥.∥1+λ2

2
∥.∥2F , with λ1, λ2 >180

0. For any four matrices B,C,D, and F of compatible dimensions,181 ∥∥∥∥∥∥
 B C

D F

∥∥∥∥∥∥
λ

≥

∥∥∥∥∥∥
 B 0

0 F

∥∥∥∥∥∥
λ

= ∥B∥λ + ∥F∥λ. (2)

Theorem 1. Assume the columns of X are drawn from a union of K182

linear independent subspaces of unknown dimensions. Without loss of gen-183

erality, X = [X1|X2| . . . |XK ] ∈ Rd×N , where the columns of Xk ∈ Rd×Nk ,184

k = 1, 2, . . . , K correspond to the Nk feature vectors originating from the185
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kth subspace. The minimizer of (1) is block-diagonal.186

187

The proof of Theorem 1 follows similar lines to that included in (Pana-188

gakis and Kotropoulos, 2012a).189

3.2. Elastic Net induced similarity measure for noisy data190

In practice, the assumption X = XZ does not hold exactly, because the191

data are approximately drawn from unions of subspaces. This fact introduces192

certain deviations from the ideal modeling assumptions. The latter can be193

treated collectively as additive noise contaminating the ideal model i.e., X =194

XZ+E. To account for the noise, a distortion term is inserted into (1) and195

a robust solution is sought for the following convex optimization problem:196

argmin
Z,E

λ1∥Z∥1 +
λ2

2
∥Z∥2F + λ3∥E∥1 s.t. X = XZ+ E, zii = 0, (3)

where λ3 > 0 is a regularization parameter.197

To efficiently solve (3), the Linearized Alternating Directions Method198

(LADM) (Lin et al., 2011) is employed, which is suitable for large scale199

optimization problems. By applying the LADM, one seeks to minimize the200

(partial) augmented Lagrangian function:201

argmin
Z,E

L(Z,E,Ξ) = λ1∥Z∥1 +
λ2

2
∥Z∥2F + λ3∥E∥1

+tr
(
ΞT (X−XZ− E)

)
+

µ

2
∥X−XZ− E∥2F , s.t. zii = 0, (4)

where Ξ gathers the Lagrange multipliers for the equality constraints in (3)202

and µ > 0 is a penalty parameter. Let t denotes the iteration index and σ203
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be the largest singular value of X. Then, (4) is minimized with respect to204

each variable in an alternating fashion as outlined in Algorithm 1.205

Following (Lin et al., 2011), since (5) does not admit a closed-form solu-206

tion, the smooth term in (4) is linearly approximated and a simple closed-207

form solution is obtained. Its derivation can be found in the Appendix.208

The approximate solution of (5) employs the shrinkage operator Sτ [q] =209

sgn(q)max(|q| − τ, 0) (Candes et al., 2011), which can be extended to ma-210

trices by applying it element-wise. Similarly, a closed-form solution in (8) is211

obtained by applying the shrinkage operator (9). The diagonal elements of212

Z[t+1] are set to zero in (7) in order to fulfil the constraint in (4).213

To set the internal parameters of the Algorithm 1, i.e., θ = ησ2 and ρ214

which are independent from the data X, 10 data matrices have been con-215

structed, as in Fig 2. By fixing the data dependent parameters λ1 = λ2 =216

λ3 = 0.1, the parameters ρ and θ set to those values, which yield the fastest217

drop of the mean approximation error (obtained by executing Algorithm 1218

10 times) as depicted in Fig. 3. By inspecting Fig. 3, ρ was set to 1.9 and219

η = 1.02. Regarding the parameters related to the stoping conditions of220

Algorithm, ϵ1 = 10−4 and ϵ2 = 10−5 are typical choices e.g., (Lin et al.,221

2011).222

The convergence of Algorithm 1 is guaranteed, since only two variables223

(i.e., Z,E) are involved in the optimization problem (Bertsekas, 1996; Lin224

et al., 2011). Moreover, since Algorithm 1 is an alternating directions method,225

its converge rate is O(1/t) (He and Yuan, 2012).226
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Algorithm 1 Solving (4) by the LADM method.

