
SPECIAL SECTION ON RECENT ADVANCES ON RADIO ACCESS AND SECURITY
METHODS IN 5G NETWORKS

Received December 1, 2017, accepted January 3, 2018, date of publication January 30, 2018, date of current version March 13, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2799210

A Distributed Anomaly Detection System for
In-Vehicle Network Using HTM
CHUNDONG WANG1, ZHENTANG ZHAO1 , LIANGYI GONG1, LIKUN ZHU1, ZHELI LIU2,
AND XIAOCHUN CHENG3, (Senior Member, IEEE)
1Key Laboratory of Computer Vision and System, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
2School of Computer Science and Engineering, Nankai University, Tianjin 300350, China
3Department of Computer Science, Middlesex University, London NW4 4BT, U.K.

Corresponding author: Liangyi Gong (gongliangyi@tjut.edu.cn)

This work was supported in part by the Foundation of the Educational Commission of Tianjin, China, under Grant 20130801, in part by the
General Project of Tianjin Municipal Science and Technology Commission under Grant 15JCYBJC15600, in part by the Major Project of
Tianjin Municipal Science and Technology Commission under Grant 15ZXDSGX00030, and in part by the NSFC: The United Foundation
of General Technology and Fundamental Research under Grant U1536122.

ABSTRACT With the development of 5G and Internet of Vehicles technology, the possibility of remote
wireless attack on an in-vehicle network has been proven by security researchers. Anomaly detection
technology can effectively alleviate the security threat, as the first line of security defense. Based on this,
this paper proposes a distributed anomaly detection system using hierarchical temporal memory (HTM) to
enhance the security of a vehicular controller area network bus. The HTMmodel can predict the flow data in
real time, which depends on the state of the previous learning. In addition, we improved the abnormal score
mechanism to evaluate the prediction. We manually synthesized field modification and replay attack in data
field. Compared with recurrent neural networks and hidden Markov model detection models, the results
show that the distributed anomaly detection system based on HTM networks achieves better performance in
the area under receiver operating characteristic curve score, precision, and recall.

INDEX TERMS In-vehicle network security, real-time anomaly detection, HTM algorithm.

I. INTRODUCTION
With the rapid development of mobile Internet, big data
and cloud computing technology, the automobile gradu-
ally become intelligent, network oriented. The intelligent
car network is a new direction of innovation and develop-
ment. Concepts and technologies such as autopilot, shared
car, and Internet of Vehicles (IoV) emerge as the times
require. 5G is regarded by the industry as the key technol-
ogy to realize automatic driving and network communica-
tion [1]. It has advantages of low delay, large bandwidth and
high connection density. Moreover, most modern cars are
equipped with multi-function remote information processing
system, supporting global positioning system (GPS), media
entertainment, or even directly accessing cellular networks.
However, the remote information processing system is vul-
nerable to network attacks because it is connected to the
external wireless network [2]–[4]. The attacker can access
the target vehicle network through the wireless access
interface [5], implement a variety of attacks such as replay
attack, DoS attack, frame sniffing, frame injection and so

on [6]–[8]. Thus, it brings potential security threats to the
vehicle network.

The vehicle network is composed of Electronic Control
Units (ECUs) and Controller Area Network (CAN) bus. And
ECU is an embedded control component that connects sen-
sors and actuators. Each ECU gets the input from its sensor
to execute specific instructions through the executor, aiming
to monitor the state of the vehicle and perform the corre-
sponding behavior. Different ECUs can communicate with
each other through the CAN bus. Even if they are deployed
on a different speed bus, the architecture of the CAN network
enables ECU to communicate with other ECU. When an
attacker has a wireless remote access to the vehicle network,
it can eavesdrop the communication between ECUs and send
malicious control messages [9]–[11]. Therefore, we must
improve the security capability of the vehicle network.

In order to strengthen the security of the car network,
there are two main solutions. One is to design passive
defense based on security protocol [12]–[14] or secu-
rity network framework [15], [16], and the other is to
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detect potential network risk based on anomaly detection
technology [17], [18]. Considering the security vulnerabili-
ties existing in the CANprotocol, it plays a protective role that
developing new security protocols or security frameworks
for future cars. On the other hand, the researchers also put
forward a variety of anomaly detection schemes, which set up
and train detection models to discover network messages and
alarm. However, most of the models have a single detection
form, low reliability and non-real time detection. Therefore,
our goal is to establish a more reliable and perfect vehicle
network anomaly detection system.

