
Noname manuscript No.
(will be inserted by the editor)

Perspectives on engineering more usable
context-aware systems

Unai Alegre-Ibarra · Juan Carlos
Augusto · Carl Evans

Received: date / Accepted: date

Abstract The expectations of the abilities of context-aware systems (C-AS)
often differ from reality. It becomes difficult to program contextual services
that react adequately to the circumstantial needs of users as developers need to
know, beforehand: the set of contextual states that may exist, what informa-
tion could accurately determine a contextual state within that set, and what
appropriate action should be taken in that particular state. Although there ex-
ist many frameworks and tools which support the design and implementation
of C-AS, there is less conceptual help for developers to inform them of what
contextual situations and services are appropriate (or feasible) to be imple-
mented. This report reviews the state-of-the-art conceptualisation of context,
which is more focused on the representational interpretation of the concept,
to introduce a perspective that also acknowledges its interactional interpreta-
tion. A combination of revised and new definitions is introduced, which give
key insights for the development of more useful C-AS. By acknowledging sit-
uations as a dynamic phenomenon that arises from action (interaction), and
needs to be understood by the developers, it facilitates the analysis of these
subjective interpretations into programming constructs (representation). The
conceptualisation is also complemented with a set of guidelines for developers,
an illustration of their usage, and a further discussion on the future directions
for the engineering of more usable C-AS. The introduced conceptualisation is
targeted towards the creation of an open-source tool supported framework for
the engineering of C-AS.

Unai Alegre-Ibarra* · Juan Carlos Augusto · Carl Evans
E-mail: {U.Alegre,J.Augusto,C.Evans}@mdx.ac.uk
Research Group on Development of Intelligent Environments,
Middlesex University, The Burroughs London NW4 4BT, United Kingdom
*Tel.: +44(0)7871513023



2 Unai Alegre-Ibarra et al.

1 Introduction

Approaching the first quarter of the XXI century, the information age has
significantly materialised and the general public has access to information
technologies which are no longer constrained to a desktop. Computation can
occur in all sorts of devices that span from smartphones, tablets or laptops
to everyday objects with embedded electronics, including cars and watches.
There is a lot of information which is easily available for developers, such as
that derived from social networks, or the sensors which are embedded in the
many devices that the user already has, or normally interacts with. This sce-
nario is ideal for context-aware computing, a field that has become popular in
recent decades as it promises to significantly enhance the interaction between
humans and computers. The idea is to use the available implicit information
from the situation to provide services and information in a more natural way
for stakeholders. Thus, the attention and effort required by the system is min-
imised, as it does not demand users to explicitly input all the information it
needs to trigger or personalise a service. The interaction with computers would
then be more natural, as it would resemble the way in which humans interact
and communicate with each other.

The work presented in (Alegre-Ibarra et al. 2016) surveys existing frame-
works, methodologies, and tools for the development of context-aware systems
(C-AS), providing evidence that supports the need for a more unified approach
to the creation of these types of systems. A key goal of this study, and the work
reported here, is to improve the state-of-the-art with regard to techniques and
methods to help establish the foundations of a uniform engineering process
that covers the entire life-cycle of a C-AS. As an early step towards this goal,
this report provides the conceptual layer that will enable the future creation
of a more holistic approach, which is strongly related to the requirements elic-
itation stage. As acknowledged in (Alegre-Ibarra et al. 2016; Greenberg 2001),
it becomes difficult for developers to program contextual services that react
adequately to the circumstantial needs of the users, as they need to know be-
forehand: the set of contextual states that may exist, what information could
accurately determine a contextual state within that set, and what appropriate
action should be taken in that particular state (Greenberg 2001). Although
many frameworks and tools which help support the design and implementation
of C-AS exist, there is less conceptual help for developers to inform them with
regard to what contextual situations are appropriate for them (Alegre-Ibarra
et al. 2016; Greenberg 2001).

This report introduces a set of revised and new definitions which give key
insights for the development of more useful C-AS. By acknowledging situations
as a dynamic phenomenon that arises from action (interaction), and needs to
be understood by the developers, it facilitates the analysis of these subjective
interpretations into programming constructs (representation). The separation
of concepts into context and situation allows distinction between the informa-
tion that will be used to detect the proposed situation and trigger adequate
services for the users, from the subjective phenomena that is part of the ex-



Perspectives on engineering more usable context-aware systems 3

perience of the end-users, as understood by the developers of the system. It
also enables, from early stages, an analysis of the implementation feasibility
of the associated services of a situation, as well as the ability of the system to
detect that particular situation. As context-awareness is essential for different
related fields1 of study that typically require a more humanised interaction
with the users, the new, alternative definition has a user-centred perspective,
which takes into account the needs, preferences and limitations of the end-user
stakeholders from its conceptualisation.

The remainder of this report is structured as follows. Section 2 reviews
previous works related to capturing the essence of context and its related
concepts. Section 3 analyses the relevant philosophical challenges behind the
creation of C-AS, identifying its current limitations with respect to the creation
of usable systems. Section 4 introduces a set of revised and new definitions
which is focused on providing the tools for engineering more usable C-AS by
considering the existing limitations with regard to the engineering of context-
awareness. Section 5 provides a set guidelines for developers, based on the
insights gained during the requirements elicitation stage of the POSEIDON2

EU funded project (Augusto et al. 2013), and illustrates the usage of the
proposed definition. Finally, Section 6 presents the conclusions of this work.

2 Previous work

2.1 Context

Etymologically, “context” is an evolution of the Latin word “contextus”, com-
posed by the prefix “con” (together) and the root word “texere” (weave). In a
more general sense, the meaning of this concept is used to broadly define the
set of circumstances that frame an event or an object (Bazire and Brézillon
2005). Although the term can be easily understood, it is difficult to elucidate,
leading to many attempts of defining this term throughout history. In regard
to context-aware computing, the early definitions of context started in the
form of synonymous (Brown et al. 1997), or example enumerations (Schilit
and Theimer 1994; Brown 1995; Ryan et al. 1999; ISO 1999). Other conceptu-
alisations encompass context as a broad representational concept (Dey 2001;
Yau et al. 2003; Bazire and Brézillon 2005; Roto et al. 2006). The advantage of
these types of definitions is that they give space for many relevant contexts to
be captured. On the other hand, the disadvantage is that it becomes difficult
to materialise broad definitions into adequate design principles (Greenberg
2001). The most acknowledged definition of context was introduced by Dey
and Abowd (2001), which considered it as:

1 Particularly referring to Pervasive and Ubiquitous Computing, Intelligent Environments,
Ambient Intelligence, and Ambient Assisted Living.

2 POSEIDON stands for PersOnalised Smart Environments to increase Inclusion of people
with DOwn’s syNdrome.



4 Unai Alegre-Ibarra et al.

Any information that can be used to characterise the situation of an entity,
where the entity is a person, place, or object that is considered relevant to the

interaction between a user and its application, including the user and the
application themselves.

However, their definition did not bring an absolute consensus about what con-
text means. Some authors tried to extend the definition of context by providing
more operational definitions and include other dimensions of context (Schmidt
2003; Zimmermann et al. 2007). Other researchers reported some drawbacks
of this definition, such as being too broad, or fencing in the context of the
system to an interaction with the user (Makris et al. 2013; Greenberg 2001).
Other approaches to the conceptualisation of context have aimed to reduce
the inherent broad sense of the definition by being more ad-hoc, such as for
example, in (Bauer and Spiekermann 2011) or (Lamsfus et al. 2015). In the
area of Intelligent Environments, Ambient Intelligence and Ambient assisted
living, there is a considerable orientation towards a more user-centred per-
spective conceptualisation of the term (Shogren et al. 2014; Bauer et al. 2014;
Bauer and Dey 2016).

2.1.1 Context definition through categorisation

In addition to those attempts at conceptualising context by giving a definition,
another typical approach is that of dividing context into categories. Perera et
al. (2014) review the different context categories, proposing a categorisation
scheme that is based on (Dey and Abowd 1999). They divide the context
conceptualisation into Operational and Conceptual. On the operational view,
context can be either primary or secondary. The primary context is any in-
formation received without using existing context. Secondary context is any
information which can be computed using existing context. On the concep-
tual side, they acknowledge the main (activity, time, identity and location)
categories, from which other categories stem. Perera et al. acknowledge that
from the analysed context categorisation schemes no single category can ac-
commodate all the demands in the Internet of Things paradigm. Bauer and
Novotny (2017) introduce a broader analysis on the different context categori-
sation schemes. They classify the context categories into three main groups:
social, physical and technology context. The first group is divided into social
environment, user and activity. The second group is divided into information
technology and virtual environment. The third group is divided into physi-
cal deployment environment, location, movement and time. Finally, they also
acknowledge an additional fourth group for domain-specific context.

