MIRTO: an Open-Source Robotic Platform for
Education

K. Androutsopoulos L. Aristodemou J. Boender
M. Bottone E. Currie I. El-Aroussi B. Fields
L. Gheri N. Gorogiannis M. Heeney M. Micheletti
M. Loomes M. Margolis M. Petridis A. Piermarteri
G. Primiero F. Raimondi N. Weldin

June 14, 2018

Abstract

This paper introduces the MIddlesex RoboTic platfOrm (MIRTO), an
open-source platform that has been used for teaching First Year Computer
Science students since the academic year 2013/2014, with the aim of pro-
viding a physical manifestation of Software Engineering concepts that are
often delivered using only abstract or synthetic case studies. In this paper
we provide a detailed description of the platform, whose hardware spec-
ifications and software libraries are all released open source; we describe
a number of teaching usages of the platform, report students’ projects,
and evaluate some of its aspects in terms of effectiveness, usability, and
maintenance.

1 Introduction

In 2013 the Department of Computer Science at Middlesex University took the
decision of re-designing the first year of the Computer Science degree, with the
aim of addressing some of the issues with the previous course format: progressive
disengagement, negative feedback about course content in terms of employabil-
ity and “practical” experience, low attendance rate, etc. Due to the diverse
range of academic backgrounds of first year students at Middlesex University,
another problem to be addressed was the definition of a course format that could
accommodate a non-uniform class of students.

The teaching team decided to adopt a problem-based approach to teach-
ing, with a focus on the so-called inverted curriculum where students learn
theory whilst they are doing practical exercises [11] and project-centered de-
livery, providing detailed material that students could use in workshops un-
der the supervision of members of staff. Assessment is performed on a daily
basis through so-called Student Observable Behaviours (SOBs), which can be

Figure 1: MIRTO fully assembled (front and rear views)

thought of as fine-grained learning outcomes, or capabilities, such as “Build
and test simple combinatorial logic circuits using at least two different gates
in hardware” or “Write a simple recursive function to carry out a well-defined
task over lists or integers, test the function and explain how it works”. Ob-
servation of behaviours is supported by a bespoke assessment tool available at
https://bitbucket.org/mdxmase/sobmonitor, with the aim of addressing the
known limitations of self-paced learning and constructivist approaches [16, 12]:
indeed, while students can work in a very flexible way, we are nevertheless able
to track their progress both in terms of attendance and progress.

The teaching team decided to place particular emphasis on physical mani-
festations of computing through the use of hardware resources, in an attempt
to create a syntonic environment (in the sense of [14]), in which students could
“establish a firm connection between personal activity and the creation of for-
mal knowledge”. This approach is particularly useful for code comprehension,
but also to cover with practical and concrete projects some of the topics typical
of Software Engineering, such as agile development in a team, continuous in-
tegration, and test-driven development. More specifically, physical computing
provides an opportunity for conceptual blending [8]: by asking students to work
in both abstract and physical spaces, they create blends that enable rich con-
versations — the behaviour of their code blends with the behaviour of a robot
(or device), and the latter is observable in explicit ways.

In this paper we present MIRTO, the MIddlesex RoboTic platfOrm, show-
ing how it can be used to cover several of the Knowledge Areas in the ACM
Computer Science curriculum [10], with a particular focus on the Software Engi-
neering knowledge area. In particular, we provide hardware details in Section 2
and software details in Section 3; example applications for teaching and students
projects are reported in Section 4, while an evaluation and a comparison with
other existing platforms are provided in Section 5. We conclude in Section 6.

2 Hardware details

Mirto is a two-wheel robot of circular shape, with a diameter of approximately
20 cm and height 10 cm, see Figure 1. The main components are:

Jumper to
select voltage
for D3 & D4

Figure 2: MIRTO PCB

A pair of 5 V 1:34 geared motors with encoders connected to 1/10 scale
car wheels.

Off-the-shelf components: bump contact sensors, infra-red sensors, poten-
tiometer, digital switch, piezo buzzer, 5-line LCD screen.