The paper describes a distributed real-time anomaly detec-
tion system based on hierarchical temporal memory (HTM)
learning algorithm [19], which shows better detection per-
formance [20]. The HTM network provides a more accu-
rate framework for the prediction, classification and anomaly
detection [21]. Furthermore, the HTM network can learn the
time based data sequence in a continuous online manner.
Through our previous research work [22], the HTM predic-
tion model can learn the data sequence of the vehicle network
online. Finally, our system can learn CAN data online and
detect abnormal states to generate alerts. We have made the
following contributions:

1) A new distributed vehicle network anomaly detection
framework has been proposed. The binary data stream
before decoding is input into every data sequence pre-
dictor, and then the output prediction value is processed
by the abnormal score mechanism. If abnormal condi-
tion occurs, the alarm signal is sent out. The detection
device can be deployed directly on the CAN bus.

2) The CAN data sequence prediction based on HTM
network is proposed. TheHTMnetwork has the charac-
teristics of continuous online learning. When the input
stream data changes, the memory of the model will be
updated. And the detection system will also continue
to learn new patterns in the CAN network when the
firmware is upgraded or replaced.

3) A perfect exception scoring mechanism is proposed,
which is used for abnormal decision making. The error
measure is made using the predicted output value of
the log loss function, and then the scores for a single
data sequence can be derived. Finally, the appropriate
overall rating type and threshold are chosen based on
different IDs.

The rest of the paper is organized as follows. In Section 2,
we introduce different approaches and techniques about
research of in-vehicle networks security. In Section 3, we dis-
cuss some model and assumption. we specifically introduce
our anomaly detection system for in-vehicle networks in
Section 4. Further, we describe the results of the experiment
and performance analysis in Section 5. Finally, we conclude
the paper in Section 6.

II. RELATION WORK
Anomaly detection technology research has been widely car-
ried out to help resisting malicious attacks of

networks [23]–[25]. As a broadcast bus, the CAN bus does
not specify which ECU generates CAN message, and mali-
cious message also is used if included. Therefore, many
studies choose intrusion detection mechanism to identify the
source of the message without increasing the overhead of the
system.

Taylor et al. [26] used a frequency-based anomaly detec-
tionmechanism.He transformed the field of industrial control
into the CAN bus and proposed an algorithm to measure
the insertion of anomalous frequencies between different
groups on a sliding window. Compared with historical values,
it generated an abnormal monitoring signal. At the same time,
the information was inserted into the information training
anomaly support vector machine (OCSVM) [27] for classi-
fied learning. The results showed that using the same infor-
mation OCSVM could detect very short packet frequency
insertion. The false alarm rate of this result was acceptable,
but it still needs to be improved.

Nair et al. [28] set up OBD-SecureAlert, which was
a warning mechanism to detect malicious packets of
vehicles. It used the CAN message dataset when the car is
attacked under the normal condition, which was used to gen-
erate the transition probability and the emission probability.
They matched these probabilities to Hidden Markov Mod-
els (HMMs) [29] and analyzed the time series data to generate
a test model. Then an alarm was issued when the monitor
message appears abnormal status. This system can make an
accurate judgment when one of its speed or driving speed
changes or both change at the same time. However, there
is no systematic warning given when multiple data changes
simultaneously.

There are many machine learning technologies that are
widely used in smart car intrusion detection technology.
Chen et al. [30] proposed a frequency-based coding
method for grouping features in artificial neural networks
(ANN) [31], [32] and SVM [33], but its approach uses super-
vised techniques, so multiple marked datasets are needed in
training. Compared with others method, Kang and Kang [34]
adopted an unsupervised scheme and proposed an efficient
intrusion detection system (IDS) based on Deep Neural Net-
works (DNN). First, they extract eigenvectors from in-vehicle
network packet data and then train DNN parameters using
both the pre-trainingmethod of Deep Belief Networks (DBN)
and the traditional stochastic gradient descent method [35].
Taylor et al. [36] proposed an exception detector based
on Recurrent Neural Networks (RNN) to detect CAN bus
attacks. The detector works by learning and predicting the
next data word from each transmitter on the bus. However,
this method only detects a single ID exception and can not
continue to learn online. And it does not compare with other
anomaly detection methods.