2.1.2 Situation

Another term which can be found in the literature as having a strong link
to context is that of situation. Dey and Abowd (2001) introduce the notion
of a situation as the collection of particular states in which an entity exists.



Perspectives on engineering more usable context-aware systems 5

In approaches which are more related to artificial intelligence, the notion of
situation is more related to the dynamic nature of context, by relating it to
actions (McCarthy and Hayes 1969), and considering the history of actions or
states (Reiter 1997; Yau et al. 2003). Some other definitions of situation also
acknowledge this changing nature of context by recognising that the activi-
ties happen in a specific time period (Anagnostopoulos and Hadjiefthymiades
2009), or by acknowledging the concept as some developing state which is
characterised by its context. Other authors also consider the situation as the
meaning given to sensor data (Ye et al. 2012).

2.2 Context-awareness

Schilit (1994) described a system as context-aware when it is able to “adapt ac-
cording to the location of use, the collection of nearby people, host and accessible
devices, as well as such things over time”. Later on, the most acknowledged
definition of context-awareness was introduced by Dey (2001), who considered
a system as context-aware if “it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task”. But
there is no consensus on the definition of context-awareness. Although, gener-
ally, the term is used in the literature for describing any type of system that is
able to use context, the systems that can be context-aware span many differ-
ent fields, which understand the notion as the reflection of their own concerns
(Alegre-Ibarra et al. 2016).

2.3 Features

Schilit et al. (1994) first identified different classes of context-aware appli-
cations. Later, Pascoe (1998) aimed to identify the core features of context-
awareness. Dey and Abowd (1999) presented a categorisation for features of
context-aware applications, based on the classification of Schilit and Pascoe,
namely: 1) Presentation of information and services to the user. 2) Automatic
execution of a service. 3) Tagging of context information for later retrieval.
With regard to the first feature, the system decides which information and ser-
vices are presented to the user, based on context. Nearby located objects might
be emphasised or, for instance, a printer command might print to the nearest
printer. The second feature refers to the automatic execution of a service. Fi-
nally, Dey and Abowd introduce the concept of “contextual augmentation”,
which extends the abilities of sensing, reacting and interacting with the en-
vironment by using additional information. This is achieved by associating
digital data with a particular context. For example, a tour guide can augment
reality by presenting information about the attractions that surround, or are
approaching, the tour party (Pascoe 1998).



6 Unai Alegre-Ibarra et al.

2.4 Interaction modalities

Barkhuus and Dey (2003) classified the possible interactions into three main
modalities. The first is personalisation, in which the users are able to set their
preferences, likes, and expectations of the system manually. The second inter-
action modality is passive context-awareness, whereby the system is constantly
monitoring the environment and offers choices to the users in order to take
actions. The third modality is active context-awareness, whereby the system
is continuously monitoring the environment and acting autonomously.

3 Towards a better understanding of the challenges with regard to
the conceptualisation of context

In order to better understand how to engineer more usable C-AS, there is a
need for a broader understanding of the influencers and ideas that can serve as
a source for inspiration for exploration and innovation that refocuses upon the
first-person human experience of ubiquitous computing and C-AS (Takayama
2017). Dourish (2004) acknowledged that the drive to represent context is
inspired by, and in some cases the direct response to, sociological investi-
gations. Nevertheless, the philosophical tradition behind those investigations
(phenomenology3) derives from a different tradition than that of computer sci-
ence (positivism4). In the phenomenological perspective, context is understood
as a continually evolving and highly situation-dependent construct (Greenberg
2001). Therefore, context is an issue that has a strong link with the concept
of interaction, where:
1. Contextuality is a relational property that holds between objects or activ-

ities. It is not a matter of something being, or not being, context; rather
it may or may not be contextually relevant to some particular activity.

2. The scope of contextual features is defined dynamically. Rather than being
something that can be delineated and defined in advance.

3. Context is particular to each occasion of activity or action. Context is an
occasioned property, relevant to particular: settings, instances of action
and parties to that action.

4. Context arises from activity, being actively produced, maintained and en-
acted.

However, the representational nature of computing systems demands a differ-
ent approach to the concept of context. After analysing the conceptual work of
several definitions, Dourish extracted four assumptions that seem to underlie
the notion of context as it operates in the view of computer science, where
it is treated as a representational rather than an interactional problem. The
assumptions are:

3 A philosophical tradition related to the study of phenomena, or things, as they appear
in a first-person experience, or consciousness.

4 A philosophical system that recognises only that which can be scientifically verified.



Perspectives on engineering more usable context-aware systems 7

1. Context is a form of information. Something that can be known, encoded
and represented in the same way as other information is modelled in soft-
ware systems.

2. Context is delineable. For some set of applications, one can define what
counts as the context of activities that the application supports, and do so
in advance.

3. Context is stable. Although the precise elements of a context representation
may vary from application to application, they do not vary from instance
to instance of an activity or an event. The determination of any contextual
element can be made once and for all.
Dourish highlights an attempt to derive positivist responses from phe-

nomenological arguments in regard to the development of C-AS. Computer
science requires the creation of simplified models which are abstracted from
the detail of particular occasions, so that developers can program them into
computers. Even in computation structures that aspire to resemble the hu-
man brain, such as neural networks, the models need to be programmed and
trained for obtaining the desired output. When the existing conceptual tools
are obtained with the arguments of an antagonistic philosophical tradition to
that of sociological investigations, turning social observation into technical de-
sign appears to be problematic. Based on Greenberg’s (2001) reflections, the
dual nature of context has the following implications5:
I1 There is a need to conceptually support developers in: A) Enumerating

the set of contextual states that may exist; B) Knowing what information
could accurately determine a contextual state within that set; C) Stating
what appropriate action should be taken in that particular state. Develop-
ers require a better understanding of the situations which are relevant to
provide services according to the needs, limitations and preferences of the
users. Even if frameworks and toolkits provide elegant ways to design and
implement context-aware applications, they fall into a design trap if they
do not provide any support for informing the developers of what contextual
situations are appropriate to the system.

I2 Although having adequate support, it is very difficult or even impossible
to foresee all the situations in order to program them. Also, some situa-
tions that might seem similar a priori, can greatly differ from the actual
instantiation of the situation.

I2.1 C-AS have a high chance of taking actions that might not be the most
appropriate in certain situations. While the engineering of these systems
matures, there is a need to mitigate the impact of context misinterpre-
tation.

I2.2 There is a need to direct the research efforts towards the discovery and
analysis techniques of the different situations in which the system can
offer services, as they are key to the development of a C-AS.

5 Note that the listed implications will be referenced as [I1], [I2.1], and [I2.2] along the rest
of the report. [I1] and [I2] appear in (Greenberg 2001), while [I2.1], and [I2.2] are reflections
of the authors of this paper.



8 Unai Alegre-Ibarra et al.

4 A usability oriented conceptualisation of context and
context-awareness

4.1 Interacting with context-aware systems

While the challenges introduced in Section 3 remain unresolved, it becomes
necessary to consider alternative ways of interacting with C-AS that go be-
yond computers being exclusively autonomous. As further explained in the
Section 3, creating exclusively autonomous C-AS could make them, in all but
simple cases, prone to take inappropriate actions [I2.1]. The authors of this re-
port introduced an extended approach to that of Barkhuus and Dey’s (2003)
in (Alegre-Ibarra et al. 2016), where two foundational dimensions were in-
troduced: I) Execution: Referring to the actions or behaviours of the system
when a specific situation arises; II) Configuration: Relating to the adjustment
of actions that a system will exhibit and which takes place following implemen-
tation. Both execution and configuration dimensions are mutually exclusive,
but both can be executed in two different modalities: A) Active, where the sys-
tem changes its content autonomously; B) Passive, where the user has explicit
involvement in the actions taken by the system. Therefore, each context-aware
feature can be executed in four different interaction modalities:

1. Active Execution: The systems have autonomy to execute services, and self-
adapt depending on the context. For example, the screen of a smartphone
can switch from landscape to portrait automatically, when reaching certain
accelerometer values.

2. Passive execution: The users are involved in the action-taking process of
the system, where they specify if and how the application should change
in a specific situation. The system can present services for that specific
situation or ask permission from the user to take an action.

3. Active Configuration: The user is not directly involved in the evolution of
the system after it is implemented. The system is able to discover and learn
the user preferences, which are used (autonomously or through non-user
human intervention) in order to maintain its rules. Data science techniques
can also be considered to enhance this modality.