A Teensy 3.2 micro-controller: this is an Arduino-compatible ARM micro-
controller running at 72 MHz, 256 Kbytes of flash memory, 64 Kbytes of
RAM, 33 usable PINs, USB and serial communication ports.

The wheels and the off-the-shelf components are connected to the Teensy
micro-controller by means of a bespoke printed circuit board (PCB) that
has been designed at Middlesex (see Figure 2); the design files of the
PCB are released open source (see links below) and several companies are
available to print them.

A Raspberry Pi version 3 with 1.4GHz 64-bit quad-core processor, 1 Gbyte
RAM, built-in WiFi, 4 USB ports, HDMI, composite audio output and
40-pin GPIO header. The PCB plugs into the Raspberry Pi GPIO pins
and communicates with the Teensy over a serial channel. Software details
are reported in the next section.

The frame of the robot is made using 3 mm acrylic sheets cut using a laser
cutter, locked using threaded nuts and bolts. The robot used in teaching has a
3 mm aluminium sub-frame cut using a water jet cutter; however the all-acrylic
versions have proven sufficiently robust. The design files for the frame in DXF
format, the design files for the PCB, a full list of parts, and hardware instructions
are available at https://github.com/michaelmargolis/MirtoDesignFiles.
We refer in particular to http://goo.gl/k26Rfy for the actual installation
instructions. The main parts are shown in Figure 3.

3 Software Details

The core software component (and main difference between MIRTO and other
robotic platforms) is a bespoke firmware running on the Teensy that allows for
the interaction of the micro-controller with separate clients over a streaming
connection (typically a serial connection). The firmware has been developed at
Middlesex University and is a service-based abstraction of sensors and actuators
for micro-controllers called the Arduino Service Interface Protocol (ASIP [2]).
The protocol is a bi-directional text-based messaging system. As an example,
the following message sent to a board running ASIP turns digital PIN 13 to
HIGH: 1,D,13,1, while the following message from an ASIP board reports the
state of 6 analog pins: @I,a,6,{0:21,1:0,2:1024,3:789,4:0,5:0} Similar
messages are used to control the robot!, for instance the message M,m,0,80
to the board sets the wheel with ID 0 (the left wheel) to 80% power moving
forward, and messages from the board report the values of bump sensors, infra-
red sensors, potentiometers, etc.

We refer to [2] and to the ASIP software repository available at https:
//github.com/mdxmase/asip for additional details on the protocol and for its
implementation. The key point of this architecture at the level of the micro-
controller is that the robot does not need to be pre-programmed with a specific
firmware for specific tasks. Instead, it can be controlled by a streaming con-
nection that can be implemented in a number of programming languages. As
a result, the students are not bound to a programming language or to a spe-
cific IDE such as the Arduino IDE to use the robot. Additionally, as the ASIP
communication assumes a stream, several options are possible to connect to the
board: directly using the USB port on the Teensy, using the serial pins con-
nected to the GPIO pins of the Raspberry Pi, or over TCP using appropriate
bridges TCP /serial, such as the Raspberry Pi itself or a system-on-a-chip (SoC)
such as the ESP8266.

We have built client libraries for ASIP in several programming languages:
Java (https://github.com/fraimondi/java-asip/, C (https://github.com/
fraimondi/c-asip), Python (https://github.com/gbarbon/python-asip),
Racket (https://github.com/fraimondi/racket-asip), and Erlang (https:

INote that the ASIP firmware running on the Teensy could be replaced with pure Arduino
code; in this case, which is useful if a real-time controller is needed, the robot can be controlled
without a streaming interface.

e) IR Sensars
Spacer x2

Uooer Plate Bumoer x2
Bottom Plate
Caster Caster Bumper l
Motor
Battery Plate Mount a Strut
Spacer . x2 Mount x2

T

Front Cross Piece

Rear Cross Piece

| SR

Switch LCD Display

Wheel x2

Mirto Board Raspberry Pi

Figure 3: MIRTO main parts

(open-asip "COM3")
(setLCDMessage "Hello World" 0)
(setMotors 90 90)

(sleep 1)

(stopMotors)

Figure 4: Controlling MIRTO using Racket over serial

//github.com/ngorogiannis/erlang-asip). Note that Erlang is used by stu-
dents in the second year as part of their module “Distributed Systems and
Networking”.