Input: Data matrix X ∈ Rd×N and the parameters λ1, λ2, λ3.
Output: Matrix Z ∈ RN×N and matrix E ∈ Rd×N .

1: Initialize: Z[0] = 0,E[0] = 0, Ξ[0] = 0, µ[0] = 10−6, ρ = 1.9, θ = 1.02σ2

ϵ1 = 10−4, and ϵ2 = 10−5.
2: while not converged do
3: Fix E[t], and update Z[t+1] by

Z[t+1] = argmin
Z[t]

L(Z[t],E[t],Ξ[t]) (5)

≈ S λ1
θµ[t]

[
Z[t] +

1

θ

(
XT (X−XZ[t] − E[t] +

1

µ[t]

Ξ[t])−
λ2

µ[t]

Z[t]

)]
.(6)

zii[t+1] = 0. (7)

4: Fix Z[t+1] and update E[t] by

E[t+1] = argmin
E[t]

L(Z[t+1],E[t],Ξ[t]) (8)

= S λ3
µ[t]

[
X−XZ[t+1] +

1

µ[t]

Ξ[t]

]
(9)

5: Update the Lagrange multiplier by
Ξ[t+1] = Ξ[t] + µ[t](X−XZ[t+1] − E[t+1]).

6: Update µ[t+1] by µ[t+1] ← min(ρ · µ[t], 10
10).

7: Check convergence conditions
∥X−XZ[t] − E[t]∥F/∥X∥F ≤ ϵ1
and max

(
∥E[t] − E[t−1]∥F/∥X∥F , ∥Z[t] − Z[t−1]∥F/∥X∥F

)
≤ ϵ2.

8: t← t+ 1.
9: end while
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Figure 3: (a) Mean approximation error as a function of the iteration index (t) for fixed
λ1 = λ2 = λ3 = 0.1, η = 1.02, and ρ ∈ {1.3, 1.5, 1.7, 1.9}. (b) Mean approximation
error as a function of the iteration index (t) for fixed λ1 = λ2 = λ3 = 0.1, ρ = 1.9, and
η ∈ {1.02, 1.05, 1.1, 1.2}.

3.3. Segmentation based on the Elastic Net induced similarity measure227

Having found Z by applying the LADM, the column space of the EN228

representation matrix Z is useful for subspace segmentation. Let Z = UΣVT
229

be the singular value decomposition of Z and M = UΣ1/2Σ1/2UT = UΣUT .230

Then, an EN-based nonnegative symmetric affinity matrix W ∈ RN×N
+ has231

elements (Liu et al., 2013):232

wij = m2
ij. (10)

The EN-based affinity matrix, is further post-processed by applying a 2D233

Gabor filter with angle π/4 in order to enhance any diagonal structures in it.234

The segmentation of the columns of X into K section-types is performed by235

applying the NCuts (Shi and Malik, 2000) to the post-processed EN-based236

affinity matrix.237
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3.4. Estimation of the number of section-types238

A challenging problem in music structure analysis is the automatic es-239

timation of the number of different section-types in the music piece. If the240

affinity matrix W has exactly nonzero within-subspace affinities and zero241

between-subspace affinities then the number of section-types K̄ (number of242

subspaces in general) could be found be counting the zero singular values of243

the Laplacian matrix derived by W. However in practice, the affinity matrix244

W has almost zero between-subspace affinities and thus one could estimate245

the number of section-types K̄ by counting the number of singular values246

which are smaller than a threshold. That is, the number of section-types K̄247

is estimated by employing a soft-thresholding approach (Liu et al., 2013):248

K̄ = N − int(
N∑
i=1

fτ (σi)), τ ∈ (0, 1), (11)

where int(·) returns the nearest integer of a real number, {σi}Ni=1 denotes249

the set of the singular values of the Laplacian matrix derived by the corre-250

sponding affinity matrix, and fτ (·) is the soft-thresholding operator defined251

as fτ (σ) = 1 if σ ≥ τ and log2(1 +
σ2

τ2
), otherwise.252

4. Experimental evaluation253

4.1. Dataset, evaluation procedure, and evaluation metrics254

Beatles dataset1: The dataset consists of 180 songs by The Beatles. The255

songs were annotated by the musicologist Alan W. Pollack. Segmentation256

1http://www.dtic.upf.edu/ perfe/annotations/sections/license.html
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time stamps were inserted at Universitat Pompeu Fabra. Some minor cor-257