4. Passive Configuration: The user is involved in the manual personalisation
of preferences, likes, and expectations of the system after its implementa-
tion. Overall programming complexity is reduced by introducing abstrac-
tions that enable users to act like software engineers to directly modify
preferences or rules, in order to obtain the desired behaviour.

Taking into account the different interaction modalities, developers can mit-
igate the negative effects of not having a completely mature technology, in
each particular context-aware feature. The determination of the most suitable
interaction modality will depend on the particular situation and will have to
be decided separately by the developers, taking into account their respective
advantages and disadvantages (Alegre-Ibarra et al. 2016).



Perspectives on engineering more usable context-aware systems 9

4.2 Features of a context-aware system

The authors of this work also introduced an enhancement of Dey and Abowd’s
(2001) context-aware feature classification in (Alegre-Ibarra et al. 2016), which
accommodated the interaction modalities introduced above. Also, this concep-
tualisation of features, extended the information presentation to any system
stakeholder, rather than limiting it to the users. The features are: 1) Presen-
tation of information to the stakeholders; 2) Active or passive execution of a
service; 3) Active or passive configuration of a service; 4) Tagging context to
information.

4.3 Concepts

Sub-sections 4.1 and 4.2 introduce some revised work which was designed
taking into account the implications explained in Section 3. This sub-section
introduces a novel conceptualisation of context and context-awareness which is
targeted at rethinking the way in which context-aware systems are engineered.
A key concept introduced by this conceptualisation is that of situation of
interest. This abstraction facilitates the separation of concerns. On one hand,
it enables to isolate those concepts related to the detection of the situation of
interest, as shown in Figure 1. On the other hand, it enables to treat separately
those concepts related to the provision of context-aware features, as shown in
Figure 2.

4.3.1 Context-awareness

The ability of a system to use context for exhibiting context-aware features
which are useful to the stakeholders because they directly relate to their

preferences and needs.

This updated definition is similar to that presented by Dey and Abowd (2001),
but introduces a more user-centred perspective, connecting the definitions
of context to the above-mentioned context-aware features and its usability.
Therefore, context becomes that which makes the system run better for the
stakeholders of the system. Also, it is important to mention the introduction
of stakeholders as a concept with a broader scope than users. While users is
a word more focused on those who have the most direct experience with the
final product, stakeholders not only encompass them but also other people
who might have an interest or a concern with the project. This ranges from
companies with commercial interests, to governments that have interests in its
implications. It is practical not only for commercial reasons but for other ap-
plications such as health-care, where the approval of medical staff is essential
to certify the safety of end-users. Also, the enhanced definition of context-
awareness above is linked to the provision of its features, as defined in Section
3, which relate to the different interaction modalities which aim to reduce the
impact of misinterpreting the context [I2.1].



10 Unai Alegre-Ibarra et al.

4.3.2 Context

The information which is relevant for a computing system to characterise
situations of interest.

The aim of this conceptualisation is to introduce a perspective that acknowl-
edges the duality of context, that which brings closer the phenomenological
(dynamic) and positivist approaches (static). This context definition acknowl-
edges the positivist perspective, demanded by computerised systems, where
context is necessarily a form of information. More precisely, context is consid-
ered as the sum of all the symbolic representations required by the computer to
figure out when different situations of interest are happening in the real world.
Notice that this definition of context depends on the concept of situation of
interest, which, as further explained in the next subsection, is recognised as
an observer-dependent and ontologically subjective phenomena. Although, in
comparison, whilst the definition is similarly broad to that of Dey and Abowd’s
(2001), there are two main differences. The first is that the context information
exists without requiring an interaction between the user and an application
(Makris et al. 2013). Rather, it requires the existence of some added value for
the stakeholders, provided in the form of a context-aware feature. The second
difference, as further explained in the next subsections, is that it facilitates
the application of development principles to identify the correct context [I1].

4.3.3 Situation of interest

The circumstance in which developers understand that the system can
potentially exhibit a context-aware feature which is relevant for the intention,

preferences, and needs of its stakeholders at that particular moment.

The power of the presented context definition resides in the role that the sit-
uation of interest (SOI) takes in the development of C-AS. Since the SOI is
understood as an observer-dependent phenomenon, it is targeted to represent
the interpretation that developers give to it. This implies that developers in-
herently need to engage in an understanding process for developing a C-AS.
Particularly, they first have to understand how users give meaning to the ac-
tions they take in a SOI (semantics), and then find the best manner in which
the computer can realise that situation (symbols) and to provide useful ser-
vices that can help them accomplish their actions. Therefore, the SOI acts as
a nexus between two key conceptual components in the development of C-AS,
facilitating the application of the principles for getting the correct context [I1].

The first conceptual component that is related to the SOI is the provi-
sion of useful context-aware features, which are directly related to the needs
and preferences of the stakeholders, and are relevant to their intention in that
particular situation. The second conceptual component related to the SOI is
the representation of the developers’ plan to make the system realise that the
particular SOI is happening. For the second component, the context-attribute



Perspectives on engineering more usable context-aware systems 11

concept is used, as further explained in the next subsection. It needs to be men-
tioned that developers can consider more than one SOI detection plan, and
evaluate which one is more suitable to be implemented, taking into account
the particular restrictions of the project in which it is being developed. It could
also happen that developers deem they do not have enough resources to make
the system identify a particular SOI under their current project scope. Making
such realisations and decisions at an early stage is fundamental to the creation
of a successful C-AS. This conceptual tool enables the stakeholders to have
more accurate expectations on the behaviours that the system will exhibit.
It is also important to note that this relation between SOIs, context-aware
features, and SOI detection plans, facilitates the analysis of C-AS not only
during the requirements elicitation stage of the system, but also during main-
tenance stages, after the system has already been implemented and deployed.
Additionally, since the definition of context-aware features considers all the in-
teraction modalities, these are intrinsically included in the conceptualisation
of what context and SOI are. Consequently, its own conceptualisation helps
developers to foresee and reduce the potential misbehaviours of the system.

Fig. 1 Decomposition of the different concepts related to context.

4.3.4 Context-attribute

An observable property of a situation of interest which can be realistically
attained from a sensor, application or stakeholder.

This definition enhances that of the context model introduced by Henrick-
sen et al. (2003), and that of context-attribute provided by Ruiz-Lopez (2014;
2013). Although, typically, a sensor refers to a hardware sensor, in this case
it has a broader sense, which includes physical, virtual and logical sensors
(Perera et al. 2014; Indulska and Sutton 2003). Physical sensors refer to those
tangible (hardware) sensors that provide data by themselves. Virtual sensors
are those which are not tangible (software) and do not necessarily generate
information by themselves. They can gather data from different sources and
publish it as sensor data (e.g., twitter status, emails, contacts). Logical sensors
combine physical and virtual sensors to provide more meaningful information.
In this definition, the context-attribute is used by the application to charac-
terise a SOI, and it is also an element of the context model, which describes



12 Unai Alegre-Ibarra et al.

the whole context of the system. As acknowledged in (Ruiz-López 2014), a
context-attribute can have a context value, which represents the particular
value that a context-attribute can take, and can be a punctual value, an inter-
val or a set. The context value is in a context-value domain, which indicates
all the possible values that the context-value can take.

4.3.5 Personalisation Management

One important feature of the introduced conceptualisation is the end-user
stakeholder centred perspective. For this reason, it is also important to in-
troduce a way in which preferences can be handled using this conceptuali-
sation. Section 4.1 has introduced an interaction modality that enables the
configuration of the context-aware application, either in an active or a passive
way. Particularly, the following subsection focuses on the modelling of sub-
jective knowledge relative to the preferences of the end-user stakeholders, by
introducing concepts to abstract the specific values of user preferences. This
facilitates the treatment of generic knowledge about preferences, letting the
users, after the system is implemented, define their own preferences as they
use the application. For the passive configuration modality, the final values
of preferences are meant to be determined by their own users. For the ac-
tive configuration modality, instead, the final values of the preferences are
meant to be determined by preference learning algorithms. The abstraction of
particular preference values helps to handle subjective knowledge during the
requirements, design and implementation stages. The preference configuration
of the end-user stakeholders can be categorised in one of two ways, according
to the introduced context conceptualisation, as follows:

A - Context-preference

A type of context-attribute whose particular values are to be personalised by a
stakeholder or an agent after the system implementation.

The first configuration type is related to the detection of a situation of interest,
via personalisation of certain context-attributes. For example, let the Reader
imagine a scenario where it is required to know the temperature, and where
a certain threshold temperature will detect a situation of interest where the
associated context-aware feature is to automatically turn on the heating. In
this hypothetical scenario there will be two context-attributes for detecting the
situation of interest: temperature and temperature threshold. It is important
to highlight that under the current context definition, both will be considered
as being context. Particularly, the temperature threshold will be considered as
a context-preference, which can be configured after the system is implemented.