This paper does not take the encryption authentica-
tion [37]–[39] method, because most of the certification
mechanisms [40], [41] will increase the bus load and some
mechanisms need to update the firmware or hardware.
Although many researches can effectively warn CAN bus
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TABLE 1. Data frame format of CAN 2.0B.

invasion, these models have many shortcomings. Most are
only for a single variable for intrusion detection. When mul-
tiple variables change at the same time, the detection rate of
abnormal CAN message is very low. At the same time, most
studies only detect threats that have already been detected.
Once an intrusion message changes, the system can’t effec-
tively defend it.

III. CAN DATA STREAM AND ANOMALY STATE
A. CAN BUS DATA STREAM
In the CAN network, each ECU uses a data frame to transfer
information to other ECUs on the CAN bus. The CAN bus
is a broadcast medium. Without any routing mechanism, it is
the responsibility of the receiver to determine which message
is of interest. Most CAN bus hardware interfaces offer filter-
ing capabilities to limit the packets its owner receives. The
classical data frame format of CAN 2.0B packet is shown
in Table 1. The arbitration field is consist of an 11 bit ID field,
which is extended to 29 bits later with increase of network
nodes. The data field includes a maximum of 8 bytes, which
contains information to be transmitted between each other
in ECU. Other fields are not introduced because it is not
involved in the paper.

TABLE 2. CAN data analysis on impreza.

We turn our attention to the data fields payloads of
packets. Almost every ID contains 64-bit data fields. Secu-
rity researchers and car hacking hobbyists typically resort to
reverse-engineering the protocols by observing relationships
between traffic and the vehicle’s parameters and behaviour.
However, it require difficult analysis skills and spend lots of
time. So, we analyze data features directly extracted from a
bitstream in the vehicular network before decoding. At the
observed packet rates on the Impreza high speed bus, there
is enough space in 64 bits to produce a novel data filed for
each packet for the entire lifetime of the car. Table 2 shows
the number and percentage of unique data fields payloads
of packets observed over all the Impreza data captures for
each ID. Considering that these data contain sensor readings,

we expect it to be noisy and highly variable. However only
one ID produces a novel word for every packet, and most
are well below the full possible rate. The table also reports
periodic with a fixed frequency and how many bits are used
in 64-bit data fields for each ID. Even though most IDs
transmit a full 64 bits, many of these bits are found to be
constant over the entire data set.

B. CAN BUS ANOMALY STATE DEFINITION
On the CAN bus, the raw CAN bus data consists of a list
of (ID, data payload) pairs indexed with timestamps. The
sequence of packet data payloads associated with a given ID
can be viewed as a multivariate binary sequence. Generally
speaking, streaming data in CAN network is highly regular.
Thus attacks usually include three performances: packets
are added, packets are missing, or modified packets within
a single ID’s symbol stream. Effects on CAN bus traffic
includes twomajor types of anomalies: frequency effects, and
data effects. Frequency effects are in the context of all known
IDs being periodic with fixed frequencies. They are defined
as insertions of extra packets, or the erasure of expected
packets. Data effects describe how data values can be changed
in attack traffic. Advanced attacks usually have a malicious
effect by setting control values in the data fields. Here we
are concerned with pure data that does not involve additional
packets.

All data field attacks can be described by the following
parameters. Given an ID, a field within that ID’s data pro-
tocol, for a duration d seconds that field is changed in one of
the following ways:

Modification: the field is set to a constant value, such as
the maximum or minimum possible value, or to an arbitrary
constant.

Replay: the field is replaced with data from the same field
captured at a different time. Only the data field is replaced.
The rest of the data payload is left unchanged.