rections to annotations were made at Tampere University of Technology258

(TUT)2. Each music recording contains on average 10 sections from 5 unique259

section-types (Weiss and Bello, 2010).260

The audio signal is modeled using three beat-synchronous feature vec-261

tor sequences described in Section 2. Structure segmentation is obtained262

by determining the affinity matrices employed in the reconstruction-based263

subspace clustering methods. To this end, the proposed EN induced simi-264

larity measure is compared against the similarity measures induced by the265

sparse, low-rank, and ridge regression. The corresponding affinity matrices266

are constructed as follows: The EN-based affinity matrix is given by (10), the267

SR-based affinity matrix is obtained element-wise as wij = 0.5(|zij| + |zji|)268

(Vidal, 2011). The LRR- and the RR-based affinity matrices are obtained by269

applying the procedures proposed in (Liu et al., 2013) and (Panagakis and270

Kotropoulos, 2012b), respectively, to derive Z and finally employing (10).271

Next, all affinity matrices are enhanced by Gabor filtering, and finally the272

NCuts algorithm is applied to all post-processed affinity matrices. The pro-273

cedure described above leads to the ENSC, the sparse subspace clustering274

(SSC), the low-rank subspace clustering (LRRSC), and the ridge-regression275

subspace clustering (RRSC) applied to beat-synchronous feature vector se-276

quences. For the conventional distance-based similarity measures, we replace277

the affinity matrices employed in subspace clustering by the SDM constructed278

using the cosine distance of the beat-synchronous feature vectors. Next, the279

NCuts is applied to the similarly post-processed SDM.280

2http://www.cs.tut.fi/sgn/arg/paulus/structure.html
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Furthermore, the combination of multiple features (i.e., cross-feature in-281

formation) is investigated. To this end, cross-feature affinity matrices are282

obtained by linearly combining the affinity matrices computed for each dif-283

ferent feature vector sequence and employing the aforementioned similarity284

measures.285

Two sets of experiments were conducted on the Beatles dataset. First,286

in order to fairly compare the proposed method with the methods in (Kaiser287

and Sikora, 2010; Levy and Sandler, 2008; Paulus and Klapuri, 2009), the288

number of section-types (i.e., clusters) K was set equal to 5. In the second289

experiment, the number of section-types was estimated using (11). The op-290

timal values for λi, i = 1, 2, 3 involved in the ENSC as well as in SSC, the291

LRR, and the RRSC were determined by a grid search over 10 randomly292

selected music recordings of the dataset. The same procedure was employed293

to determine the parameter τ in (11).294

Three different metrics are used for music segmentation evaluation. That295

is, the pairwise F -measure (PF ), the conditional entropy-based measure for296

over-segmentation (So), and under-segmentation (Su) (Lukashevich, 2008).297

In the following, the discussion refers to beat synchronous feature vectors298

that are called beats for brevity. They compare pairs of beats, which are299

assigned to the same section-type by automatic analysis methods against the300

reference segmentation. Let FA be the set of similarly labeled pairs of beats301

in a recording according to the music structure analysis method and FH be302

the set of similarly labeled pairs in the human reference segmentation. PF303

is defined as PF = 2 · PP ·PR
PP+PR

, where the pairwise precision, PP , and the304

pairwise recall, PR, are defined as: PP = |FA∩FH |
|FA| , PR = |FA∩FH |

|FH | with | · |305
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denoting the set cardinality. So and Su are defined as follows:306

So = 1−
−
∑NH

i=1(
nH
i∑NH

i=1

∑NA
j=1 nij

)
∑NA

j=1
nij

nH
i
log2

nij

nH
i

log2 NA

, (12)