B - Feature preference

A non-contextual software variable which is used to personalise the way in
which a context-aware feature is provided.



Perspectives on engineering more usable context-aware systems 13

On the other hand, the second configuration type consists of personalising the
provision of context-aware features according to the user preferences. Under
the current context conceptualisation, feature preferences are not used for
identifying a situation of interest, but to to personalise the way in which a
context-aware feature is provided. Therefore, the Reader should note that
they can not be considered as context. For instance, let the Reader imagine
that in the previous scenario, apart from triggering the heating on, there is
another context-aware feature which is to prompt the user informing that the
heater has been turned on. Some users with visual difficulties might prefer to
receive this notification with a big font size. Other users might prefer to receive
this notification with a normal font size. In this case, the feature preference
associated to the provision of the context-aware feature will be the visual
acuity of the user.

Fig. 2 Decomposition of the different concepts related to the functionality of the system
and its personalisation. Note that additional layers for feature preferences and personalised
functionality could be added, as context-aware features can be decomposed in other context-
aware preferences depending on the feature preferences of the stakeholders.

5 General guidelines for context-aware systems engineering

This section introduces a set of guidelines for applying the above conceptualisa-
tion of context and context-awareness. These guidelines report insights gained
during the process of conducting the requirements elicitation stage over the
EU funded POSEIDON project (Augusto et al. 2013).



14 Unai Alegre-Ibarra et al.

5.1 Analysing situations of interest

Each identified SOI requires a plan for the implementation of its detection and
its associated services, for which a set of guidelines is introduced. These are to
be applied for each SOI that the developers are able to identify, and for each
stakeholder relevant to the SOI. The guidelines are composed of the following
steps:
1. Identify objectives, needs and preferences: It consists of understanding the

meaning of the action of the end-user stakeholders to identify the objectives
of the different stakeholders in the situation. The objectives can help to un-
earth different needs and preferences of the stakeholders in that particular
situation. A previous background analysis on the different stakeholders can
facilitate the identification of these needs and preferences (Bryson 2004).

2. Determine context-aware features: Determine adequate context-aware fea-
tures which are relevant to the intention of the users and help them achieve
their goals according to their preferences and needs.

3. Determine interaction modality: The most appropriate interaction modal-
ity for the proposed service is determined, taking into account the feasibility
evaluation conducted for the situation operationalisation.

4. Propose situation detection plans: Situation of interest detection plans are
proposed. These consist of identifying the different context-attributes that
can be used to detect a particular situation of interest. Note that there
could be more than one plan for implementing the same situation of in-
terest. This step can have as much detail as developers wish to consider,
and it can be an informal definition or it can include the assignation of
values or value domains to context attributes, or even the definition of
particular rules or ontologies that will be used for inferring higher level
context-attributes from lower-level context-attributes, or to trigger the as-
sociated services.

5. Evaluate: Developers evaluate different aspects which can help them deter-
mine if the situation of interest under analysis will be implemented or not.
Additionally, the situation of interest is given a priority, which facilitates
the selection process of situations of interest. These aspects are:
(a) Situation of interest detection plan feasibility: Each proposed situation

detection plan is analysed in more depth. For this analysis, two main
features are taken into account. The first feature focuses on determining
how likely it is for the current plan to misunderstand the occurrence
of a particular situation of interest. For this, developers can check the
accuracy of each of the proposed context-attributes. The second feature
has to do with the impact, in terms of objectives of the system, that a
failure in detecting a particular situation of interest can cause. A cost-
benefit analysis using these features can help developers to determine
the feasibility of implementing the detection plan under analysis. This
can help to avoid the implementation of situation detection plans that
have a high failure likelihood and a considerable situation detection
failure impact.



Perspectives on engineering more usable context-aware systems 15

(b) Evaluation of context-aware feature implementation feasibility: There
are three main aspects that should be taken into account to conduct this
cost-benefit analysis. The first aspect is the cost estimation, where de-
velopers gauge the cost of implementing that particular context-aware
feature. The second aspect is the frequency with which the situation of
interest related to the context-aware feature under analysis is expected
to occur. Finally, the last aspect is the detection plan feasibility of the
situation of interest related to the context aware feature under analy-
sis. This analysis is explained in the previous bullet-point. This analysis
can help to avoid implementing features that have a high cost and are
not going to occur frequently, taking also into account the detection
plan feasibility.

(c) Ethical concerns: Engineers evaluate if the implementation of the detec-
tion of the situation of interest or its associated context-aware features
has a conflict with other stakeholders, or if it implies ethical or privacy
concerns which are against those of the development team values. An
ethical framework is recommended for this purpose (Jones et al. 2015).
It is suggested to carefully evaluate and discuss with the end-user stake-
holders the different ethical concerns that might arise, until there is an
agreement between all parties. The discussions can be complemented
by questionnaires and/or interviews.

(d) Validation: The situation of interest should pass through a selection
process that helps to determine if the situation of interest is important.
For this, a priority is assigned to the situation of interest. Engineers
check if the situation is within the system scope or budget, and ask
themselves if its associated context-aware features will truly help the
user or not according to their preferences and needs. The proposed
context-aware features can be validated with the end-user stakeholders
in order to check whether or not the proposed features and their inter-
action modality are adequate for them. For this purpose, interviews or
questionnaires can be used. During this stage, it is not the intention
to run a questionnaire or interview for each of the identified situations
of interest, but rather to add the corresponding questions to a general
questionnaire or interview.

The proposed guidelines are not just envisaged for complementing the require-
ments elicitation stages of the system, but can also be applied at later stages of
the life-cycle of a C-AS, such as maintenance. This conceptualisation enables
the developer to have better control over the context-attributes and services
associated to a particular SOI, facilitating the maintenance of systems. The
dynamic nature of context demands that developers constantly exercise an
understanding of the interaction between the user and the system in different
situations. Such conceptual tools empower developers, as they guide them ex-
actly to those elements that they need to alter in an already developed system.
Developers can decide to remove or modify a particular SOI, controlling which
context attributes and services will be affected. Also, they can have a better
control over the system design when adding/removing associated services.



16 Unai Alegre-Ibarra et al.

5.2 Example

This subsection will illustrate, with an example, how the proposed conceptu-
alisation and guidelines can be applied during the development of a C-AS. For
this purpose, a particular SOI relevant for the example is analysed in depth. To
conclude, the result of applying the guidelines to other SOIs is also illustrated
in Table 1.

Consider the example of a C-AS that is an outdoors navigation applica-
tion which is bespoke to a particular disability. More specifically, a navigation
system that has a higher order goal to aid the inclusion of people with Down’s
syndrome in society by fostering their independence through the use of as-
sistive technologies (Kramer et al. 2014). Particularly, the development will
focus on a mobile application that uses a real-world representation of maps
along with location services to support outdoor journeys that might be walk-
ing or by bus. Due to space restrictions, this example will simply focus on
bus displacements happening in London, United Kingdom. The application
has customisable routes with tailored directions, notifications, reminders, and
other services which will be triggered depending on the context.

This example was a specific scenario used in the requirements engineering
phase of the POSEIDON project (Augusto et al. 2013). During this stage,
several meetings, discussions, interviews, and questionnaires were conducted
(POSEIDON 2015). Relevant to this research, was a questionnaire6 to po-
tential users of the application. Table 1 reflects several SOIs relevant to this
example, and the results of their corresponding analysis. The table is divided
into three main blocks. On the first block (A), the description for each SOI
is included. Also, the mean (A-III) and standard deviation (A-IV) of the re-
sponses to the questionnaires regarding the perception of the primary users
on the usability of the SOIs is provided. On the second block (B), each pro-
posed context-aware feature is illustrated (B-III), for each of the end-user
stakeholders of the system (B-I), as well as the proposed execution modality
(B-IV). Additionally, mean (B-V) and standard deviation (B-VI) on the re-
sults of the questionnaire regarding the perceived usefulness of the features is
included. Also, how much the primary users liked the feature (B-VII). Finally,
the last block (C) represents the proposed operationalisation plan in which
each context-attribute required is illustrated. It should be noted that these
only represent a small example of all the possible SOIs that could arise during
the development of such a system. Some other situations include when the
primary user gets lost, someone tries to steal his/her phone, or the primary

6 130 British families were contacted for completing them, and these were composed of at
least one family member with Down’s syndrome. The respondent population was divided into
people with Down’s syndrome (primary users) and carers of people with Down’s syndrome
(secondary users). A total of 52 responses from potential secondary users and 29 from
potential primary users were obtained. Each group had a different format of questionnaire.
That prepared for primary users was an “easy-to-read” version, in which they were asked
only about the different services. Also, this group was helped by their carers during the
process. The questionnaire for the group of secondary users included questions about the
situations and the services.



