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Abstract

Oblivious RAM (ORAM) is proposed to protect the access pattern in un-
trusted memory. In this paper, we proposed a brand new ORAM protocol,
which supports storing blocks of different sizes. Our scheme remodels the
tree structure and employs an additively homomorphic encryption scheme
(Damg̊ard-Jurik cryptosystem) to achieve constant communication complex-
ity. DivORAM has multiple performance improvements. Firstly, Divoran’s
network bandwidth is 30% lower than Ring ORAM and 40% lower than
HIRB ORAM for small client storage. Secondly, DivORAM greatly saves
client computing overhead and improves storage capacity using a third party
(trusted proxy). The response time of DivORAM is 10× improvement over
Ring ORAM for practical parameters. The analysis of DivORAM is sim-
ple. To the best of our knowledge, DivORAM is the best instantiation of a
variable block size ORAM in practice.
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1. Introduction

Most of traditional privacy protection depends on the unobtrusiveness of
plaintext. Generally, most work is focused on updating and improving cryp-
tography. However, the attacks caused by the leakage of data access patterns
have gradually gained more and more attention. In the modern information
service architecture, more and more applications store a great quantity of
private data in outsourced devices or servers. Therefore, for an honest and
curious server, it can analyze the access pattern to get some important priva-
cy information that could potentially lead to privacy leaks without revealing
the plaintext. It will lead to serious consequences. For example, a hospi-
tal stores privacy data such as patient information in an outsourced server.
When the doctor accesses the data, it is reasonable for the server to estimate
that the patient information accessed by the oncologist is mostly a cancer
patient. Therefore, the server can recognize which category the stored data
belongs to. In the meantime, when the same patient information is accessed
more frequently, the server may think that the patient’s medical information
is given a high priority, which is likely to be a critically ill patient, thereby
disclosing the patient’s privacy.

Oblivious RAM (ORAM). ORAM first proposed by Goldreich and Os-
trovsky [5], is a general cryptographic primitive which allows sensitive da-
ta accessed obliviously. The purpose of ORAM is hiding access patterns,
through re-encrypting each data and confusing the storage location of da-
ta in every access. After the concept of ORAM was proposed, many O-
RAM mechanisms emerged. These mechanisms can be roughly classified
into two types depending on the storage structure employed, layer-based O-
RAM [24, 26, 27, 28, 29, 30, 32] where data is store in several levels and
tree-based ORAM [31, 23, 25, 19] where the storage construction is a bina-
ry tree. Meanwhile, more and more ORAM protocol are combined secure
multi-party computation [34, 39, 6] or oblivious databases [10, 11] for better
performance.

1.1. The vORAM and Challenges

Few works focuses on the variable block-size ORAM (vORAM) like [11].
The simplest way to solve the problem of variable block size is to fill all the
blocks to the same length. Apparently, this method will make the server
store a lot of invalid information. In the worst case, that is, small size data
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Table 1: Comparison with typcial ORAMs with tree-based and variable block-size ORAM
scheme. Server storage in all schemes can be set to O(BN), B is the size of one data
blocks, N is the maximum number of blocks stored in ORAM schemes.

Scheme Block size Bandwidth Computation Client Storage

Ring ORAM 64 bytes O(logN) - n(T ) ·A/2

HIRB ORAM (20|τ |+R)B O(logN) - Õ(logN)

DivORAM O(log5N) O(1) O(log3N) O(logN)

accounts for the majority of all data while large size data represents only
a fraction of the total data, large storage space in the server is wasted to
store meaningless information. In practice, this makes the entire ORAM
impractical, while causing redundancy in storage space.

In order to solve the above problem, we try to split different size of data
into fragments of the same size. Like tree-based ORAM, we choose a binary
tree as the storage construction as well. Each node in the tree has several
slots to store a fragment as a splinter.