307

Su = 1−
−
∑NA

j=1(
nA
j∑NH

i=1

∑NA
j=1 nij

)
∑NH

i=1
nij

nA
j
log2

nij

nA
j

log2 NH

, (13)

where NA and NH are the number of section-types in the estimated seg-308

mentation and human reference segmentation, respectively. nij denotes the309

number of beats that simultaneously belong to the ith section-type in the310

ground-truth segmentation and to the jth section-type in the estimated one.311

nH
i is the total number of beats, that belong to the ith section-type in the312

ground-truth segmentation and nA
j is the total number of beats belonging to313

the jth section-type in the automatic segmentation. The numerator in (13)314

corresponds to the conditional entropy measuring the amount of ground-truth315

segmentation information that is missing in the estimated segmentation. In316

analogy, the numerator in (12) measures the amount of the spurious infor-317

mation. The aforementioned three metrics admit values in [0, 1]. They reach318

their maximum value, when the segmentation is perfect and approach zero,319

when the segmentation tends to be random. The average number of the fi-320

nal segments (NoS) obtained by the various segmentation methods and the321

average running time (ART) in CPU seconds for each method, excluding the322

time for feature extraction, are also reported. Although the proposed method323

is a segmentation method and not a boundary detection one, a few boundary324

retrieval results are reported for comparison with the state-of-the-art meth-325

ods. To this end, the segment boundary retrieval performance is evaluated326
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with respect to the standard precision (P ), recall (R), and F -measure (F )327

(Manning et al., 2008). Following (Levy and Sandler, 2008; Paulus and Kla-328

puri, 2009), a boundary in the results is considered as correct, if it is within329

3 sec from the boundary in the annotation.330

4.2. Experimental results331

The structure segmentation performance on the Beatles dataset for a332

fixed number of section-types (i.e., K = 5) is summarized in Table 1 for333

individual audio feature vector sequences and in Table 2 for the combination334

of multiple feature vectors. Any metric gain larger than approximately 0.08335

is statistically significant at 95% level of significance.336

Table 1: Structure segmentation performance on the Beatles dataset with fixed K = 5.
The numbers within parentheses indicate figures of merit, if different, after excluding the
10 music recordings used for parameter selection.

Method Features (Parameters)
PF So Su NoS ART

Mean Best Worst Mean Best Worst Mean Best Worst Mean
MFCCs (λ1 = 0.1,λ2 = 0.2,λ3 = 0.1) 0.56 0.88 0.32 0.64 0.80 0.50 0.51 (0.52) 0.85 0.23 18 28.4

ENSC chroma (λ1 = 0.1,λ2 = 0.1,λ3 = 0.1) 0.51 (0.50) 0.85 0.41 0.59 0.81 0.36 0.46 0.70 0.29 21 22.2
ATMs (λ1 = 0.3,λ2 = 0.1,λ3 = 0.1) 0.62 0.91 0.34 0.60 0.88 0.10 0.70 0.86 0.82 9 109.1
MFCCs (0.5) 0.51 (0.52) 0.84 0.33 0.52 0.83 0.08 0.5 0.73 0.44 36 13.5

SSC chroma (0.3) 0.40 0.67 0.24 0.35 0.51 0.14 0.41 0.70 0.14 54 13.2
ATMs (0.5) 0.60 0.92 0.40 0.59 0.89 0.31 0.66 (0.67) 0.85 0.42 11 45.8
MFCCs (0.3) 0.44 0.79 0.31 0.40 0.72 0.15 0.47 0.80 0.28 55 141.2

LRRSC chroma (0.3) 0.39 0.53 0.26 0.30 0.41 0.12 0.39 0.72 0.19 69 133.8
ATMs (0.9) 0.54 0.88 0.39 0.55 0.83 0.35 0.60 0.91 0.32 17 173.8
MFCCs (0.3) 0.44 0.79 0.31 0.40 0.72 0.25 0.47 0.80 0.21 56 0.8

RRSC chroma (0.3) 0.39 0.53 0.26 0.30 0.41 0.12 0.39 0.72 0.18 69 0.8
ATMs (0.1) 0.57 0.91 0.35 0.62 0.87 0.43 0.59 0.92 0.25 12 0.9
MFCCs 0.32 0.50 0.23 0.15 0.53 0.07 0.36 0.42 0.10 127 3.6