Racket [9] is a LISP-like programming language used since 2013 to teach
foundations of programming to First Year Computer Science students at Mid-
dlesex University. Figure 4 shows an example Racket program that controls
a MIRTO robot connected to a Windows computer using a USB cable to the
Teensy USB port. The program opens a stream on serial port COM3 (the client
can also be run on Linux and Mac machines, changing the name of the serial
port), then it writes a message on the LCD screen, then it sets the motors for-
ward at 90% power and finally, after one second, it stops the motors. We refer
to [5] for details on how Racket can be used in conjunction with MIRTO to
teach functional patterns that have a physical manifestation.

In their second and third year, Middlesex Computer Science students use the
Java, Erlang, and Python programming languages. Figure 5 shows an example
of how the robot can be controlled over TCP. In this case, the Java code runs on
a client connected to a network and the robot needs to be connected to the same
network. This example assumes that the robot has IP address 192.168.42.1. The
Java code creates a connection to this address, then it writes a line to the LCD
screen, and finally it moves the robot forward at 90% power for one second.
Notice how the code is nearly identical to the code in Figure 4: this allows
the students to focus on the architecture of the system, which in the case of a
networked robot is completely different from a USB connection. There is also a
logistical difference; when on a network, the robot could be in a separate room.

Students can also use the Raspberry Pi layer to control the robot. The
Raspberry Pi can be configured in two different modes: either as an access
point, creating a new wireless network and acting as a DHCP server, or as a
client of pre-existing networks. In both cases, students have access using SSH
to MIRTO and can deploy code on the Raspberry Pi, which acts as a standard
headless server. This enables the construction of complex interactions between
systems. For instance, the Raspberry Pi could monitor a Twitter account and
react to specific messages. We refer to the next section for details of possible
applications.

// [...]
JMirtoRobot0OverTCP robot =

new JMirtoRobotOverTCP ();
robot.initialize("192.168.42.1");

// Writes a line to LDC
robot .writeLCDLine ("Hello World", 0);

// Move forward for 1 second
robot.setMotors (90, 90);
Thread.sleep (1000);
robot.stopMotors () ;

Figure 5: Controlling MIRTO using Java over TCP

4 Applications

In this section we first describe possible teaching applications using MIRTO,
suitable for students at different levels. Then, we report on projects developed
by students in the past four years.

4.1 Teaching applications

The robot enables us to cover several knowledge areas of the ACM Computer
Science Curriculum [10]. In addition to Software Development Fundamentals
such as conditional structures, iterative control structures, recursion, and ab-
stract types such as Stacks and Priority Queues, MIRTO exposes students to a
physical manifestation of concepts such as unit testing and programming using
APIs. Moreover, MIRTO can be used to cover specific Software Engineering
topics, some of which are exemplified in the following subsections.

4.1.1 Continuous integration and delivery

The Raspberry Pi layer of MIRTO runs a standard Debian-based Linux distri-
bution. As a result, all the development tools available on a standard Linux
distribution are also available on MIRTO. A workflow that can be used by stu-
dents is the following: students develop code on their machine using an IDE such
as Eclipse, NetBeans or IntelliJ. The code is then committed and pushed to a
git repository, typically a GitHub or Bitbucket account (both provide student
licenses), where students share code in small groups. The key features of contin-
uous integration and delivery can be covered by installing git on the Raspberry
Pi and by defining a “bare” git repository? on it. Bare repositories are used to
set up “push-to-deploy” workflows: on their machines, students need to add a
remote endpoint for the robot, using a command similar to the following (this

%https://git-scm.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server

could also be added to the IDE): git remote add production mirto@192.168.1.1:/production,
where 192.168.1.1 is the IP address of the robot, mirto is the username on the

Raspberry Pi, and production is the name of the bare repository on the Rasp-

berry Pi. The repository on the Raspberry Pi is configured with a post-receive

hook, typically under /home/mirto/production/.git/hooks/post-receive and

containing the instructions to be executed when new code is pushed to production.

