
Policy-based QoS Management Framework for
Software-Defined Networks

Ahmed Al-Jawad, Purav Shah, Orhan Gemikonakli and Ramona Trestian
Faculty of Science and Technology,
Middlesex University, London, UK

E-mails: AA3512@live.mdx.ac.uk, { p.shah, o.gemikonakli, r.trestian}@mdx.ac.uk

Abstract—With the emerging trends of virtualization of cloud
computing and big data applications, network management
has become a challenging problem for optimizing the network
state while satisfying the applications’ Quality of Service (QoS)
requirements. This paper proposes a policy-based management
framework over Software-Defined Networks (SDN) for QoS pro-
visioning. The proposed approach monitors the QoS parameters
of the active flows and dynamically enforces new decisions on
the underlying SDN switches to adapt the network state to the
current demanded high-level policies. Moreover, the proposed
solution makes use of Neural Networks to identify the violating
flows causing the network congestion. Upon detection of a policy
violation two route management techniques are implemented,
such as: rerouting and rate limiting. The proposed framework
was implemented and evaluated within an experimental test-
bed setup. The results indicate that the proposed PBNM-based
SDN framework enables QoS provisioning and outperforms the
default SDN in terms of throughput, packet loss rate and latency.

Keywords—SDN, Policy-Based Network Management, QoS,
Neural Network

I. INTRODUCTION

One of the most significant paradigm shifts within the
networking industry is represented by the introduction of
Software-Defined Networking (SDN). With the traditional
networks getting more complex by running the entire con-
trol and forwarding planes on the same device, SDN comes
to separate these planes and to simplify the communication
using the standardized OpenFlow protocol [1]. An SDN con-
troller configures the network elements by distributing the
forwarding rules to the switches using low-level language.
However, maintaining the network state consistently and
establishing individual settings for each network element
becomes difficult, especially with the increase in network
size. Additionally, the significant growth of video traffic puts
pressure on the underlying networks and on the service
providers that need to find new solutions to enable efficient
resource management while ensuring Quality of Service
(QoS) provisioning to their customers and considering Qual-
ity of Experience (QoE) as the basis for network control
[2]. To overcome these challenges, the Policy-based Network
Management (PBNM) proposes a solution to automate the
process of network configuration via a set of high-level
rules. The combined use of SDN and PBNM brings several
benefits compared to legacy networks. SDN reduces the
management complexity through the encapsulation of the
entire management concept within a central unit. Moreover,
the integration of PBNM within SDN could actually enable
a simplified management of the data plane through the use
of OpenFlow as compared to the complex middleboxes in
the traditional networks [3].

The use of PBNM over SDN has been addressed in [4].
The authors present an automatic QoS policy enforcement
framework for SDN which monitors the network parameters
and adaptively reacts upon the detection of a policy viola-
tion. The decision making considers routing management
as the main element for policy enforcement. Experimental
results show a simple use-case for throughput and loss rate
where rerouting of QoS path is considered alone without
any rate limiting enforcement. On the other hand, the work
in [5] introduces a policy refinement framework over SDN
based on logical reasoning. However, the solution did not
investigate the techniques for detection and resolution of
policy conflicts. In [6] the authors combine the autonomic
network mechanisms with the QoS management for SDN.
The study presents an extension of OpenFlow and OF-
Config protocols to enable dynamic QoS configuration.
However, the functionality of the loop between monitoring,
enforcement and the violation technique is not clear.

A simple routing algorithm for QoS provisioning over
SDN was proposed in [7]. The evaluation was done under
a real experimental setup. The work in [8] proposes a
compression method to reduce the data traffic on the
control path while increasing the network observability. In
[9] a probabilistic QoS routing schemes is proposed to select
the route that satisfies the given bandwidth constraint.