NCuts on SDM chroma 0.32 0.48 0.22 0.15 0.34 0.07 0.36 0.62 0.08 118 3.4
ATMs 0.41 0.63 0.26 0.32 0.58 0.12 0.49 0.62 0.16 46 3.6

For individual features, the experimental results in Table 1 indicate that:337

1) the ENSC outperforms all the other methods with respect to all evaluation338

metrics employed. The PF and So gain of the ENSC against the other sub-339

space clustering methods is statistically significant for the chroma features in340

the case of the SSC and for both the MFCCs and the chroma features in the341

case of the LRRSC and RRSC. Comparing the performance of the ENSC342
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with that of the SDM, the reported improvements are statistically signifi-343

cant for all the features. 2) The SSC, the LRRSC, and the RRSC produce344

better segmentation results than the SDM-based structure segmentation for345

all evaluation metrics and features. The reported improvements in PF and346

So are statistically significant for the MFCCs and the chroma features. The347

same holds for all metrics in case of the ATMs. These results indicate that348

the SR-, the LRR-, the RR- the EN-based affinity matrices produce more349

reliable structure segmentation than the SDM, validating that the similarity350

measures employed by the subspace clustering methods are more robust than351

the distance-based similarity measure employed in the SDM. 3) The ATMs352

are more suitable for music segmentation than the MFCCs and the chroma353

features, when subspace clustering methods are employed. 4) The best pa-354

rameters of the subspace clustering methods can be reliably determined using355

only 10 songs. Most importantly, the experimental findings do not alter, if356

these validation music recordings are excluded from the evaluation.357

Table 2: Structure segmentation performance on the Beatles dataset with fixed K = 5 by
employing cross-features affinity matrices.

Method Features (Parameters)
PF So Su NoS

Mean Best Worst Mean Best Worst Mean Best Worst Mean
MFCCs & chroma 0.55 0.87 0.43 0.62 0.80 0.34 0.52 0.85 0.35 18

ENSC MFCCs & ATMs 0.61 0.87 0.37 0.64 0.88 0.49 0.63 0.80 0.36 9
Chroma & ATMs 0.58 0.87 0.39 0.65 0.78 0.37 0.57 0.88 0.30 10
MFCCs & chroma & ATMs 0.60 0.88 0.38 0.66 0.81 0.38 0.60 0.88 0.28 10
MFCCs & chroma 0.51 0.86 0.31 0.52 0.73 0.26 0.51 0.87 0.21 36

SSC MFCCs & ATMs 0.61 0.93 0.32 0.60 0.83 0.07 0.65 0.91 0.47 14
Chroma & ATMs 0.57 0.89 0.34 0.58 0.83 0.32 0.63 0.90 0.29 13
MFCCs & chroma & ATMs 0.60 0.92 0.33 0.61 0.83 0.41 0.64 0.92 0.24 13
MFCCs & chroma 0.43 0.71 0.32 0.37 0.67 0.23 0.46 0.70 0.20 55

LRRSC MFCCs & ATMs 0.53 0.83 0.35 0.54 0.85 0.38 0.59 0.73 0.22 18
Chroma & ATMs 0.53 0.83 0.38 0.54 0.78 0.31 0.59 0.89 0.33 18
MFCCs & chroma & ATMs 0.53 0.86 0.35 0.54 0.85 0.37 0.59 0.76 0.22 19
MFCCs & chroma 0.43 0.71 0.32 0.36 0.67 0.23 0.46 0.69 0.20 56

RRSC MFCCs & ATMs 0.56 0.88 0.35 0.62 0.84 0.43 0.58 0.89 0.25 13
Chroma & ATMs 0.57 0.90 0.36 0.63 0.86 0.47 0.58 0.89 0.24 12
MFCCs & chroma & ATMs 0.56 0.90 0.36 0.63 0.86 0.47 0.62 0.91 0.24 13
MFCCs & chroma 0.34 0.54 0.23 0.19 0.45 0.12 0.38 0.61 0.11 105