IV. DISTRIBUTED ANOMALY DETECTION SYSTEM
USING HTM ALGORITHM
A. OVERVIEW OF PROPOSED ANOMALY
DETECTION SYSTEM
The overall goal is to detect attacks in a car when they
happen, while it is being driven. More precisely, the problem
is detecting anomalous sequences on the CAN bus while the
car is being driven. We assume we have a large corpus of
known normal data to train the detectors, so our problem is a
semi-supervised anomaly detection problem. One of the key
challenges is distinguishing the natural novelty in the data
from anomalies corresponding to attacks. And another key
factor is that a production automotive anomaly detector must
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FIGURE 1. A Structure of the distributed anomaly detection system.

also work online, so that anomalies can be detected as soon
as they manifest.

The structure of the distributed anomaly detection system
is illustrated in Figure 1. Firstly, the data detection models
directly process the sequence of packet data bits from a
single ID. The input at each detector in the sequence are
the bits from the packet’s data field. Then the model using
HTM algorithm learns to predict the next data fields based
on training data. Moreover, after each bit score in the data
fields of a packet is developed, it must be combined into a
single score by loss function. Finally, we get an overall score
within a time window for the full input sequence of a single
ID. Our system will generate an alert, if the anomaly score of
a single ID is going below a set threshold value.

B. PREDICTOR BASED ON HTM LEARNING ALGORITHM
HTM learning algorithm is a machine learning algorithm
aimed at capturing the structure and algorithmic features of
the new cerebral cortex. Biological studies have pointed out
that not every cognitive function corresponds to a neural algo-
rithm. As the loop of the new cerebral cortex is very uniform,
the new cerebral cortex uses a set of common algorithms to
perform different functions. The algorithm is based on flow
data, not static data. It can be learned, identified and predicted
by the latest input. It is a memory based system, the HTM
network is trained by a large number of time-characteristic
data and depends on a large number of pattern sequences.
The core of HTM is the hierarchical organization structure,
the construction of the region, the information based on
time and the storage of data, which should be stored in
discrete sparse representation. A HTM network is composed
of layers arranged in a hierarchical area. This area is com-
posed of a storage and prediction unit. And the multiple sub-
Elements in the hierarchy are aggregated to form a storage
unit. Because of the existence of the feedback connection,
the information will also be diverted with the decline of the
level. The implementation details of HTM learning algo-
rithm are described in [42] and [43]. This paper use standard
HTM system [44] and standard parameters to predict CAN
data flow.

The data prediction model directly deals with the bit
sequences from a single ID data domain. The input of each
step in the sequence is the bit from the data field of the
packet. So the input of the predictor model is a binary

matrix (group number) × (inconstant bit number). In a
production system, it is necessary to design a method to
send data in a continuous or discontinuous window into a
predictor.

FIGURE 2. Proposed anomaly predictor based on HTM networks.

The anomaly detection problem is specifically focused
on predicting next status according to the current previous
states. To predict next state, the proposed anomaly predictor
is shown in Figure 2. The input data is first processed using
a component that includes an encoder and a sparse spatial
pooling. With this component, the hidden features of the data
can be more easily extracted. This method is more easily
applied to high dimensional sequences, such as the CAN bus
data sequence. The data after pretreatment is a sparse vector
representing the input data. Then the sequence memory com-
ponent is used to predict the convective data. This component
models outputs a binary vector for a sparse vector of the
current input data.

The predicting function is implemented based on HTM
networks.We can predict current situationwhich is dependent
on continuously learning previous states in CAN network.
The prediction of the incoming data stream is directly related
to the current packet detected and the current location of the
packet within overall streaming data. The performance of the
predictor is dependent on modeling the data in the sequence
memory component. However, we can not directly determine
whether there is any abnormality by prediction using HTM
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networks. It needs to be evaluated by the post processing
mechanism.

C. ANOMALY SCORE FOR DETECTION
For each bit of the input terminal, the logarithmic loss of each
bit is the basis for the detection of abnormal signals. The
detector model will output the prediction of the correspond-
ing bit in the next word. Then, the logarithmic loss function
can predict each data filed, which is between 0 and 1. This
can be interpreted as the probability of the bit value. The log
loss for current input is defined as:

L(b̂k , bk ) = −
(
bk log(b̂k + ε)+ (1− bk ) log(1− b̂k + ε)

)
where bk is k th bit in a sparse vector representing the input
data. b̂k is k th bit’s predicted value using the sequence mem-
ory component based on previous sparse vector, and ε is a
constant value that corrects the maximum loss.