This paper proposes a policy-based management frame-
work to enable QoS provisioning over SDN-based networks.
By using a loop chain approach between network monitor-
ing and policy validation/enforcement, the framework can
achieve end-to-end QoS. Moreover, a neural network is used
to identify the violating flows causing network congestion
and reduce the monitoring overhead. Upon detecting a
policy violation the proposed framework implements two
route management techniques: rerouting and rate limiting.
Experimental test-bed results demonstrate the feasibility of
integrating the PBNM architecture over SDN and show that
the proposed framework outperforms the default SDN in
terms of throughput, packet loss rate and latency.

II. PROPOSED PBNM-BASED SDN FRAMEWORK

Figure 1 illustrates the proposed PBNM-based SDN
framework consisting of: (1) Policy Repository - stores all
the high-level policy rules reflecting the requirements of
the agreed service provide-customer services. (2) Topology
Tracker - maps the physical network elements into a graph-
ical structure and sends the output to the QoS metrics
monitoring unit to build a global image of the instanta-
neous network state. (3) Admission Control - accepts or
declines network connections based on the availability of
network resources. (4) QoS Metrics Monitor - measures
QoS metrics (e.g., throughput, packet loss rate and delay) by



periodically probing the switches. The constructed view of
the network load is used by the violation detector to indicate
the misbehaving traffic flows. (5) Violation Detector -
represents the validation engine to release the necessary
measures to converge the network to the state agreed by
Service Level Objective (SLO) requirements. (6) Active Flows
Tracker - tracks the active flow routes and sends a routing
table to the monitor unit to estimate the throughput per
active flow. (7) Route Manager - computes the least loaded
path demanded by the application’s QoS based on the
instantaneous network state and seeks the shortest path for
best-effort traffic. (8) Rate Limiting Manager - configures
the rate limit parameter along the best-effort route.

Northbound Interface

Southbound Interface (OpenFlow API)

SDN Controller

Topology Tracker

Active Flows Tracker

Route Manager

QoS Metrics Monitor

Policy 

Repository

Violation Detector

Data Layer

Control Layer

Application Layer

REST API

Network 

Service 

Functions

Topology 

Manager

Statistics 

Manager
PacketIn

Manager

Flow Entry 

Insert/Remove

PEP Layer

PIP Layer

PDP Layer

Admission Control

Network

Controlling

Feedback 

Loop

Network 

Monitoring

Metering Manager

Fig. 1. Proposed PBNM-based SDN Framework

For the purpose of this work, the SLO requirements are
defined directly without deriving them from the Service
Level Agreement (SLA). The translation and verification
between SLA and SLO levels is out of the scope of this work.
The framework maps the SLO policies to network policies
by manipulating the flow tables of the SDN switches. The
SLO policies are stored in an integrated database container.

A. Network Management Function

The functional components of the proposed architecture
are mapped to the general three-level PBNM framework
(Policy Information Point (PIP) layer, Policy Decision Point
(PDP) layer, and Policy Enforcement Point (PEP) layer)
[10]. Two cases are identified for managing the network
state: (1) upon receiving a new route request - Initially, the
controller receives a packet-in message and the admission
control decides whether to reject or accept the upcoming
request based on the resources availability. If the request
is accepted, the application type is identified, such that in
case of best-effort request, the shortest path is determined
using a method based on Dijkstra’s algorithm. Whereas in
case of QoS application, the least congested path is chosen.
(2) a policy violation is detected - This case is illustrated in
Fig. 2. Initially, the network monitoring component collects
periodically flow statistics from the switches. These are
used to calculate the available bandwidth and packet loss
rate of all the flows, enabling the controller to build a
global view of the network load. The violation detector
determines whether a high-level policy rule is broken or
not. If the policy is broken, it identifies the flow that causes
the violation by comparing the measured quality metrics

against the high-level policy. This is further used to identify
the congested link along the misbehaving flow that causes
the violation. Upon a violation, the violation detector either
triggers the route manager to choose an alternate route or
the rate limiting manager to reduce the bandwidth budget
for the background violating best-effort flows.

Policy rule 

broken?