NCuts on SDM MFCCs & ATMs 0.38 0.63 0.25 0.28 0.57 0.09 0.44 0.68 0.12 79
Chroma & ATMs 0.34 0.56 0.23 0.19 0.41 0.09 0.38 0.67 0.10 105
MFCCs & chroma & ATMs 0.36 0.55 0.24 0.23 0.48 0.12 0.40 0.64 0.13 91
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By inspecting Table 2, we can make the following remarks regarding the358

combination of multiple features. 1) Again, the ENSC outperforms all the359

subspace clustering methods that is compared to, with respect to all evalu-360

ation metrics employed. The only exception is the SSC, which outperforms361

the ENSC with respect to the So, when the MFCCs are combined with the362

ATMs. Moreover, in contrast to the competing subspace clustering meth-363

ods, the ENSC is able to find the correct number of sections on average. 2)364

The subspace clustering methods achieve a better segmentation performance,365

which is statistically significant, than the SDM-based structure segmentation366

for all evaluation metrics and all feature combinations. This result combined367

with a similar observation made for individual feature vectors, highlights the368

potential of the similarity measures used in the subspace clustering methods369

to be employed as alternatives to SDM in (Chen and Ming, 2011; Weiss and370

Bello, 2010; Levy and Sandler, 2008; Paulus and Klapuri, 2009). 3) The best371

feature combination for each method in Table 2 includes the MFCCs and372

the ATMs always. If chroma features are also considered then the top S0373

is measured. The structure segmentation obtained by the combination of374

the MFCCs and the chroma features is not reliable, regardless the method375

employed. 4) Combining MFCCs and/or chroma features with ATMs yields376

a better segmentation than using the ATMs only with respect to the So and377

NoS in many cases.378

Comparisons with methods in (Kaiser and Sikora, 2010; Levy and San-379

dler, 2008; Paulus and Klapuri, 2009): Here, the best segmentation re-380

sults on the Beatles dataset are obtained by the ENSC, either when the381

ATMs are employed for audio representation (i.e., PF = 0.62, So = 0.60,382
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Su = 0.70, NoS = 9), or when the MFCCs are combined with the ATMs383

(i.e., PF = 0.61, So = 0.64, Su = 0.63, NoS = 9). These results can be fairly384

compared with those reported in (Kaiser and Sikora, 2010; Paulus and Kla-385

puri, 2009) and the figures of merit of the method in (Levy and Sandler, 2008)386

as evaluated in (Paulus and Klapuri, 2009), since the same annotations from387

the TUT were employed. In particular, the method (Kaiser and Sikora, 2010)388

achieves PF = 0.62. The best results reported in (Paulus and Klapuri, 2009)389

on the Beatles dataset are as follows: PF = 0.599, So = 0.604, Su = 0.717,390

NoS = 10.3. The method (Levy and Sandler, 2008) yields PF = 0.584,391

So = 0.552, Su = 0.683, NoS = 9.48. Regarding to the segment boundary392

retrieval, the ENSC achieves on average P = 0.54, R = 0.61, F = 0.55, when393

the ATMs are employed and P = 0.52, R = 0.61, F = 0.54, when the MFCCs394

are combined with the ATMs. In the same task, the method (Paulus and395

Klapuri, 2009) yields P = 0.52, R = 0.61, F = 0.55. Thus, we conclude that396

the proposed method performs comparably with those in (Kaiser and Sikora,397

2010; Paulus and Klapuri, 2009), while it outperforms the method in (Levy398

and Sandler, 2008).399

Since either the ATMs or their combination with the MFCCs produce400

reliable structure segmentation, they are employed in order to automatically401

determine the actual number of section-types (i.e., clusters) of each music402

piece. The experimental findings are summarized, in Table 3. The ENSC403

outperforms the other methods for both individual features and combinations404

of multiple features with respect to all evaluation metrics but the S0, where405

the RRSC yields a slightly higher value. Accordingly, it is possible to perform406

a robust music structure analysis in a fully automatic setting.407
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Table 3: Structure segmentation performance on the Beatles dataset with automatically
determined K by employing (11).