Challenges. When blocks are divided into several splinters, we should use
the tree’s storage structure as reasonably as possible to store splinters that
belong to the same block on the same path. How to store splinter without
wasting storage space on the server has become a problem we need to solve.
Meanwhile, how to read and write splinters that belong to the same block
efficiently and at a fraction of the cost is one challenge we had when designing
a solution. In previous tree-based ORAM scheme like [18] and [19], eviction
will cause heavy communication overhead between the client and the server.
In eviction process, the server must send a great deal of block to the client
to re-encrypt and permutate the position of these blocks. In that way, the
server knows nothing about whether or not to access the same block. We
also hope to find a solution to reduce the computational and communication
overheads of shuffle operations in the client.

1.2. Our contribution

In this paper, we proposed DivORAM to deal with the problem caused by
variable block size. It is worth noting that we have redesigned the tree-based
ORAM to rationalize the operation process. We adopt the PIR technique and
set up a trusted proxy, so that the execution time and network bandwidth can
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be tolerated by the practical application as much as possible. We compare
bandwidth overhead with Ring ORAM and HIRB ORAM in Table1. The
main contribution is as follows:

Optimize server storage. We redesign the structure of the tree with
different bucket size instead of previously same bucket size. In addition, we
“cut” a block to several splinters so that no longer need to padding the block,
which results in a waste of server-side storage. In our brand new tree, each
node stores several splinters and no longer stores a block. Every splinter
which is belong to the same block will spread among the same path. In order
for the upper nodes to have enough space to temporarily store splinters which
have not been shuffled, we define the size of the parent node to be twice the
size of the child node.

Constant communication. In DivORAM protocol, we achieve constant
communication O(1) in a complete access process. We adopt Private Infor-
mation Retrieve (PIR) used in several ORAM schemes [21], [16] to minimize
the bandwidth during read operation when we set the block size to O(log5N).
The specific analysis is described in Section 5.1. Meanwhile, we transfer the
evict operation to a trusted proxy so that the write operation was simplified
as much as possible. In this paper, we pay attention to the communication
overhead between the client and the server. Therefore, write operation is
also constant bandwidth. Since eviction does not involve clients, we do not
take into account the bandwidth of eviction.

Lightweight client load. The client undertakes little work during the
whole visit. Compared to previous ORAM scheme, the client in DivORAM
is no longer involved in shuffle work, and only need a small amount of the
vector calculation.

2. Preliminary

In this section, we introduced the features and usage of homomorphic
encryption. We also introduced the settings of the trusted proxy and given
the standard definition of security.
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2.1. Homomorphic Encryption

Definition 1 (Additive homomorphism). Let x, y denote the plaintext, and
E(x) the homomorphic ciphertext of x, we have

∃⊕,∀x, y,D(E(x)⊕ E(y)) = x+ y

where ⊕ is an efficiently computable function.
In addition, there exists

∃⊕,∀x, y,D(E(x)⊗ E(y)) = E(x · y)

where ⊗ is scalar multiplication, i.e., repeated ⊕ operation.

The above properties can be used to implement Private Information Re-
trieval (PIR) [36], which use select vectors E(1) or E(0) to retrieves an en-
cryption of block ui from m data blocks u1, u2, ..., um. Apparently, the index
of block ui will not be revealed.

2.2. Security Definition

The basic standard definition is described in SSS [12], that is, the server
as an adversary cannot learn anything about the access pattern. In other
words, the following information should not be leaked: 1) which data is being
accessed; 2) how old it is (when it was last accessed); 3) whether the same
data is being accessed (linkability); 4) access pattern (sequential, random,
etc); or 5) whether the access is a read or a write. Similarly, we do not
consider about leakage of the timing channel, such as when or how frequently
the client makes data requests.