Controller request the 

statistics from the switches

Controller collects the flow 

statistics from switches
Not 

broken

broken

Select an adequate action 

(e.g. reroute, rate limiting) 

High-level 

Policy 

Repository

High-level policy assessment

Flow table manipulation of the 

SDN switches

Identify the congested link 

along the violated path

Fig. 2. Network management work flow

B. Identifying Violating Flows using NN

Based on the measured loss rate of the flows, the
violation detector can identify the QoS flow that breaks the
QoS policy rule. However, it cannot determine the flows
that caused the actual congestion. Generally, to enable this,
the controller explicitly pulls the statistics from the involved
switches as an additional step. Our proposed solution avoids
this explicit request and it attempts to predict which flows
are involved in the bottleneck. To achieve this, we use the
feed-forward Neural Network (NN) for classifying whether
the flow is involved in causing the congestion or not. We
refer to it as the violating flow.

In order to avoid increasing the complexity of the prob-
lem, we make use of NN with one hidden layer to identify
whether a flow is causing the congestion or not. Higher
order of hidden layer has been investigated and the results
led to the same outcome as with the one layer NN.

Using the NN as a classifier or predictor involves two
stages: (1) the training stage where the training data set is
used to adjust the weights along the node interconnection,
and (2) the testing stage where the data set is used to validate
the constructed model. A 3-layer NN is used as a classifier
with one input layer, one hidden layer of 3 neurons and
one output layer. The output y is computed as a sigmoid
function f of the weighted sum of inputs x:

y = f

(∑
i=1

wi · xi

)
(1)

where w indicates the weights of the link between the
input layer and next network layer, which are estimated
during the training phase. The NN has two inputs: the
QoS flow throughput and the throughput of the flows
sharing the resources. On the other hand, the NN has two
outputs indicating the classification classes: violating and
non-violating.



In the training phase, the network is trained using
an offline learning phase and previously collected data.
Generally, offline based learning contributes no overhead to
the system as the training is happening outside the normal
framework operation. Here, the observations of generated
training data set represent the base for building the network
model in advance. Thus, the supervised training set is
built by generating two types of traffic (e.g., QoS traffic
and background traffic representing violating flows) while
monitoring the packet loss.

III. EXPERIMENTAL SETUP

This section presents the experimental setup, the per-
formance metrics and the evaluation scenarios considered.

A. Experimental Setup
The proposed PBNM-based SDN framework was imple-

mented and tested under the experimental setup illustrated
in Fig. 3. The testbed consists of three main elements:
(i) Mininet [11] - used to emulate the SDN data plane;
(ii) external Floodlight OpenFlow controller [12] - provides
RESTful API and network services like the flow entry up-
date; and (iii) the PBNM application layer (described in
Section II) - containing the decision making for QoS policy
configurations. The SDN controller and the entire PBNM
application run on a computer and they are connected via
a physical Ethernet link to other computer hosting Mininet.
Ofsoftswitch13 [13] is used as a software SDN switch.

Mininet Network on Real Device

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

Real Device

PBNM 

SDN Controller

(Floodlight)

RESTful API

Application Layer

Control Layer

Physical LinkOpenFlow

H3

H4

H5

H6

H1

H9

H7

H11

H2

H10

H8

Fig. 3. Experimental Setup using the Sprint Network Topology

To evaluate our approach, a realistic Internet Service
Provider (ISP) topology is used. The Sprint IP backbone and
customer topology as depicted in Fig. 3 were used for the
experimental setup, with the network nodes being replaced
by SDN-Openflow enabled switches. The topology was taken
from Internet zoo topology [14] and consists of 11 ISP nodes
that are located geographically in multiple distinct cities in
the US and interconnected through 18 connectivity links.
The number of nodes and links, the diameter, and the
average outgoing node-degree indicate that the topology
is a good candidate for the analysis of our approach.
However, because of the processing capacity limitations of
the experimental setup, each link in the topology operates
at the rate of 1 Mb/s. This does not affect the evaluation

performance and the approach can be scaled up to a larger
network. Each switch has a host directly connected that
generates data traffic.