A typical exercise for this scenario is the following:

“Develop a line following algorithm for MIRTO using the infra-red
sensors to detect the presence of a black line. Start by using a thresh-
old algorithm (on/off the line). While the robot is following the
line, change the algorithm to a proportional controller and
deploy the new code using a post-receive hook in git”.

Students are given a Bash script containing the basic instructions to build
the software on the Raspberry Pi, to stop a running process (the line following
algorithm in this case), and to re-start the process. Upon completion of this
task, students are encouraged to investigate the use of Jenkins®, an industry-
standard automation tool that allows the construction of complex workflows for
continuous delivery / continuous deployment.

4.1.2 Test-driven development

Students are required to reason about functional requirements, describing how
system data is exchanged using UML. Figure 6 shows an example UML sequence
diagram showing how a message travels from the student laptop to the actual
wheel through a TCP/Serial bridge on the Raspberry Pi and ASIP messages.
Students are requested to draw these diagrams for all components, thus mod-
elling the bi-directional flow of information and reasoning about the overall
architecture (see next section).

Students are required to design tests to cover individual functions such as
detecting contact with a bump sensor using unit tests. We ask students to start
from test definition and then to move to the actual implementation, thus intro-
ducing students to test-driven development. Students are requested to design
unit tests for all the components modelled with UML diagrams.

In addition to unit tests, students can also design integration tests for all
the interfaces that are present, covering the messages exchanged in the UML
diagrams. Following integration testing, students can design system tests for
specific applications, such as line following. Given the black-box nature of sys-
tem tests, when working in groups students can test other groups’ systems and
thus also appreciate with concrete instances the notion of acceptance testing,
thus covering all the steps: unit testing, integration testing, system testing and
acceptance testing.

Shttps://jenkins. io.

Laptop Rasphberry Pi Teensy Wheel

I
| Library call \,—r—‘
I I
I I
i ASIP message .
Hardware call .

Figure 6: UML sequence diagrams showing data exchanges for moving a wheel
(the Raspberry Pi acts as a TCP/Serial bridge).

4.1.3 Reasoning about system architectures

The robot is inherently more complex than software-only systems that can be
used in a teaching environment. At the very least, the robot is composed of mul-
tiple and independent sensors and actuators that are coordinated by a micro-
controller. Students are requested to draw component diagrams of all the possi-
ble architectures that can be used with the robot. For instance, Figure 7 shows
the Component diagram of the robot in the case in which the micro-controller
is connected directly to a laptop using a USB cable (no Raspberry Pi in this
case).

Students need to build similar diagrams for the cases in which a Raspberry
Pi is introduced. There are two options in this case: in the first option, the
code can run on the Raspberry Pi itself (all the client libraries are supported,
including Racket). In the second option, the Raspberry Pi can act as a bridge
using a TCP connection with an external computer. In this case, the code
is running on the laptop and the Raspberry Pi forwards messages in either
direction.

All these options allow students to reason about configuration and release
management for the several projects that can be implemented. Some of these
projects include:

e Line following robot: in this case performance is a concern, and therefore
the students can choose to run the code on the Raspberry Pi or even
directly on the micro-controller.

e Web-based control: in this case the robot becomes a web server and clients
can connect to it using a browser. For this architecture, the web applica-

Right Wheel

2]

Left bump sensor @

Right bump sensor E

)

D

Teensy

{E%Co/ -

\(Ox

Left Wheel

&

Infra-red sensor 1 E

N

Infra-red sensor 2 E

Laptop (USB)

2]

Figure 7: UML Component diagram for a USB-only connection (laptop at the
bottom, micro-controller in the middle).

10

tion needs to run on the Raspberry Pi and it must implement one of the
client libraries. First year students typically implement this task using
Racket and its built-in web server to drive a robot using key presses on a
browser.

e Swarm/multi-robot operations: in this case messaging is typically man-
aged externally to the robot, and therefore the Raspberry Pi becomes a
bridge of ASIP messages (see below for a student project in this configu-
ration).