Perspectives on engineering more usable context-aware systems 17

user falls asleep when travelling by bus. The secondary users that participated
in the discussion provided information, using a scale from one to five, on the
usefulness of particular SOIs (Table 1-A-III/IV) and its associated context-
aware features (Table 1-B-V/VI). Primary users were asked, in a binary scale,
if they would like to have the context-aware feature proposed (Table 1-B-VII).
The interviews also prompted them about new SOIs and the best interaction
modalities for the different features.

5.2.1 Situation of interest

The SOI to be analysed through this example is when the primary user is
waiting for a bus that, due to unforeseen circumstances, will not arrive on
time, or at all. In this particular SOI there are no more buses available within
a given time-frame that will take the user to the destination. Another thing
that needs to be taken into account for this SOI is whether or not the user is
waiting under certain comfort standards. Some people with Down’s syndrome
might not be able to realise by themselves that a particular bus is taking more
time than it should to arrive. So, particularly, if the user is standing outdoors
for a long time, under bad whether conditions, it could imply certain risks for
the user’s health. Developers can also analyse other alternative variations or
extension points on the target SOI. There could be other SOIs where more
buses for the same line are available after the the one that is missing, which
would arrive in a given time-frame, and would take the user to the destination.
There could also be buses from another line available for an alternative route
to the destination. The SOI analysed in this particular example is as follows:

The primary user is waiting outdoors, under bad weather conditions, for a
bus that will not arrive due to unforeseen circumstances, and there are no

more buses available in a given time-frame to the user’s destination.

5.2.2 Feature proposal

Developers begin to consider meaningful actions that the user can take in that
SOI, as well as the needs of the stakeholders. In this case, the requirements
analysis puts the potential user into the situation and asks them for possible
actions. Ideally, this process should also observe the users in such scenarios, to
help get a better understanding of their actions. It is also worth remembering
that the process applies to all the stakeholders, and has to be applied to each
of the identified SOIs.

Primary Users In this situation, the primary user needs to know that the bus
she/he is waiting for will not arrive, and what to do next in order to safely
arrive at their destination. The following services are proposed:
– The primary user receives a notification communicating that the bus will

not arrive, and a set of instructions to follow.
– The primary user is prompted to call a secondary user, and a list of carers

appears in the screen as possible options.



18 Unai Alegre-Ibarra et al.

Looking at the interaction modalities of the services, the notification service
is chosen to be purely active at execution time. Nevertheless, the instructions
received are passively configured by the secondary users, as further explained
in the next paragraph. On the other hand, the call to the secondary user will
be merely a prompt (passive execution). This second context-aware feature can
be passively configured, enabling the users to set a list of preferred secondary
users to call.

Secondary Users In the case of secondary users, they need to ensure the com-
fort and safety of the primary users during the process of finding another
alternative and reaching their destination. The proposed service consists of
sending a notification to the secondary users, prior to the notification for pri-
mary users, letting them know their current situation. Then, a set of options
would be displayed, which include:
– Giving a call to the primary user.
– Requesting the location of the primary user. If the location is available:

– Suggesting alternative places where the primary user can wait, accord-
ing to her/his current location. After selecting them, the route to these
places will be automatically added to the primary user instructions.

– Automatically ordering a taxi. Once the user has arrived the suggested
waiting destination, secondary users can select to order a taxi, by au-
tomatically sending the location to the taxi service, that will automat-
ically charge them through their bank account.

Although most of the services, when selecting them, are automated, the sec-
ondary user is in control of the critical decisions the system will take (passive
execution) while the system provides as much relevant information as possible
to ease the decision taking. They can evaluate better than a machine whether
or not it is the best option for the primary user to go to the nearby sheltered
places in particular SOI instances. It might be that the place is inappropriate
or that there is no information about opening/closing times, and it is risky
to send the primary user there whilst it is raining. This subsection reflects
on the result of the feature proposal process. Note that different developers
may derive different services or execution modalities, according to their own
criteria. The evaluation of the services may depend on different factors.

5.2.3 Situation Detection Operationalisation Plan

This particular SOI, can be split into: 1) The user waiting outdoors; 2) The
user is standing still for a long time; 2) Bad weather conditions; 3) The bus
will not arrive in a specified time-frame; 4) No more buses will arrive in a
specified time-frame. For 1, the position can be operationalised just by using
the signal-to-noise ratio from the phone of the primary user, and deducing if
the person is indoors or outdoors. For 2, it can be estimated with the location
history of the user device. In the case of 3, the weather conditions can be ob-
tained via http, through the API of openweathermaps7 and the location of the

7 https://openweathermap.org/api



Perspectives on engineering more usable context-aware systems 19

user. For 3 and 4, as the users will be located in London, the unified Transport
for London (TfL) API8 can be used. Also, for 3, the user location could be
used for estimating how much time has elapsed since the user has been station-
ary. Note that this is just an example of one possible operationalisation, but
developers can consider more than one. This particular operationalisation has
the following context attributes: inout, standingStill, weather, busNotArriving,
and noMoreBusesArriving. In the case of inout, it will indicate that the user
is indoors when the signal noise-to-ratio value9 is below 26, and outdoors oth-
erwise. The value indicating if it is day or night will be taken from the date of
the calendar. For the busNotArriving context-attribute, first, the location and
time that the user has been standing in the stop will be taken into account.
When the time waiting is higher than 10 minutes, the TfL API will be checked
to see if the bus is delayed or not. The data for the origin and destination bus
stops and current time will be needed for querying the API. The current bus
stop can be deduced from the user location, and the time from that of the
phone. For noMoreBusesArriving, other alternatives to reach the destination
can be checked in the TfL API. Note that developers can analyse in greater
depth and even start creating the corresponding rules or ontologies.

Finally, the context attributes for standingstill and weather will be enabled
for personalisation as follows. The standingstill attribute, can be derived from
two context-attributes, the location of the user, and a timer that counts how
much time the user has been in the same position. Additionally, a context-
preference will be used, which will let the users decide in how much time the
application should consider her or him to be standing still. On the other hand,
the weather context-attribute can be devided into precipitation and tempera-
ture context attributes. If the weather is cold or there are precipitations, the
weather will be considered as bad weather. In order to calculate whether if
the temperature is cold or not, a context-preference, coldTemperature, will be
introduced. With this preference users can introduce to the system at what
temperature they feel cold.

5.2.4 Evaluation

Finally, the four main aspects of the operationalisation plan are evaluated
to determine if the situation of interest and its associated services should be
implemented. For this purpose, the aspects introduced in 5.1.d are analysed.
Particularly, the first two aspects and their sub-aspects are evaluated using
the following metric: LOW, MEDIUM and HIGH.
1. Situation of interest detection plan feasibility: For estimating the detection

plan feasibility, the failure likelihood and the failure impact are evaluated.
For the failure likelihood, all the proposed context-aware features are eval-
uated individually.
(a) inout: With an adequate implementation, it can detect open outdoors,

semi-outdoors, light indoors and deep indoors environments with 100%
8 https://api.tfl.gov.uk
9 The suggested signal noise-to-ratio value is known to be accurate for this purpose.



20 Unai Alegre-Ibarra et al.

A B C

I II III IV I II III IV V VI VII I II

A
ct

iv
it

y

Situation of
interest M

ea
n

ST
D

St
ak

eh
ol

de
r

Situational
Needs and
Preferences

Context-aware
Feature

E
xe

cu
ti

on

M
ea

n
(P

U
)

ST
D

(P
U

)

Li
ke

s
C

-A
Fe

at
ur

e
(S

U
)

Operationalisation Context
Attributes

W
ai

tin
g

fo
r

bu
s

PU arrives to
the origin stop 3.9/5 1.1 PU

– Know waiting
time

– Remember bus
line

Notify primary
user the bus line
and the time
remaining

A 4.9/5 0.9 28/28
Navigating, the PU
location is that of
the bus stop

– Device location
– Origin bus stop

location

A bus arrives to
the bus stop 4.1/5 1.0 PU

– Identify whether
is the bus they
need to get on or
not

Notify PU to get
(or not) on the bus
that has arrived

A 4.3/5 0.9 23/24

Current time is
(approx.) the
scheduled for bus
arrival

– Current time
– Scheduled bus

arrival time
– Margin time

G
oi

ng
by

bu
s

The bus arrives
to the
destination stop

4.3/5 0.9 PU
– Remember that

they need to get
off the bus in this
stop

Notification
reminding that
they need to get off
the bus in this stop

A 4.5/5 0.7 22/26

The primary user’s
device location is in
the destination bus
stop location

– Device location
– Destination bus

stop location

The primary
user has to
press the stop
button

4.3/5 0.9 PU
– Remember that

they need to press
the stop button

Notification
reminding that
they need to press
the stop button

A 4.5/5 0.7 23/26

The primary user’s
device location is
one stop before the
destination stop

– Device location
– Location of the

previous bus stop
to the destination
one

G
et

tin
g

off
th

e
bu

s

The primary
user fails to
get off at the
correct stop

4.5/5 0.8

PU
– Realise situation
– Know how to

correct it

Notify situation
and give instruc-
tions

A 4.5/5 0.9 17/29 PU speed is close to
walking speed and
is earlier than ar-
rival time