The vehicle network design ismade up of a specificmodule
by multiple ECU interactions in order to achieve specific
functions, such as the module includes the engine control
module, the body control module, the instrument monitor
display module and the remote information processing mod-
ule. In addition, many behaviors require cooperation between
different modules in order to complete some complex func-
tions. For example, it requires complex interaction between
the engine control module, the anti lock brake system, and the
dashboard group to complete the automobile brake. For our
detector to be practical, a single scalar value must be derived
from all of the bit losses for all the data fields and IDs within
a time window to alert for the entire system. Therefore, if we
want to evaluate all the sequence data in anomaly detectors
which operate on the CAN bus for all ID, we must get an
overall score for input ID data within a time window.

It is challenging to merge the output of each exception
detection model into a single decision. For a single ID, bit
errors may vary across the data fields. The variance may
be even greater for different IDs. Thus, our approach to
combining scores is to define a serious of post-processing
steps that convert a single ID’s bit scores over time into a
single output score. Two common combinations are used:
maximum or window averaging. The average value method
of the window calculates the average fraction of the sliding
0.1s time window, or directly returns the maximum anomaly
score. For evaluating data anomaly scores for a single ID,
we can choose the maximum of them all, or take individual
thresholds and alarm for the entire system when any individ-
ual ID alarm exceeds a preset value.

Finally, the threshold must be selected for the entire detec-
tion model. A good way to choose the final decision threshold
is to evaluate a model with a test data and select a threshold
that can produce acceptable precision and recall balance.

The difference in the range of bytes is in the data domain,
which will have a greater impact on the selection of the
decision thresholds. Therefore, the different ID should adjust
the single score threshold and appropriate combination score

type should be select to improve the performance of the
abnormal detector.

V. EXPERIMENT AND RESULTS
A. EXPERIMENT SETUP
We captured nearly 20 hours data from high CAN bus of
Impreza. The data in its original state is a collection of text
files containing comma separated values with a timestamp,
ID, and data fields. Each file corresponds to a single drive,
in most cases about 20 minutes long. We divided these
files into different sets for training, validation, and testing.
We assign 70% of the files to the training models and 10%
files to the validation to avoid any overfitting in the training.
The final 20% files was split into normal and simulated
anomaly among the testing packets. Modification types of
abnormal test packet include: minimum, maximum, constant
(random), random and replay, as described above. In order
to evaluate the impact of different detection time windows on
the overall performance, the detection timewindows are set to
0.2, 0.5, 1.0, 1.5 and 2 seconds respectively. Each ID’s packet
is a relatively independent data stream. And we train their
respective detectors based onHTMnetworks for each ID. The
performance of the HTM model is compared with that of the
RNN and HMM models.

B. PERFORMANCE MEASURE
Precision and recall are the two basic evaluation indexes
to measure the reliability of the anomaly detection system.
Precision is defined as ratio of marked anomaly streaming
data that is a true anomaly. Recall is the proportion of ratio
of identified anomaly CAN data to actual anomaly data. The
value of recall close to 1.0 represents the better performance
of the detection.

We can measure different detection models by Receiver
Operating Characteristic (ROC) and Area Under roc Curve
(AUC). ROC is a diagram of the relationship between True
Positive Rate (TPR) and False Positive Rate (FPR). We set a
threshold for the two value classification problem and divide
the instance into a positive class or a negative class (For
example, the class that is greater than the threshold is a
positive class). Sowe can change thresholds and classify them
according to different thresholds. The area under the ROC
curve is called AUC, and it can measure the performance of
the classifier by a fixed value. In general, the value of AUC
is between 0.5 and 1, and the larger AUC represents a better
Performance.

Due to the use of different combination scoring methods
and different thresholds, different ID anomaly detection will
produce greater differences. So we first evaluated this effect,
as is shown in table 3. The table includes the test data pre-
cision, and recall for the different individual IDs on the post
processing steps. nce setting different thresholds, precision
and score for each ID can reach more than 98%. But what we
need to do is to improve the recall rate, when the accuracy is
high.
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TABLE 3. Post processing methods for the HTM model.