4.2 Student projects

We encourage students to work autonomously at projects of their choice through-
out the course of their studies, encouraging them to build a portfolio of projects
using a code repository such as GitHub and Bitbucket. We allocate teaching
time for these activities, in particular: in the last four teaching weeks of the
First Year, students have the option of working at the “First Year Challenge in
Computer Science”. This is a challenge funded by an external industrial spon-
sor that provides a prize of 500 GBP for the “best” student project. For this
challenge, students typically work in groups and projects are assessed for their
originality, for the Software Engineering approaches used, and for the complex-
ity of the tasks. Assessment is performed by academics in workshops where
students can present they work as part of a group presentation (each academic
assesses, on average, b projects). We report below two submissions received in
previous years and a third year project that led to a publication.

4.2.1 Voice recognition.

This project by a first year student involved the use of Carnegie Mellon Pocket-
Sphinx*, a lightweight continuous speech recognition engine written in C. The
student compiled the code on the Raspberry Pi and modified it so that it could
output only specific command such as “move forward”. The commands were
then streamed to a Racket application that moved the robot accordingly. The
only additional component required for this project was a USB microphone
connected to the Raspberry Pi.

4.2.2 Using Twitter and Image Capturing.

This project by a group of first year students involved the use of the Twitter
streaming API®. By connecting MIRTO to the internet, students were able to
filter tweets containing the keyword MIRTOBOT. Then, they could parse specific
messages such as movement instructions, but also instructions to take pictures
using a USB webcam added to the Raspberry Pi. All the images captured in
this way have been made available through a web server running on the robot
and written in Racket.

4https://github.com/cmusphinx/pocketsphinx
Shttps://developer.twitter.com/en/docs/tweets/filter-realtime/overview

11

4.2.3 Swarm robotics

This is a final year project developed as a research investigation into decision
making in a multi-robot environment [3]. The student first developed and sim-
ulated algorithms for decision making using NetLogo [17]. These algorithms
have then been implemented in Java and deployed on Mirto. A short video of is
available at https://goo.gl/D3dUkk. This project shows that MIRTO can be
used not only for teaching, but also to introduce students to research activities.

5 Evaluation

In this section we evaluate the MIRTO platform and compare it to other existing
solutions. We also discuss our experience since 2013 and report lessons learnt
that, we hope, may be useful to other educators who plan to use a robotic
platform in their classes.

5.1 Qualitative and Quantitative Considerations

In terms of a qualitative financial evaluation, the overall cost per robot for
parts only is approximately 100 GBP; the most expensive components are the
Raspberry Pi (approx 30 GBP) and the Teensy 3.2 (approx 20 GBP). These
costs do not include the time required to assemble the robots (approx 1 hour
for each robot for an experienced assembler) and to maintain them. We discuss
these indirect costs below.

Given that the robots are pre-assembled and that students are provided with
high-level libraries and detailed handouts, we have observed that students are
able to start working at specific tasks such as “move forward for 1 second” in less
than 30 minutes when they are first exposed to the platform. The libraries that
we provide allow students to focus on the actual code implementing specific
tasks, rather than on the hardware details of the robot. The presence of an
LCD screen enables students to connect to the robot easily through a network
connection. As a result, from a qualitative point of view we consider the robot
usable, in that it enables students to reason about their coding or modelling
tasks in a relatively short amount of time. The robots are equipped with a
10,000 mAh battery, which allows a full day of teaching (8 hours over multiple
sessions). The most energy-hungry task is wheel movement at maximum torque
(i.e., uphill or on a “soft” surface).

For a quantitative evaluation, we have measured when a basic SOB associ-
ated with the robot was observed, and compared it to all the other threshold
SOBs. In particular, after introducing the material for a SOB, we have observed
how many students were observed on subsequent days, for a total of 144 stu-
dents in the academic year 2017/18. Overall, SOBs are observed on average 53
days after the introduction of the corresponding material; the SOB on robots
is observed, on average, 26.5 days after the introduction of the material. Only
4 other SOBs are observed (on average) earlier than the SOB on the robot:

12

35

25
20

15

10 ||
5
. Il I|‘|I 1 1 || 1 1

123456 78 9101112131415161718192021222324 252627 28293031 323334353637 38394041424344454647484950

Figure 8: Students observed in each day following the introduction of the ma-
terial.