– Device speed
– Walking speed

value
– Current time
– Bus arrival timeCall secondary user P 4.6/5 0.7 12/29

SU

– Realise situation
– Safety and

comfort of the PU
– Know if the PU

can resolve the
siuation

Notify situation A 4.8/5 0.4 16/29
The PU is in the
bus route and the
movement speed
is (approx.) higher
than walking speed

– Device movement
speed

– Walking speed
– Device location
– Bus route

Request the
location of the
primary user

P 4.8/5 0.5 -

Table 1 Situations of interest (A), context-aware features (B) and context attributes (C)
of the illustration example for a navigation application to support people with Down’s
syndrome integrate in society. (PU = Primary User, SU = Secondary User, A = Active, P
= Passive, STD = Standard Deviation)

accuracy (Wang et al. 2016). Therefore, the precision of this context-
attribute can be estimated as HIGH.

(b) standingstill: This context-attribute directly depends on the accuracy
of the location. Although it depends on the chipset of the phone of the
user, and the number of satellites available in the zone, it is reasonable
to estimate that in London, the accuracy will be around 10 meters. This
can be used to detect if the primary user is standing still for a long time,
in an area of 10 square meters. For this reason, the context-attribute is
considered as having HIGH accuracy.

(c) weather: As explained in section 5.2.3, the use of open weather maps
has been proposed. This service retrieves raw data from airport weather
stations, radar stations, and other official weather stations. Addition-
ally, it also involves weather station owners that can help to increase
the weather data accuracy. Although this information could not be per-
fect, it is estimated that for the purpose of this application the weather
accuracy is HIGH.

(d) busNotArriving & noMoreBusesArriving: For this particular case, it is
known that many transport applications like Citymapper (Citymapper
2011) use real time information which is directly retrieved from the
official London´s transport system, via the TfL API. Initial qualitative



Perspectives on engineering more usable context-aware systems 21

analysis (as part of the POSEIDON project) has concluded that the
accuracy is sufficiently HIGH.

Overall, the estimation for the failure likelihood is LOW, as the accuracy
of all the analysed context-attributes has been estimated as HIGH. On the
other hand, for the failure impact detection aspect, two cases can occur.
The first case is when the system interprets the occurrence of the situation
of interest, but this situation is not really occurring in the real world.
In this case, primary users can simply ignore any prompts, and continue
with what they were doing. It could happen that the secondary users get
worried, but a phone call would take them out of doubts. For this reason,
the failure impact in this case can be deemed as LOW. The second case is
when the situation of interest is occurring, but the system fails to detect
it. In this case, it might happen that the user waits for an undetermined
time period for a bus that will never arrive without the secondary users
knowing about it. This situation can entail some risks, but this risk can
be estimated as MEDIUM, as the user life would not necessarily be in
danger. Although this situation is undesirable, the failure likelihood has
been estimated as LOW. For this reason, the result of the situation of
interest detection feasibility is HIGH.

2. Feature Implementation Feasibility: For estimating the feasibility of imple-
menting the proposed context-aware features three main dimensions are
analysed: cost, frequency of occurrence and detection plan feasibility. For
calculating the cost, each of the proposed context-aware features for the
situation of interest are analysed individually against these criteria.
(a) The primary user receives a notification: As it can be observed in Ta-

ble 1, the system under development will use notifications in many
occasions. Therefore, once a basic system for prompting notifications
is created, the cost of implementation of this particular feature will be
considered as LOW.

(b) Give the primary user a choice to call secondary user: This feature is
quite similar to the previous feature, in terms of implementation costs.
It will be simply a prompt with different options. Since Android is an
operating system that is focused on mobile devices, it also provides an
easy framework from which programming a phone call is straightfor-
ward. Therefore, the implementation cost of this particular feature can
also be considered as LOW.

(c) Secondary users can call the primary users: As mentioned in the pre-
vious point, programming this feature in Android is straightforward.
Therefore, the cost of implementing this feature can also be estimated
as LOW.

(d) Request location of the primary users: Although retrieving the loca-
tion of the user can be readily achieved with the Android platform,
this information needs to be transmitted to the phone of the secondary
users. For this an additional secure connection needs to the POSEIDON
server, where devices of both users would need to connect. For this rea-
son, the implementation cost for this feature is estimated as MEDIUM,



22 Unai Alegre-Ibarra et al.

as it requires of an additional server to work. The implementation cost
is not estimated as HIGH, as the non-contextual requirements contem-
plate the creation of a server for storing the location of the primary
users when required.

(e) Suggest nearby places: In order to retrieve nearby places using the lo-
cation, the Google Places API can be used. This does not have any
additional difficulty further than learning how to use the API, there-
fore it can be considered as having an estimated LOW cost.

(f) Order a taxi: For ordering a taxi, the Uber API (UberTechnologies
2009) for Android can be used. This does not have any additional diffi-
culty further than learning how to use the API. Therefore, the cost can
also be considered as LOW.

It is difficult to predict the exact frequency of occurrence of the situa-
tion of interest, as this would require a further analysis in the field, which
can demand the observation of the users, and/or having some interviews
with them about the matter. For the purpose of this example, a MEDIUM
frequency of occurrence for the situation of interest will be assumed. As in-
troduced in the previous point, the detection plan feasibility result has been
HIGH. The feature implementation feasibility will be considered HIGH for
all the features with a LOW COST, and MEDIUM for the location request.

3. Ethical concerns: For evaluating the ethical aspect of the situation of inter-
est, the eFRIEND (Jones et al. 2015) ethical framework can be used. This
enables the analysis of the situation of interest and its associated context-
aware features, particularly with regard to the following principles:
(a) Privacy: It is typically difficult to keep a balance between the privacy

concerns and the design of context-aware systems. In different inter-
views and meetings (Augusto et al. 2017), the primary users expressed
their concern for the secondary users knowing their location at all times.
For this reason, an in order to maintain a balance between the design
with the privacy concerns, an option to allow the primary users control
when to share their location with the secondary users. Secondary users
can request to obtain the location of the primary users, but it is the
primary users who determine whether or not their location is shared.

(b) User Autonomy: Analysing the proposed features, both primary and
secondary users have control over the actions of the system. In the case
of primary users, they receive indications and they decide if they want
to call the secondary users or resolve the situation by themselves. In
the case of secondary users, they can also select from a list of different
services available.

Other ethical aspects such as non-maleficence, user-centred perspective,
security, transparency, equality, dignity and inclusiveness, are inherently
included in the eFriend framework. In regard to data protection, the infor-
mation about the users will be stored under the required conditions in the
POSEIDON server.

4. Validation: Finally, the situation of interest and their corresponding ser-
vices were brought up for discussion with the different stakeholders. The



Perspectives on engineering more usable context-aware systems 23

secondary users gave 4.5 out of 5 in usefulness to this situation of inter-
est, with a 0.6 standard variance. The context-aware features proposed for
the primary users were both graded by the primary users in usefulness
with a 4.5 out of 5 (0.5 standard deviation). Those services proposed for
the secondary users were similarly graded with 4.7 out of 5 (0.3 standard
deviation). Overall the validation gave positive results for the proposed
situation of interest and associated services.

In this particular case, the whole analysis gives a positive result, and the sit-
uation is considered as implementable under the proposed situation detection
plan. In this particular example, the situation of interest and its corresponding
context-aware features are considered for implementation. Note that during
the evaluation process, the situation of interest under analysis, or some of the
associated context-aware features could be stopped to be considered as imple-
mentable for the system under development. In order to calculate the priority,
the security of the user will be taken into account. Since its implementation
might directly affect the health of the users, the priority of this situation of
interest is considered as HIGH.