TABLE I
PARAMETERS OF TRAFFIC MODELING AND SETUP

Parameters Value

Video bit-rate 563 kbps
Video frame rate 24 fps
Video duration for QoS traffic 10 minutes
Video duration for best-effort traffic 2 minutes
Experiment duration 30 minutes
Traffic mix Video = 80%

HTTP = 20%

Video streaming traffic is generated using the VLC player,
while background traffic like HTTP is generated using Osti-
nato [15] traffic generator tool. In this way, it is possible to
evaluate different traffic mix and load on the network. The
traffic generated within the experimental setup consists of:
guaranteed traffic such as video streaming and best-effort
traffic represented by video and web flows used as back-
ground traffic. Table I illustrates the video traffic parameters,
the experiment duration as well as the traffic mix. The traffic
mix ratio is determined based on the statistics provided by
Cisco [16] such that 80% of the total traffic is represented
by video traffic and the remaining 20% is represented by
HTTP traffic. The parameters for the HTTP traffic model [17]
used are listed in Table II. The HTTP traffic is modeled as
ON/OFF period, where the ON period corresponding to the
transmission time and the OFF period corresponding to the
packet inter-arrival time. For each traffic request, the source
and destination host pairs are selected randomly following
a uniform distribution.

TABLE II
MODEL PARAMETERS OF WEB TRAFFIC

Parameters
Best-fit

Distribution
Mean &

Std. Deviation

Main object size Truncated Mean = 10710 bytes
Lognormal Std. dev. = 25932 bytes

Embedded object size Truncated Mean = 7758 bytes
Lognormal Std. dev. = 126168 bytes

Number of embedded Truncated Mean = 5.64
objects per page Pareto Max. = 53
Reading time Exponential Mean = 30 sec
Parsing time Exponential Mean = 0.13 sec

The following SLO policy is defined for the case-study:
the QoS policy defines that all flows directed from the
source to the destination should receive a defined minimum
bandwidth and minimal packet loss rate.

The performance of the proposed framework is assessed
in terms of user perceived QoE for video streaming, using
well-known objective metrics, such as: Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM) [18]. A map-
ping of PSNR and SSIM to the nominal Mean Opinion Score
(MOS) is given in Table III [19]. MOS is a five point scale
used to subjectively assess the users’ QoE.

TABLE III
PSNR AND SSIM TO MOS MAPPING [19]

MOS PSNR SSIM

5 (Excellent) ≥ 45 ≥ 0.99
4 (Good) ≥ 33 & < 45 ≥ 0.95 & < 0.99
3 (Fair) ≥ 27.4 & < 33 ≥ 0.88 & < 0.95
2 (Poor) ≥ 18.7 & < 27.4 ≥ 0.5 & < 0.88
1 (Bad) < 18.7 < 0.5



B. Evaluation Scenarios

To evaluate the proposed PBNM-based SDN framework
under dynamic network conditions and policy violations, a
scenario with a mix of QoS and best-effort flows is con-
sidered. The proposed solution integrates two mechanisms
that could be triggered to overcome the policy violation:
rerouting and rate limiting. The QoS policy rule for this
scenario is defined as: the QoS video traffic from source
Host 2 (H2), see Fig. 3, directed to the destination Host
4 (H4) has a minimum bandwidth threshold of 600 Kb/s
and the maximum packet loss rate threshold set to 2%. The
characteristics of the QoS video traffic are listed in Table
I. The host pair (H2 to H4) was selected to represent the
longest distance (number of hops) within the network to
increase the likelihood of disturbing the QoS video flow by
other background traffic. To disturb the QoS video flow, a
mix of video and HTTP traffic as best-effort is generated
between random hosts maintaining a 80% to 20% ratio [16].