2 of them are related to an in-class programming test which is normally ob-
served within a week, as students are required to take the test in specific dates.
Interestingly, one of the other two SOBs is related to another exercises with
hardware (“Program an array of data to several different data addresses with
physical memory”). Figure 8 shows in detail how many students were observed
as a function of the number of days after the introduction of the material.

5.2 Comparison with other platforms

The number of robotic platforms used in teaching is vast, and a detailed review
of the options is beyond the scope of this article. A number of institutions in-
clude the actual design and construction of a robot in their teaching material:
we have chosen, instead, to provide students with a pre-built platform that can
nevertheless be expanded in a number of ways. Our choice has been motivated
by the aim of focusing on learning outcomes that are more aligned with a tra-
ditional CS curriculum [10]; additionally, as noted by other authors [7], issues
associated with robot construction may actually hinder the learning process.
A number of options are available for younger children: several variants of
the Bee-Bot platform are commonly used in primary schools, while the Dash
and Dot robots by https://www.makewonder.com/ have a dedicated program-

13

ming language based on blocks. Micro-controllers are also commonly found
in classrooms, including Arduino boards and the UK-specific BBC micro:bit
(http://microbit.org/) targeted at Year-7 students and including both block-
based and textual coding environments.

In higher education, the Lego EV3 platform is probably the most common
off-the-shelf platform, see for instance [6]. This platform can be used either
as a micro-controller based solution, or in conjunction with a Raspberry Pi
through a BrickPi kit (https://www.dexterindustries.com/brickpi/). The
main difference with respect to our solution is that we release both hardware and
software as open source. The advantage of open source hardware and software
over packaged educational offers is that the robot can be built to address many
different educational goals. Perhaps most obvious is that, unlike the Lego EV3
and many other robots designed for education, it is built of standard parts
rather than fixed or snapped together components. This enables educators and
students to tailor the hardware and software to meet specific educational goals,
and in addition to have access to the extensive range of sensor and actuator
libraries for the Arduino ecosystem.

In general, the adoption of robots in the classroom is by no means new, see
for instance [4] for a systematic literature review and for references to options
beyond Lego EV3.

It is normally accepted that robots provide motivational platforms for stu-
dents to engage with the teaching material; for instance, the work in [13] found
a positive correlation between motivation and robots usage using surveys. How-
ever, not all interventions with robots are successful in terms of learning; see
for instance Fagin [7]: the authors observed that “Students in robotics sections
must run and debug their programs on robots during assigned lab times”, a
time-consuming task that prevents students from focussing on the foundational
issues of coding. We argue that, in the case of MIRTO, the provision of high-
level libraries in Java and other programming languages enables students to
by-pass low-level technical issues.

5.3 Lessons learnt

The first version of the robot was designed in 2013 for the academic year
2013/14. It consisted of a Raspberry Pi version 2, an Arduino Uno, and a
pair of Hub-ee wheels®, see Figure 9.

The main focus of the original build was the support of the Racket program-
ming language, as described in [1]. This version of the robot was successful with
students, but it suffered from a number of issues:

e The wiring was complex, using standard Arduino pins: the connections
were subject to wires being pulled or mis-placed, and therefore the plat-
form required regular maintenance.

Shttp://www.creative-robotics.com/About-HUBee-Wheels

14

Figure 9: MIRTO Robot: 2014 version

15

e The structure was made of three layers of acrylic joined by plastic spacers,
subject to vibrations and to screws becoming loose.

e The Arduino layer employed Firmata, a 7-bit protocol designed to control
Arduino Input/Output pins. While this allowed us to have a functional
software prototype in a short time, it also proved extremely difficult to
extend with additional features.