C. FIELD MODIFICATION RESULTS
We tested the performance of all the models with the score
types and decision thresholds defined above. The size of
the window can affect the performance of the model, so we
combine the flow model and window of different lengths
as a separate method to evaluate it. Longer windows pro-
duce more reliable statistics, but shorter windows produce
faster results. Therefore, it is worth exploring the relation-
ship between window length and performance. We evaluated
window length of 0.2, 0.5 and 1 seconds when the field is
modified.

FIGURE 3. AUC score for data sequence field modification case.

FIGURE 4. Precision on field modification replacement test case.

The values of AUC scores is given in Figure 3. The HTM
model is the best. It is followed by the RNN and HMM net-
works are smallest. With the change of the anomaly detection
window, the accuracy and recall of various models are shown
in Figure 4 and Figure 5 respectively. It is worth noting that
the detection accuracy of the HTM model is much higher
than that of the RNN and HMM models when the detection
window time is set to 0.2 seconds. And the recall rate of
the HMM model is the best. However, with the increase of
the time length of the detection window, the accuracy and
recall rate of RNN has been greatly improved, and it has been
approaching the HTM model constantly, while the change of

FIGURE 5. Recall on field modification replacement test case.

FIGURE 6. AUC score for data sequence replay case.

FIGURE 7. Precision on replay field replacement test case.

FIGURE 8. Recall on replay field replacement test case.

HMM is slower. Considering all the factors, the performance
of the exception detection system based on HTM model is
optimal when data field is modified.

D. FIELD REPLAY RESULTS
Similarly, we test all models of replay attacks. The values
of AUC scores for the test replay case is given in Figure 6.
Compared with other models, HTM still keeps the highest
AUC score in all time windows. The accuracy and recall of
the model are shown in Figure 7 and Figure 8 respectively.
The recall rate of the HMM model is slightly lower than the
HTMmodel and higher than the RNNmodel. The test results
of the HTM model are still better in accuracy and recall.
Compared with results of data field modification, RNN’s rate
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of precision growth slows down, with the extension of the
time window and the recall efficiency of all models is not
ideal. Therefore, the detection of data field replay is more
difficult than data field modification. In fact, replaying data
will keep the other domain features consistent so the data will
not change much. This increases the difficulty of abnormal
detection. All models should try to improve the recall rate
when the accuracy rate is guaranteed.

VI. CONCLUSION
In this paper, a distributed anomaly detection system based on
HTM learning algorithm is introduced, which is used to detect
the data sequence anomaly of the vehicle CAN bus network.
The detection method can monitor all ID exceptions at the
same time, without professional knowledge about reverse
and vehicular bus protocols. Because HTM network has the
advantage of online learning for streaming data, the algorithm
can detect not only the known type attacks of CAN bus, but
also the anomaly detector can learn online from CAN data
stream continuously, and detect unknown attacks. Through
the overall evaluation of the system, it is proved that the
system can get more reliable detection effect compared with
other existing CAN data domain anomaly detection methods,
such as hidden Markov model and RNN model. However,
more work need to be done to improve the performance of the
system in more complex situations. For example, the training
time of the model can be reduced and the exception detection
efficiency will be improved by removing the redundant fields
in the data domain. In addition, we also have to integrate
ID with data dependencies and improve the combination
evaluation of multiple ID to achieve better overall detection
performance, because the ID of each monitor increases the
possibility of false alarm. This is to avoid the greater impact
of a single special ID judgment on the whole system. At the
same time, a real attack datas are needed to test the system.

Furthermore, if the detection system continuously moni-
tors the vehicle network and finds an exception, it appears
a new challenge of the real-time system response. Such a
response may require an additional design of a separate
component. This component can enable the vehicle to detect
the response of the attack and immediately start the security
mode. Thus the vehicle is allowed to be safely parked. In fact,
the coordination of this kind of response may be more com-
plex than improving the performance of the exception detec-
tion because it requires coordination between multiple com-
ponents. Therefore, the design goal of automobile anomaly
detection system must also include intelligent interaction and
emergency handling mechanism.

Finally, a single intrusion detection module can not meet
the security needs of automotive intelligent network. The
vehicle network security system needs a more lightweight
authentication encryption mechanism. The vehicle network
architecture needs to be upgraded to a higher level of archi-
tecture. At the same time, the bus security protocol should be
improved. All these aspects are worth further studying in the
future.
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