The monitoring update interval for the proposed PBNM-
based SDN framework was set to 3 seconds. This is because
the SDN controller is unable to maintain a complete global
knowledge of the whole network per single iteration. Using
this setup, a first experiment was executed on 20 individual
random trials to evaluate the classification provided by the
NN model. For each trail, the setup generates new values
for the random seed. The identification of violating link
achieves an overall accuracy of 98.7% with the following
results: true positive rate with 83.3%, true negative rate with
99.4%, false positive rate with 0.01%, and false negative
rate with 0.11%. As the result shows, the classifier has
correspondingly lower false positive and false negative rates.

IV. RESULTS AND DISCUSSIONS

The performance evaluation compares the performance
of the proposed PBNM-based SDN framework against the
default configuration of the SDN-based network without the
PBNM framework. The default SDN computes the shortest
path for all traffic types. The comparison is performed on
the same random seed to reproduce a deterministic trail.
Each experiment is repeated three times and the average
outcomes are evaluated. Both approaches, such as rerout-
ing and rate limiting of the proposed PBNM-based SDN
framework are considered. The performance evaluation is
done in terms of Throughput, Packet Loss Rate, Latency,
PSNR, SSIM and MOS of the QoS video flow.

A. PBNM-based SDN framework with rerouting

In this setup the proposed PBNM-based SDN framework
has the rerouting module enabled. Thus, when QoS policy
violation is detected the framework will reroute the disturb-
ing traffic and gives priority to the QoS video flow. As a first
step in the route setup phase, the route manager selects the
least loaded path (S2-S11-S5-S4) for the QoS video traffic
between H2 and H4. Figure 4 illustrates the throughput,
packet loss rate and latency measurements of the QoS video
flow for the PBNM-based SDN framework with rerouting
and the default SDN. It can be noticed that three policy
violations were detected by the framework.

The results show how the policy condition on the shared
link S11-S5 is being strictly violated for the first violation.
During the experimental run, the monitoring component

identifies at time-stamp 64 that the packet loss rate ex-
ceeded the limit of 2% imposed by the QoS policy rule. The
packet loss rate is caused due to the shared resources on
the common link which becomes congested. Due to this, the
violation detector identifies the best-effort flow from Host
11 (H11) to Host 5 (H5) as a disturbing flow and it routes
it on an alternative path S11-S10-S5. To determine the
violating flow causing the problem, the violation detector
uses the supervised neural network to check if the given
link is involved. As a consequence, the violation detector
releases the event of policy constraint breaching and notifies
the route manager. Other violations are identified in the
time-stamps 132 and 252.

Generally, rerouting alone would not be a sufficient mea-
sure to handle the policy violation problem. For instance,
when multiple links carrying several QoS traffic flows with
high bandwidth consumption are involved in congestion
then it becomes very difficult to balance the network load.

100 200 300 400 500 600
0

500

1000

1500

2000

T
h

ro
u

g
h

p
u

t 
[K

b
/s

]

 

 

PBNM−based SDN network (Rerouting)

SDN without PBNM framework

100 200 300 400 500 600
0

20

40

60

80

100

P
a

c
k
e

t 
L

o
s
s
 [

%
]

100 200 300 400 500 600
0

200

400

600

800

1000

Time [sec]

L
a

te
n

c
y
 [

m
s
]

Loss & BW 
Policy Violation

Fig. 4. Throughput, Packet Loss, and Latency of QoS video flow for PBNM-
based SDN framework with rerouting and default SDN

Table IV lists the average PSNR and SSIM for the QoS
video flow as well as the mapping to the MOS done
according to Table III, of both the proposed PBNM-based
SDN framework with rerouting and the default SDN. The
results indicate that when using the PBNM-based SDN with
rerouting, the user perceives the video quality as Excellent
based on both PSNR and SSIM to MOS mapping. Whereas
in the case of default SDN, the user perceived quality for
the QoS video flow is Poor (PSNR to MOS mapping) towards
Fair (SSIM to MOS mapping). Thus, by using the proposed
PBNM-based SDN framework with rerouting there is an
increase of 94% in PSNR as compared to the default SDN.