Since 2013/14, the robotic platform has been used every academic year for a
total of 890 students. Over the years, we have made a number of changes that
allowed us to:

e Simplify assembly and reduce maintenance: starting in 2015, we
have designed our own printed circuit board, resulting in a very small
number of wires required. While the design of the circuit board may
require an initial time investment, it also reduces the assembly time sub-
stantially and, moreover, it simplifies maintenance and reduces the risk
of wires being pulled. We have also removed one layer and introduced in
2017/18 a metal sub-frame to make the structure more rigid. The Hub-ee
wheels have been replaced with a different (and much cheaper) motor that
has proven more robust.

e Enable hardware extensions: we have replaced the original Arduino
Uno with a Teensy that, at the same price, provides a much greater number
of PINs, more RAM, and faster processor. We also moved to a Raspberry
Pi version 3, with built-in WiFi and more powerful processor. This has
allowed students to connect additional sensors, such as sonar distance
sensors and servo motors.

e Enable software extensions: we have replaced the Firmata protocol
with ASIP [2], a plain-text protocol for the composition of services on
the micro-controller. This new protocol has allowed students to design
new services and it has also resulted in a research middleware for wireless
sensor networks [3].

The staff resources required to employ robots in the classroom should not
be underestimated. There is a total of approximately 180 students in the First
Year of Computer Science; students are split in groups of approximately 30
students and therefore the same lab sessions are repeated six times every week.
For the robotic sessions we normally employ between 7 and 10 robots per class,
corresponding to approximately 3 students per robot. We currently have 20
identical robots available that, when required, enable us to cover two parallel
sessions. The team involved in teaching the first year includes academic and
teaching assistants delivering sessions; teaching assistants are also employed to
assemble the robot at the beginning of term (each robot requires approximately 1
hour to be assembled). For the assembly task the department has also recruited
Engineering students, providing them with an opportunity to learn relevant
skills. A separate group of teaching assistants is in charge of testing, quality

16

control and software set-up. The ASIP firmware is flashed in a few seconds on
the Teensy layer, while the software for the Raspberry Pi is installed by cloning
a master SD card prepared by academics. We have an SD card duplicator that
can prepare 20 SD cards in approximately 2 hours.

The operations mentioned above are normally performed during non-teaching
weeks at the beginning of term. During the teaching term, the robots are kept
in a locked room where academics can collect and drop them. Two teaching
assistants are in charge of performing a daily check of the robots, making sure
that no parts are broken or loose; the same teaching assistants are also respon-
sible for charging the batteries. These activities take approximately 2 hours per
day.

To amortise these costs, we have designed the platform in such a way that
it can support multiple programming languages, and thus be used not only by
first year students, but also by second and third year students both in scheduled
classes and for personal projects. The robots are also used for outreach activities
with children using Scratch [15]: a Scratch-MIRTO bridge is available at https:
//github.com/fraimondi/java-asip. For Scratch activities, the robot creates
a wireless access point and children can employ blocks that we have designed
to perform simple tasks, such as moving inside an area delimited by black tape
to simulate a Roomba robot: an example program for this task is reported in
Figure 10. In this program, the robot starts at speed 100 for both wheels. If
it detects a black line (value of infra-red sensor greater than 400), it stops,
backtracks with speed -80 for 0.5 seconds, stops again, rotates with speed -80
left and 80 right for 0.5 seconds, and finally restarts again.

6 Conclusion

In this paper we have presented MIRTO, an open source robotic platform em-
ployed at Middlesex University to teach Software Engineering knowledge areas
from the ACM curriculum [10]. We have described both the hardware and
the software architecture of the robot and we have provided example activities
for the classroom and reported projects developed by students in the past 5
academic years.

An quantitative measure of engagement with the material performed in
2017/18 shows that students tend to engage much earlier with material as-
sociated with the robot (and with other “practical” tasks), compared to tasks
associated to more theoretical concepts.

We have discussed resource requirements for the deployment of robots in the
classroom, both in terms of costs of equipment and in terms of additional man
power required for set-up and maintenance.