Method Features (Parameters)
PF So Su NoS

Mean Best Worst Mean Best Worst Mean Best Worst Mean

ENSC ATMs 0.59 0.81 0.42 0.60 0.77 0.39 0.68 0.80 0.33 11
SSC ATMs 0.52 0.87 0.37 0.53 0.88 0.28 0.65 0.84 0.51 8
LRRSC ATMs 0.56 0.92 0.40 0.60 0.86 0.25 0.54 0.93 0.39 15
RRSC ATMs 0.55 0.93 0.35 0.61 0.86 0.00 0.48 0.88 0.07 8
NCuts on SDM ATMs 0.44 0.90 0.10 0.34 0.62 0.17 0.47 0.62 0.14 36

ENSC MFCCs & ATMs 0.58 0.95 0.30 0.60 0.88 0.29 0.69 0.86 0.68 12
SSC MFCCs & ATMs 0.56 0.85 0.40 0.58 0.84 0.25 0.58 0.74 0.39 17
LRRSC MFCCs & ATMs 0.56 0.92 0.40 0.60 0.86 0.25 0.54 0.93 0.39 17
RRSC MFCCs & ATMs 0.55 0.93 0.25 0.63 0.86 0.00 0.49 0.91 0.07 9
NCuts on SDM MFCCs & ATMs 0.56 0.90 0.10 0.60 0.91 0.28 0.51 0.91 0.25 13

The experimental results indicate several advantages of the ENSC over408

the methods that is compared to in structure analysis of pop/rock music.409

However, the ENSC needs more computational time compared with the SSC,410

the RRSC, and the SDM, especially when high-dimensional features such as411

the ATMs are employed. The best results presented in Tables 1, 2 and 3 are412

obtained by analyzing songs with high between-section homogeneity such413

as the “Not a second time” by The Beatles. The worst results are mainly414

obtained in songs where the beats did not accurately estimated by the beat415

tracking algorithm (Ellis, 2007). The proposed approach for music structure416

analysis cannot be easily applied in music genres, such as free jazz, ambient,417

and non-Western genres music etc. where the notion of musical form does418

not resort to the homogeneity of the music sections.419

5. Conclusions and future work420

In this paper, it has been demonstrated that music structure analysis can421

be treated as a subspace clustering problem. A novel subspace clustering422

method (i.e., the ENSC) that builds on the elastic net representation of423

beat-synchronous audio features has been derived by solving (3) using the424

LADM. The experimental results on the Beatles dataset demonstrate the425
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power of the ENSC.426

In the future, the performance of the ENSC in music structure analy-427

sis can be improved with respect to the accuracy and computational effort428

by: 1) making the method independent of the beat tracking algorithms, 2)429

accelerating the convergence of Algorithm 1 by employing Nesterov-type ac-430

celeration step (Nesterov, 2004), and 3) reducing the dimensions of the ATMs431

using computational efficient dimensionality reduction methods, such as the432

random projections.433
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Appendix440

Solving subproblem (5):441

In order to solve (5), we have to solve (4) with respect to Z, which does442

not admit a closed form solution. Let f(Z) be the smooth term in (4) i.e.,443

f(Z) = λ2

2
∥Z∥2F + tr

(
ΞT (X−XZ− E)

)
+ µ

2
∥X−XZ− E∥2F .444

Following (Lin et al., 2011), f(Z) is linearly approximated with respect to445

Z at Z[t] as follows: f(Z) ≈ f(Z[t])+tr
(
(Z− Z[t])

T∇f(Z[t])
)
+ µθ

2
∥Z−Z[t]∥2F ,446

where θ > 0 is a proximal parameter and ∇f(Z) = λ2Z−XTΞ+µ(−XTX+447

XTXZ+XTE). Therefore, an approximate solution of (5) can be obtained by448
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minimizing the partial linearized augmented Lagrangian function as follows:449

Z[t+1] ≈ argmin
Z

λ1∥Z∥1 + f(Z[t]) + tr
(
(Z− Z[t])

T∇f(Z[t])
)
+

µθ

2
∥Z− Z[t]∥2F

= argmin
Z

λ1∥Z∥1 +
µθ

2
∥Z− (Z[t] −

1

µθ
∇f(Z[t])∥2F

= Sλ1
θµ

[
Z[t] +

1

θ

(
XT (X−XZ[t] − E[t] +

1

µ
Ξ[t])−

λ2

µ
Z[t]

)]
. (14)
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