Definition 2. Let ~y := ((u1, data1), (u2, data2),..., (uM , dataM)) denote a
data request sequence of length M , where each ui denotes the identifier of the
block being accessed, and and datai denotes the data being written. Let λ be
the security parameter, and A(~y) denote the (possibly randomized) sequence
of accesses to the remote storage given the sequence of data requests ~y. A
oblivious RAM protocol Π is secure only if for any polynomial-time adversary
,

|Pr(AΠ(~y))− Pr(AΠ(~z))| < nelg(λ)

where ~y and ~z have the same length and nelg is a function negligible in
λ.
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3. DivORAM Protocol

In this section, we describe the details of DivORAM’s protocol. First of
all, we introduced the storage structure of each device in DivORAM and then
described the concrete realization of each step in this protocol. All notations
used throughout the rest of the paper are summarized in Table 2.

Table 2: ORAM parameters and notations

Notation Meaning

N Number of real data blocks in ORAM

L Number of levels in ORAM

position[u] l : The path which u is in

i : The index of bucket which u in the path

off : The offset of u in the bucket

E(x) The AHE encryption of x

s The size of splinter u

spu All the splinters of block u

Cache The temporary storage in the client

A Eviction rate

3.1. Storage construction

3.1.1. Server Storage

We set up two cloud servers as server side, one of which is mainly used to
store the outsourced private data as a storage cloud. The other cloud acts
as a trusted proxy for executing eviction. In the storage cloud, there are N
blocks which stores in a binary tree of N − 1 nodes where each node is a
bucket. Each block of variable size is divided uniformly to at most logN
splinters where a splinter has fixed size s. Levels in the tree are from 1 (the
root) to L (the leaves) where L = logN . Each bucket in level i has 2i slots
and each slot store a single splinter. In a steady state, each splinter will be
distributed as much as possible in all buckets. Notice that the maximum size
of a block is (logN) ·s, but for some tiny blocks smaller than s, we pad these
to s. For convenience, let spu denote all splinters of block u.

As for the trusted proxy (TP), it replaces the client’s role in eviction as
a third party in traditional tree-based ORAM. Its storage structure may be
thought of as an array of many slots to store data sequentially. The proxy
can be used to permute items so that the server will know nothing about
the position of shuffled blocks. In addition, the trusted proxy can secretly
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Figure 1: The process of access operations.

transfer the key with the client, and then re-encrypt all the blocks to ensure
ciphertext non-repetitive. Our theoretical analysis in Section 5.2 will show
that the maximum capacity of proxy is about O(logN).

3.1.2. Client Storage

The client consists of position map and cache with small storage. The
position map is mapping table that maps each splinter of block to a random
leaf and specific position in the path of corresponding leaf in the tree. The
cache is a temporary storage to divide the blocks. The size of cache will be
analyzed in Section 5.3.

3.2. Access process

The construction and process of DivORAM is shown in Figure 1. As in
Algorithm 1, each access operation is consist of following three steps:

1. Read a path (Lines 2-17). The client looks up the position map
to determine where the splinters of interested block store. Then the
client sends logN select vector to retrieve all splinters, where each
select vector has log2N items. Finally the client splices all splinters to
restore a whole block.

2. Write to root (Lines 18-21). After retrieving the block, the client
splices those splinters to a whole block. If the operation is write, the
client changes this block to the new one. Then the client divides and
re-encrypts the block and writes all splinters to the root of ORAM tree.
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Algorithm 1 DivORAM Protocol

1: function Access(u, op, data′)
2: counter = 0 //global variables
3: l′ ← UniformRandom(0, N) //choose a fresh path randomly
4: l← PositionMap[u] //get the path of block u
5: PositionMap[u] ← l′ //reset position map
6: for i← 1 to logN do
7: leaf← leaf ∪ UniformRandom(0, N/2)
8: end for
9: leaf← leaf ∪ l

10: for i← 1 to N/2 do
11: if i ∈ leaf then
12: data ← ReadPath(i, u)
13: end if
14: end for
15: if data =⊥ then
16: return ⊥
17: end if
18: if op = write then
19: data← data′

20: end if
21: WriteRoot(data) //write a block (may modified) back
22: counter ← counter + 1 mod A
23: if counter = 0 then
24: EvictPath() //evict a path after A access
25: end if
26: return data
27: end function
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3. Evict a path (Lines 22-25). Our protocol evicts path in the order of
reverse lexicographic like Ring ORAM [18]. Server sends all buckets
and sibling buckets in the specified path to the trusted proxy. The
proxy reshuffles all splinters in the buckets to the corresponding path
and returns these buckets to the server. After A write operation, the
ORAM tree will perform evict operation.