In addition to its usage in the classroom, we have used MIRTO for outreach
activities with audiences ranging from primary school children to science festi-
vals with adults. Given the level of maturity and stability of the platform, we are
now beginning to start using the platform for research purposes to study energy
consumption in wireless sensor networks and genetic algorithms for strategy

17

setMotors
i
forever

stopMotors

sétMnturs m m

el

wait m secs

stopMotors

sétMGtors EE EE
e
[wait m Secs

stopMaturs

setMotors

Figure 10: A Scratch program to control the robot

18

selection in a multi-robot environment.

low

All the material has been released open source and is available at the fol-
ing links:

e Design files and assembly instructions:
https://github.com/michaelmargolis/MirtoDesignFiles.

e ASIP firmware for the Teensy layer:
https://github.com/mdxmase/asip

e Java ASIP client library:
https://github.com/fraimondi/java-asip

e C ASIP client library:
https://github.com/fraimondi/c-asip

e Racket ASIP client library:
https://github.com/fraimondi/racket-asip

e Python ASIP client library:
https://github.com/gbarbon/python-asip

e Erlang ASIP client library:
https://github.com/ngorogiannis/erlang-asip

References

1]

K. Androutsopoulos, N. Gorogiannis, M. Loomes, M. Margolis, G. Prim-
iero, F. Raimondi, P. Varsani, N. Weldin, and A. Zivanovic. A racket-based
robot to teach first-year computer science. In Proceedings of the 7th Euro-
pean Lisp Symposium, pages 5462, 2014.

Gianluca Barbon, Michael Margolis, Filippo Palumbo, Franco Raimondi,
and Nick Weldin. Taking arduino to the internet of things: The asip pro-
gramming model. Computer Communications, 89-90:128 — 140, 2016. In-
ternet of Things: Research challenges and Solutions.

Luca Battistelli and Giuseppe Primiero. Weighted collective decision mak-
ing for binary properties in an autonomous multi-robots system. 2018.
Under Review.

Fabiane Barreto Vavassori Benitti. Exploring the educational potential
of robotics in schools: A systematic review. Computers & Education,
58(3):978 — 988, 2012.

Jaap Boender, E. Currie, M. Loomes, Giuseppe Primiero, and Franco Rai-
mondi. Teaching functional patterns through robotic applications. In Johan
Jeuring and Jay McCarthy, editors, Proceedings of the 4th and 5th Inter-
national Workshop on Trends in Functional Programming in Education,

19

[16]

[17]

TFPIE 2016, Sophia-Antipolis, France and University of Maryland College
Park, USA, 2nd June 2015 and 7th June 2016., volume 230 of EPTCS,
pages 17-29, 2016.

A. Cruz-Martin, J.A. Fernandez-Madrigal, C. Galindo, J. Gonzalez-
Jimenez, C. Stockmans-Daou, and J.L. Blanco-Claraco. A lego mindstorms
nxt approach for teaching at data acquisition, control systems engineering

and real-time systems undergraduate courses. Computers & Education,
59(3):974 — 988, 2012.

Barry Fagin and Laurence Merkle. Measuring the effectiveness of robots in
teaching computer science. SIGCSE Bull., 35(1):307-311, January 2003.

G. Fauconnier and M. Turner. The Way We Think: Conceptual Blending
and the Mind’s Hidden Complezities. Basic Books, 2002.

Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-
2010-1, PLT Design Inc., 2010. https://racket-lang.org/.

Association for Computing Machinery (ACM) Joint Task Force on Com-
puting Curricula and IEEE Computer Society. Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate Degree Programs in Com-
puter Science. ACM, New York, NY, USA, 2013. 999133.

Alison King. From sage on the stage to guide on the side. College teaching,
41(1):30-35, 1993.

Paul A. Kirschner, John Sweller, and Richard E. Clark. Why minimal
guidance during instruction does not work: An analysis of the failure of
constructivist, discovery, problem-based, experiential, and inquiry-based
teaching. Educational Psychologist, 41(2):75-86, 2006.

Monica M. McGill. Learning to program with personal robots: Influences
on student motivation. Trans. Comput. Educ., 12(1):4:1-4:32, March 2012.

Seymour Papert. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, Inc., New York, NY, USA, 1980.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk,
Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, and Yasmin Kafai. Scratch: Programming for all.
Commun. ACM, 52(11):60-67, November 2009.

Jonathan G. Tullis and Aaron S. Benjamin. On the effectiveness of self-
paced learning. Journal of Memory and Language, 64(2):109-118, 2 2011.

Uri Wilensky. Netlogo. Technical report, Center for Connected Learning
and Computer-Based Modeling, Northwestern University, Evanston, IL,
1999.

20