6 Discussion

The updated definition of context provided in this report encompasses a dual
understanding of the concept. It has a strong link with the representational na-
ture of context, acknowledging that, for C-AS development purposes, context
is necessarily a piece of information coded in a computer. Albeit, the notion is
subject to that of SOI, which is acknowledged as an observer-dependent phe-
nomenon. Notice that computerised systems are not considered as observers.
Such duality tries to bring closer an intermediate approach between two dis-
parate philosophical paradigms. Although the SOI is a relational property that
holds between objects and user activities, particular to each occasion, it is a
task of the developers to exercise an understanding in order to program them
into the computer. This comprehension exercise is not only about finding what
users do, but rather to unearth how those actions accomplish meaningful events
and are, in turn, accepted by others as meaningful (Dourish 2001). Such an un-
derstanding can lead to a better comprehension of user needs and preferences,
and it eases the task of developers in finding adequate context-aware features
to be displayed by the system, as well as its adequate interaction modality.
Also, developers can create a context model which is exclusively based on the
context that is required for making the context-awareness features happen.
No more and no less. Therefore, developers have more guidance on what to
do to translate the phenomenon into computer models. Nevertheless, it can
occur that SOIs are not delineable into context, that is to say, they cannot
be transformed into information which the computer is able to use to detect a
situation. The presented conceptual tools and guidelines try to mitigate this
impact by enabling developers to realise this and take adequate action at an
early development stage. Note that the meaning which developers find arises



24 Unai Alegre-Ibarra et al.

from the course of action itself, which keeps occurring after the implementation
of the system. This implies that SOIs are defined dynamically, and therefore
a C-AS will require continuous maintenance. Context is no longer considered
as something static, but rather the approximation of the developers to the de-
tection of the situation phenomena. A tool-supported framework that is able
to trace the impact of changing a situation of interest in the context model,
and that also speeds up its modelling, implementation and deployment can be
key to the development of C-AS.

The approach presented here tries to work towards maximising the usabil-
ity results of those situations that, to some extent, are possible to predict and
be represented as computational models. The premise underlying this concep-
tualisation of context is that current C-AS can maximise their usability results
when:
– Developers adequately identify a situation of interest.
– Developers understand the intention, meaning of the actions, preferences

and needs of the users in a particular situation of interest.
– There exists a set of observable properties which can identify a situation of

interest with enough accuracy to distinguish it from the maximum number
of similar-looking siuations where the context-aware feature to be displayed
is not appropriate.

– The properties that identify a situation of interest can realistically be at-
tained from sensors.

– The developers can implement the situation of interest detection while it
is still meaningful for the users.

More research is required in the direction of techniques for discovering ad-
equate services for C-AS which can help the creation of more usable C-AS
[I2.2]. Particular approaches such as phenomenology (Winograd and Flores
1986; Dourish 2001), activity theory (Nardi 1996), ethomethodology (Suchman
1985), or Merleau-Ponty’s phenomenology (Svanaes 2001) have been proposed.
Other methods and perspectives should be considered too. For example, ad-
vanced computer technologies such as those provided by data science, machine
learning or cognitive computing, could give developers a better understanding
of the meaning of the actions of the users in particular situations. An analysis
of the data that is already available in the sensors of the system can also be
used for giving feedback to developers, and help them unearth new SOIs or
enhance/modify the provision of existing context-aware features. There is a
need for a theoretical foundation that allows developers to reach such under-
standing of user action through information technologies, rather than trying
to make the machines do this process for them.

This conceptualisation has also provided conceptual tools to deal with the
preferences of the users. Nevertheless, there are some issues that still need to
be explored, such as the handling of incomplete or ambiguous preferences, and
the addressing of conflicting knowledge. For example, in a smart-house scenario
there might be a preference conflict if a user likes music with loud volume and
another user prefers silence at the same time. When gathering the requirements



Perspectives on engineering more usable context-aware systems 25

of a system, it can also be useful to have user profiling features (Evans et al.
2014; Sutcliffe et al. 2006) for addressing the different user preferences.

7 Conclusions

Context has been a topic of debate for a long time. This report is specifically
concerned with the application of the notion of context with respect to the
engineering of more usable C-AS. Particularly, a conceptualisation of context
and context-awareness is provided, as a means to support the three principles
to identify the correct context [I1]. The work in (Alegre-Ibarra et al. 2016) con-
cluded that none of the evaluated methodologies were offering enough support
for these principles. The authors of this work are currently exploring alterna-
tive tools to assist developers with respect to the proposed conceptualisation
of context and context-awareness. A key goal of this study is to improve the
state-of-the-art with regard to techniques and methods to help establish the
foundations of a uniform engineering process that covers the entire life-cycle
of a C-AS. The work presented here aims to be used as the foundation of an
open-source tool-supported requirements elicitation framework specialised for
context-awareness. The fundamental feature of this model-based tool will be
the traceability of SOIs with context-aware features and context-attributes. In
this way, developers will have a very useful tool to evaluate the changes they
can implement into the system. The definition proposed in this report uses the
notion of SOI as a key nexus between the context information required and
the services to be provided. When developing systems under this definition,
the developer will have to deal with many SOIs, which can result in complex
inter-relationships. This approach could greatly benefit from the traceability
of SOIs and their relations with other requirements or design elements. Tools
like the OMG Systems Modelling Language, SysML (OMG 2012), or the Uni-
fied Modelling Language, UML (OMG 2015), have the potential for creating
personalised profiles and managing many relationships between different ele-
ments of requirements and design. Rather than starting a new framework from
scratch, the aim is to integrate it with previous methodologies (Evans et al.
2014; Ruiz-López et al. 2013), diagrams (OMG 2012, 2015) and tools (Mode-
liosoft a). Its relation with (Ruiz-López et al. 2013) and the NFR Framework
(Chung et al. 2012) can help the automation of the evaluation of the situa-
tion detection plans, and the satisfaction of situational goals with the proposed
context-aware features. The tool prototype10 developed as part of this research
is open-source, and it can be downloaded from (Alegre-Ibarra 2016).

Acknowledgements To Tony Clark for initiating the discussion on how to distinguish
simple data from context information and Dean Kramer for his useful ideas in the bus
transportation examples. To Julian Hallett for his support running the main questionnaires

10 The folder rcase/rcase/target/ of the rcase project contains a jmdac file, which is a mod-
ule that can be installed in the Modelio tool v3.7.0 (Modeliosoft b) following the instructions
in (Modeliosoft c).



26 Unai Alegre-Ibarra et al.

of this report. To the anonymous reviewers of this paper for their insights. The research
leading to these results has been partly supported by the POSEIDON project funded by the
European Union (FP7/2007-2013) under grant agreement number 610840.

References

Alegre-Ibarra U (2016) Requirements for Context-Aware Systems Engineering
(RCASE) Tool. https://github.com/ualegre/rcase. [Online; Last accessed
04-April-2018]

Alegre-Ibarra U, Augusto JC, Clark T (2016) Engineering context-aware sys-
tems and applications: A survey. Journal of Systems and Software vol. 117
pp. 55–83

Anagnostopoulos C, Hadjiefthymiades S (2009) Advanced inference in
situation-aware computing. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans vol. 39, 5 pp. 1108–1115

Augusto JC, Grimstad T, Wichert R, Schulze E, Braun A, Rødevand GM,
Ridley V (2013) Personalized smart environments to increase inclusion of
people with down’s syndrome. International Joint Conference on Ambient
Intelligence. Springer, pp. 223–228

Augusto J, Kramer D, Alegre-Ibarra U, Covaci A, Santokhee A (2017) The
user-centred intelligent environments development process as a guide to co-
create smart technology for people with special needs. Universal Access in
the Information Society pp. 1–16

Barkhuus L, Dey A (2003) Is context-aware computing taking control away
from the user? Three levels of interactivity examined. UbiComp 2003: Ubiq-
uitous Computing. Springer, pp. 149–156

Bauer C, Dey AK (2016) Considering context in the design of intelligent sys-
tems: Current practices and suggestions for improvement. Journal of Sys-
tems and Software vol. 112 pp. 26–47

Bauer JS, Newman MW, Kientz JA (2014) What designers talk about when
they talk about context. Human–Computer Interaction vol. 29, 5-6 pp.
420–450

Bauer C, Novotny A (2017) A consolidated view of context for intelligent
systems. Journal of Ambient Intelligence and Smart Environments vol. 9, 4
pp. 377–393

Bauer C, Spiekermann S (2011) Conceptualizing context for pervasive adver-
tising. Pervasive Advertising, Springer. pp. 159–183

Bazire M, Brézillon P (2005) Understanding context before using it. Modeling
and using context, Springer. pp. 29–40

Brown PJ (1995) The stick-e document: a framework for creating context-
aware applications. Electronic Publishing-Chichester- vol. 8 pp. 259–272