3.3. Read Operation

The ReadPath function is shown in Algorithm 2. Before reading the block
u, the client first looks up position map to determine where spu are. Then the
client generates logN select vectors for a path to retrieve logN splinters, each
of which with length of m logN . To select a splinter sp[i] ∈ spu, the input
is slot1, slot2, ..., slotm and v1, v2, ..., vm where vsp[i] = 1 and vi = 0 for all
other i 6= sp[i]. The server can perform homomorphic computation sp[i] :=
(slot1⊗v1)⊕(slot2⊗v2)⊕...⊕(slotm⊗vm). Notice that in one read operation,
we read logN paths simultaneously to keep the obliviousness. After that,
the client sends these select vectors to the server. For a single path, server
performs ⊗ operation with corresponding slots and vectors resulting logN
splinters. Server performs ⊕ operation with those splinters to get a single
splinter. With the help of logN select vectors, we can get logN splinters
to splice as a whole block. As we read logN paths, the server will figure
out logN blocks. To achieve constant communication complexity, the server
performs ⊕ operation with those blocks to get a single block and sends it to
the client.

As ⊗ operation will resulting the layer of encryption, the client should
decrypt the block twice to get the plaintext.

3.4. Write Operation

The WriteRoot function is shown in Algorithm 3. Before Writing a block
with size B back, it should be divided into dB/se splinters. If the last splinter
is smaller than s, it will be padded to s. After that, all splinters will be stored
in cache. In an access operation, the splinters in cache will be written to the
root or not, but if the cache is up to logN , these will be written back for
certain.

3.5. Evict Operation

The EvictPath function is shown in Algorithm 3. We define that Evict-
Path happens after every A access. To shuffle as many blocks as possible in
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Algorithm 2 ReadPath procedure

1: function ReadPath(l, u)
2: splinter, data←⊥
3:

4: for i← 1 to logN do
5: //retrieve i-th splinter
6: vector, index← SelectVector(u, i)
7: for j ← 1 to L do
8: offset← index[i]
9: temp← P(l, i, offset)

10: splinter← splinter⊕ (temp⊗ vector[i])
11: end for
12: data← data|splinter
13: //splice every splinter to a block
14: end for
15:

16: return data
17: end function
18:

19: function SelectVector(u, sp)
20: l, pos[sp]← PositionMap[u]
21: c, off← pos[sp]
22: // sp-th splinter is in off offset of bucket c
23: for i← 1 to L do
24: if i = c then
25: index[i]← off
26: vector[i]← E(1)
27: else
28: index[i]← random
29: vector[i]← E(0)
30: end if
31: end for
32: return vector, index
33: end function
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Algorithm 3 WriteRoot procedure

1: function WriteRoot(data)
2: splinter[ ]← data //divide a block to splinters
3: cache ← cache ∪ splinter[ ]

4: i
$←−{0,1}

5: if i = 1 || cache is full then
6: root ← cache
7: end if
8: end function

a shorter period, the order that evicts the path is the reverse lexicographic
order, which is first proposed by Gentry et al. [25]. Figure 2 shows the ex-
ample of reverse lexicographic order. This order makes sure that most of the
splinters are not shuffled repeatedly in consecutive eviction. Intuitively, the
nodes of two paths performed in consecutive eviction will not overlap except
for the root. It will help for reducing the frequency of eviction and improving
its quality.