TABLE IV
AVERAGE PSNR TO MOS AND SSIM TO MOS MAPPING

PSNR MOS SSIM MOS

PBNM with rerouting 46.61 5 (Excellent) 0.99 5 (Excellent)

Default SDN 23.97 2 (Poor) 0.94 3 (Fair)

Figure 5 illustrates a comparison snapshot of the QoS
video frame from the original transmitted video, the video
frame received after the proposed PBNM-based SDN frame-
work performed the rerouting and the video frame as



received using the default SDN. It can be noticed that
the QoS video frame quality becomes noticeably poorer
relative to the original video frame when the default SDN
framework is used with a PSNR of 15.39dB indicating a Bad
user perceived quality. However, by enabling the proposed
PBNM-based SDN framework with rerouting the quality of
the video frame improves considerably, with a PSNR of
50.52dB representing Excellent user perceived quality.

a) original video frame b) PBNM-based SDN rerouting c) default SDN

Fig. 5. Quantitative video frame quality comparison: a) original image, b)
proposed PBNM-based SDN framework with rerouting (PSNR = 50.52dB,
MOS=5 -Excellent), and c) default SDN (PSNR = 15.39dB, MOS=1 -Bad)

B. PBNM-based SDN framework with rate limiting

In this setup the proposed PBNM-based SDN framework
has the rate limiting module enabled. When a QoS policy
violation is detected, the rate limiting module will throttle
the output rate of the background best-effort traffic by
dropping packets while the traffic flows maintain the same
route. This is done, to ensure an end-to-end QoS guarantee
for the QoS video flow and to control the high throughput
aggregates in the network.

Figure 6 illustrates the throughput, packet loss rate and
latency measurements of the QoS video flow for the PBNM-
based SDN framework with rate limiting and the default
SDN. In this case, the rate limiting manager reduces the
data rate to resolve the misbehavior of the background
best-effort traffic flows. The results show that if no network
adjustment would be considered (e.g., default SDN), the
QoS video flow throughput would continue to suffer from
the impact of packet loss and delay.

100 200 300 400 500 600
0

500

1000

1500

2000

T
h

ro
u

g
h

p
u

t 
[K

b
/s

]

 

 

PBNM−based SDN network (Rate Limiter)

SDN without PBNM framework

100 200 300 400 500 600
0

20

40

60

80

100

P
a
c
k
e
t 

L
o

s
s
 [

%
]

100 200 300 400 500 600
0

200

400

600

800

1000

Time [sec]

L
a
te

n
c
y
 [

m
s
]

Loss & BW 
Policy Violation

Fig. 6. Throughput, Packet Loss, and Latency of QoS video flow for PBNM-
based SDN framework with rate limiting and default SDN

Table V lists the average PSNR and SSIM for the QoS
video flow as well as the mapping to MOS, of both the
proposed PBNM-based SDN framework with rate limiting
and the default SDN. The results are similar to the case
where the PBNM-based SDN framework with the rerouting
approach is used. It is observed that both methods enable
user perceived quality improvements when compared to
the default SDN approach. Results show that the proposed
PBNM-based SDN framework with rate limiting can achieve
up to 91% increase in PSNR with a Excellent user perceived
quality compared to the default SDN where the user per-
ceived quality is Poor (PSNR to MOS mapping) towards Fair
(SSIM to MOS mapping).