Brown PJ, Bovey JD, Chen X (1997) Context-aware applications: from the
laboratory to the marketplace. IEEE personal communications vol. 4, 5 pp.
58–64

https://github.com/ualegre/rcase


Perspectives on engineering more usable context-aware systems 27

Bryson JM (2004) What to do when stakeholders matter: stakeholder identi-
fication and analysis techniques. Public management review vol. 6, 1 pp.
21–53

Chung L, Nixon BA, Yu E, Mylopoulos J (2012) Non-functional requirements
in software engineering, vol. 5. Springer Science & Business Media

Citymapper (2011) Citymapper Transport Application, Official Website.
https://citymapper.com/. [Online; Last accessed 19-February-2018]

Dey AK (2001) Understanding and Using Context. Personal and Ubiquitous
Computing vol. 5 pp. 4–7

Dey AK, Abowd GD (1999) Towards a better understanding of context and
context-awareness. In HUC ’99: Proceedings of the 1st international sympo-
sium on Handheld and Ubiquitous Computing. Springer-Verlag, pp. 304–307

Dourish P (2001) Seeking a foundation for context-aware computing. Human–
Computer Interaction vol. 16, 2-4 pp. 229–241

Dourish P (2004) What we talk about when we talk about context. Personal
and ubiquitous computing vol. 8, 1 pp. 19–30

Evans C, Brodie L, Augusto JC (2014) Requirements Engineering for Intelli-
gent Environments. Intelligent Environments (IE), 2014 International Con-
ference on. IEEE, pp. 154–161

Greenberg S (2001) Context as a dynamic construct. Human-Computer In-
teraction vol. 16, 2 pp. 257–268

Henricksen K (2003) A framework for context-aware pervasive computing ap-
plications. Ph.D. thesis, Computer Science, School of Information Technol-
ogy and Electrical Engineering, University of Queensland

Indulska J, Sutton P (2003) Location management in pervasive systems. Pro-
ceedings of the Australasian information security workshop conference on
ACSW frontiers 2003-Volume 21. Australian Computer Society, Inc., pp.
143–151

ISO (1999) ISO 13407: Human-centred design processes for interactive sys-
tems. Tech. Rep., International Standards Organization

Jones S, Hara S, Augusto J (2015) e-FRIEND: an Ethical Framework for
Intelligent Environment Development. Ethics and Information Technology,
vol. 17. Springer, vol. 17, pp. 11–25

Kramer D, Augusto JC, Clark T (2014) Context-Awareness to Increase Inclu-
sion of People with DS in Society. Workshops at the Twenty-Eighth AAAI
Conference on Artificial Intelligence. pp. 27–31

Lamsfus C, Wang D, Alzua-Sorzabal A, Xiang Z (2015) Going mobile: Defining
context for on-the-go travelers. Journal of Travel Research vol. 54, 6 pp.
691–701

Makris P, Skoutas DN, Skianis C (2013) A survey on context-aware mobile
and wireless networking: On networking and computing environments’ in-
tegration. IEEE communications surveys & tutorials vol. 15, 1 pp. 362–386

McCarthy J, Hayes PJ (1969) Some philosophical problems from the stand-
point of artificial intelligence. Readings in artificial intelligence pp. 431–450

Modeliosoft (a) Modelio. https://www.modelio.org/. [Online; Last accessed
04-April-2018]

https://citymapper.com/
https://www.modelio.org/


28 Unai Alegre-Ibarra et al.

Modeliosoft (b) Modelio Module Installation Guide. https://www.modelio.
org/downloads/download-modelio.html. [Online; Last accessed 04-April-
2018]

Modeliosoft (c) Modelio Module Installation Guide. https://www.modelio.
org/quick-start-pages/916-modelio/quick-start/24-working-with-modules.
html. [Online; Last accessed 04-April-2018]

Nardi BA (1996) Context and consciousness: activity theory and human-
computer interaction. Mit Press

OMG (2012) OMG Systems Modeling Language (OMG SysML), Version 1.3.
http://www.omg.org/spec/SysML/1.3/

OMG (2015) OMG Universal Modeling Language (UML), Version 2.5. http:
//www.omg.org/spec/UML/About-UML/

Pascoe J (1998) Adding generic contextual capabilities to wearable computers.
Wearable Computers, 1998. Digest of Papers. Second International Sympo-
sium on. IEEE, pp. 92–99

Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware
computing for the internet of things: A survey. Communications Surveys &
Tutorials, IEEE vol. 16, 1 pp. 414–454

POSEIDON (2015) Poseidon Web Page. http://www.poseidon-project.org/
research-scientists/questionnaires/. [Online; Last accessed 04-April-2018]

Reiter R (1997) The situation calculus ontology. Electronic News Journal on
Reasoning about Actions and Changes

Roto V, et al. (2006) Web browsing on mobile phones: Characteristics of user
experience. Ph.D. thesis, Helsinki University of Technology

Ruiz-López T (2014) Un enfoque dirigido por modelos para el desarrollo de
servicios para sistemas ubicuos basado en propiedades de calidad. Ph.D.
thesis, Universidad de Granada

Ruiz-López T, Noguera M, Rodríguez MJ, Garrido JL, Chung L (2013)
REUBI: A requirements engineering method for ubiquitous systems. Science
of Computer Programming vol. 78, 10 pp. 1895–1911

Ryan N, Pascoe J, Morse D (1999) Enhanced reality fieldwork: the context
aware archaeological assistant. Bar International Series vol. 750 pp. 269–
274

Schilit B, Adams N, Want R (1994) Context-aware computing applications.
Mobile Computing Systems and Applications, 1994. WMCSA 1994. First
Workshop on. IEEE, pp. 85–90

Schilit BN, Theimer MM (1994) Disseminating active map information to
mobile hosts. Network, IEEE vol. 8, 5 pp. 22–32

Schmidt A (2003) Ubiquitous computing-computing in context. Ph.D. thesis,
Lancaster University

Shogren KA, Luckasson R, Schalock RL (2014) The definition of context and
its application in the field of intellectual disability. Journal of Policy and
practice in Intellectual Disabilities vol. 11, 2 pp. 109–116

Suchman LA (1985) Plans and situated actions: the problem of human-
machine communication. Xerox Corporation, Palo Alto Research Center

https://www.modelio.org/downloads/download-modelio.html
https://www.modelio.org/downloads/download-modelio.html
https://www.modelio.org/quick-start-pages/916-modelio/quick-start/24-working-with-modules.html
https://www.modelio.org/quick-start-pages/916-modelio/quick-start/24-working-with-modules.html
https://www.modelio.org/quick-start-pages/916-modelio/quick-start/24-working-with-modules.html
http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/UML/About-UML/
http://www.omg.org/spec/UML/About-UML/
http://www.poseidon-project.org/research-scientists/questionnaires/
http://www.poseidon-project.org/research-scientists/questionnaires/


Perspectives on engineering more usable context-aware systems 29

Sutcliffe A, Fickas S, Sohlberg MM (2006) PC-RE: a method for personal and
contextual requirements engineering with some experience. Requirements
Engineering vol. 11, 3 pp. 157–173

Svanaes D (2001) Context-aware technology: a phenomenological perspective.
Human–Computer Interaction vol. 16, 2-4 pp. 379–400

Takayama L (2017) The motivations of ubiquitous computing: revisiting the
ideas behind and beyond the prototypes. Personal and Ubiquitous Comput-
ing vol. 21, 3 pp. 557–569

UberTechnologies (2009) Uber API. https://developer.uber.com/. [Online;
Last accessed 19-February-2018]

Wang W, Chang Q, Li Q, Shi Z, Chen W (2016) Indoor-Outdoor Detection
Using a Smart Phone Sensor. Sensors vol. 16, 10 p. 1563

Winograd T, Flores F (1986) Understanding computers and cognition: A new
foundation for design. Norword, NJ: Ablex Publishing Corporation

Yau SS, Liu H, Huang D, Yao Y (2003) Situation-aware personalized informa-
tion retrieval for mobile internet. Computer Software and Applications Con-
ference, 2003. COMPSAC 2003. Proceedings. 27th Annual International.
IEEE, pp. 639–644

Ye J, Dobson S, McKeever S (2012) Situation identification techniques in per-
vasive computing: A review. Pervasive and mobile computing vol. 8, 1 pp.
36–66

Zimmermann A, Lorenz A, Oppermann R (2007) An operational definition of
context. Modeling and using context, Springer. pp. 558–571

https://developer.uber.com/

	Introduction
	Previous work
	Towards a better understanding of the challenges with regard to the conceptualisation of context
	A usability oriented conceptualisation of context and context-awareness
	General guidelines for context-aware systems engineering
	Discussion
	Conclusions