TABLE V
AVERAGE PSNR TO MOS AND SSIM TO MOS MAPPING

PSNR MOS SSIM MOS

PBNM with rate limiting 45.81 5 (Excellent) 0.99 5 (Excellent)

Default SDN 23.97 2 (Poor) 0.94 3 (Fair)

Figure 7 illustrates a comparison snapshot of the QoS
video frame from the original transmitted video, the video
frame received after the proposed PBNM-based SDN frame-
work performed the rate limiting and the video frame as
received using the default SDN. Similarly to the previous
rerouting setup, it can be noticed that the QoS video frame
quality is significantly improved by using the proposed
PBNM-based SDN framework with rate limiting from Bad
quality as perceived with the default SDN to Excellent
quality.

a) original video frame b) PBNM-based SDN rate limiting c) default SDN

Fig. 7. Quantitative video frame quality comparison: a) original image, b)
proposed PBNM-based SDN framework with rate limiting (PSNR = 50.45dB,
MOS= 5 - Excellent), and c) default SDN (PSNR = 15.39dB, MOS= 1 - Bad)

C. Monitoring Overhead vs. Application Performance

This section analyzes the trade-off between the monitor-
ing overhead introduced and the application performance.
Several experimental runs were conducted using the same
setup but with different monitoring update intervals: 3, 6
and 9 seconds. The choice of these values, starting from
3 seconds above is done due to the SDN controller that
needs time to perceive a consistent image of the entire
network and to take the necessary measures to avoid the
aftermath of policy violation. The results are listed in Table
VI for the default SDN and the proposed PBNM-based SDN
framework with rerouting and with rate limiting. It can
be seen that as the monitoring update interval increases
the application performance decreases. This is because the
SDN controller will take longer to detect and respond to
the misbehaving best-effort traffic that affects the quality
of the QoS video flow. However, even with the increased
monitoring update interval, both methods of the proposed



TABLE VI
AVERAGED PERFORMANCE EVALUATION FOR DIFFERENT MONITORING UPDATE INTERVALS (3, 6, AND 9 SECONDS)

Performance Metrics Default SDN PBNM with rerouting PBNM with rate limiting

3 6 9 3 6 9
Throughput [Kb/s] 605 645 651 648 621 616 630
Packet Loss [%] 10.22 0.65 1.02 1.35 0.69 0.97 1.38
Latency [ms] 268.67 14.87 13.06 12.15 14.04 13.60 12.43
PSNR [dB]/MOS 23.97/2(Poor) 46.61/5(Excellent) 45.13/5(Excellent) 43.46/4(Good) 45.81/5(Excellent) 44.47/4(Good) 43.22/4(Good)
SSIM/MOS 0.94/3(Fair) 0.99/5(Excellent) 0.99/5(Excellent) 0.99/5(Excellent) 0.99/5(Excellent) 0.99/5(Excellent) 0.99/5(Excellent)

PBNM-based SDN framework outperform the default SDN.
For example, for an monitoring update interval of 9 seconds
the quality of the QoS video flow is still perceived as
Good (PSNR to MOS mapping) towards Excellent (SSIM to
MOS mapping) for both proposed approaches, compared to
Poor (PSNR to MOS mapping) towards Fair (SSIM to MOS
mapping) as perceived when the default SDN is used.

Figure 8 shows the overall amount of monitoring over-
head introduced on the control path. The results are for
different monitoring update intervals regardless of the ap-
proach being used, such as rerouting or rate limiting. The
results show that the monitoring overhead is inversely pro-
portional to the update interval. For example, the commu-
nication overhead is reduced by up to 63% when the update
interval changes from 3 to 9 seconds. However, this comes
at the cost of twice the packet loss rate and 10% decrease in
PSNR. Thus, the trade-off between the introduced overhead
and the application performance needs to be considered.

Although the introduction of PBNM scheme in SDN
network adds more network overhead than the default
SDN, the results show that the performance of the QoS
application is significantly improved.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

N
u
m

b
e
r 

o
f 
P

a
c
k
e
ts

Update Time [sec]

 

 

Overhead by Throughput & Loss

Overhead by Latency

2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
x 10

6

N
u
m

b
e
r 

o
f 
B

y
te

s

Update Time [sec]

Fig. 8. Monitoring Overhead for 3, 6, and 9 sec. update intervals

V. CONCLUSIONS AND FUTURE WORKS

This paper proposes a policy-based network manage-
ment framework over SDN for QoS provisioning. The pro-
posed framework makes use of Neural Networks to identify
the violating flows causing congestion. Two route manage-
ment approaches are investigated: rerouting and rate limit-
ing. Experimental results show that the proposed framework
outperforms the default SDN in terms of throughput, packet
loss rate and latency. The proposed PBNM-based SDN
framework with rerouting can achieve up to 94% increase
in the average PSNR when compared to the default SDN,
increasing the user perceived quality from Poor to Excellent.
As future work, the PBNM-based SDN framework will be ex-
tended to integrate a proactive intelligent decision-making
system for minimizing the number of SLO violations.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation

in campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[2] R. Trestian, I. S. Comsa, and M. F. Tuysuz, “Seamless multimedia
delivery within a heterogeneous wireless networks environment: Are
we there yet?” IEEE Communications Surveys Tutorials, pp. 1–1, 2018.

[3] A. Lara, A. Kolasani, and B. Ramamurthy, “Simplifying network
management using software defined networking and openflow,” in
Advanced Networks and Telecommuncations Systems (ANTS), 2012
IEEE International Conference on. IEEE, 2012, pp. 24–29.

[4] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop:
an autonomic QoS policy enforcement framework for software de-
fined networks,” Future Networks and Services (SDN4FNS), 2013 IEEE
SDN for, pp. 1–7, 2013.

[5] C. C. Machado, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-Filho,
“Policy authoring for software-defined networking management,”
in 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM). IEEE, 2015, pp. 216–224.

[6] W. Wang, Y. Tian, X. Gong, Q. Qi, and Y. Hu, “Software defined
autonomic QoS model for future Internet,” Journal of Systems and
Software, vol. 110, pp. 122–135, 2015.

[7] A. Kucminski, A. Al-Jawad, P. Shah, and R. Trestian, “Qos-based
routing over software defined networks,” in Broadband Multimedia
Systems and Broadcasting (BMSB), 2017 IEEE International Sympo-
sium on. IEEE, 2017, pp. 1–6.

[8] A. Al-Jawad, P. Shah, O. Gemikonakli, and R. Trestian, “Compression-
based technique for sdn using sparse-representation dictionary,”
in Network Operations and Management Symposium (NOMS), 2016
IEEE/IFIP. IEEE, 2016, pp. 754–758.

[9] A. Al-Jawad, R. Trestian, P. Shah, and O. Gemikonakli, “Baprobsdn: A
probabilistic-based qos routing mechanism for software defined net-
works,” in Network Softwarization (NetSoft), 2015 1st IEEE Conference
on. IEEE, 2015, pp. 1–5.

[10] R. Yavatkar, D. Pendarakis, and R. Guerin, “IETF RFC 2753: A
framework for policy based admission control,” 2000.

[11] Mininet openflow virtual network. Accessed on August 1, 2015.
[Online]. Available: http://mininet.org

[12] Floodlight openflow controller. Accessed on August 1, 2015. [Online].
Available: http://www.projectfloodlight.org/

[13] CpQD OpenFlow1.3 Software Switch. Accessed on August 1, 2015.
[Online]. Available: http://cpqd.github.io/ofsoftswitch13/

[14] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[15] Ostinato traffic generator tool. Accessed on June 1, 2017. [Online].
Available: http://mininet.org

[16] C. V. N. Index, “Forecast and Methodology, 2015–2020 White Paper,
Cisco, 2016,” 2016.

[17] V. Deart, V. Mankov, and A. Pilugin, “HTTP Traffic Measurements on
Access Networks, Analysis of Results and Simulation,” in Smart Spaces
and Next Generation Wired/Wireless Networking. Springer, 2009, pp.
180–190.

[18] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[19] T. Zinner, O. Abboud, O. Hohlfeld, T. Hossfeld, and P. Tran-Gia, “To-
wards QoE Management for Scalable Video Streaming,” in 21th ITC
Specialist Seminar on Multimedia Applications - Traffic, Performance
and QoE, Miyazaki, Jap, 3 2010.