In each EvictPath, all the buckets and its sibling buckets will be send to
the trusted proxy (TP). To minimize the storage of it, we gather a parent
bucket, a child bucket and it sibling bucket as a triad, then send the triad to
TP. All splinters will be shuffled thoroughly and each splinter will be assigned
to the bucket in the corresponding path. Then the result will be returned
to the server and stored in origin buckets. Until every bucket and its sibling
bucket in this path are shuffled, EvictPath ended. Notice that each splinter
must be re-encrypt so that the server cannot tell where the previous block is
now.

As only simple decryption and encryption operations carried out in the
proxy, the blocks transmitted back to the server will not exist ciphertext ex-
pansion caused by an increase in the number of ciphertext layers. Therefore,
the blocks we store by default in the server have one and only one layer of
encryption. Although there is a ciphertext expansion due to homomorphic
computing operations during block reads, these expanded blocks are decrypt-
ed multiple times on the client and then encrypted once and written back.
This does not affect the number of encrypted layers of shuffle blocks in the
server and the trusted proxy.
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Algorithm 4 EvictPath procedure

1: function EvictPath( )
2: for i← 1 to L do
3: triad← P(l, i) ∪ P(l, i+1) ∪ P(l+1, i+1)
4: Send triad to trusted proxy
5: reshuffle all splinters ∈ triad
6: send triad back to server
7: end for
8: end function

Figure 2: Reverse-lexicographic order in EvictPath. After path A = 3 is evicted to, the
order repeats.

4. Security

In this section we analyze the security of each step in the DivORAM
protocol to ensure that the entire scheme maintains an obliviousness.

Claim 1. Read operation in DivORAM protocol is oblivious.

Proof. In read process, all information that exposed to the server is where
and which log3N splinters be accessed. The server retrieves one splinter from
logN splinters without leaking which splinter is the resulted one. Given a
data access sequence ~b = (b1, b2, ..., bm), where bi is the block. Let s(bi)
denotes the splinters belong to block bi. The probability that an adversary
can distinguish which splinter is fetched is

Pr[sp(bi)] =
1

logN
, i ∈ {1, 2, ...,m}

Notice that only at most logN splinters forming a whole block. The
probability that an adversary can distinguish which block is fetched in a
path is
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Pr[b = b in a path] =

logN∏
i=1

Pr[sp(bi)] =
1

loglogN N

In addition, logN paths will be read in an access behaviours for the
consideration of security. The probability that an adversary can distinguish
which block is fetched in a read operation is

Pr[b = b in a tree] =
1

logN
· Pr[b = b in a path]

=
1

loglogN+1N

Therefore, we can conclude that Read operation in DivORAM protocol
is oblivious.

Claim 2. Write and Evict operation in DivORAM protocol leak no informa-
tion.

Proof. In write process, the mechanism of eviction makes sure that there
always have enough space to store logN splinters. Apparently the position
of those splinters is certain and exposed to the adversary. To break the de-
terministic position of splinters (or a block), the eviction will shuffle these
splinters thoroughly with the help of the trusted proxy. As a path will be sent
to the trusted proxy, all splinters in the path will be shuffled and which from
the same block will be spread as much as possible while pushing deeper. For
the trusted proxy and data storage server are isolated, we can promise that
the server will never get any information about where the original splinters
are now stored or which path they belong to.

Claim 3. Given two access sequences in DivORAM protocol, any polynomial-
time adversary can not distinguish these sequences.

Proof. Straightforward conclusion from Claim 1 and Claim 2. It’s worth
noting that even the eviction is periodically, that is the same block is accessed
before being shuffled, the obliviousness of access pattern will be maintain by
the read operation.
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5. Analysis

In this section, we analyze the bandwidth of read, write and evict oper-
ation. At the same time, we calculated the size of the cache for the proxy
and client. Due to the best known attack in [36], we set λ = ω(logN), γ =
Θ(log3N) as the security parameters.

5.1. Bandwidth

Read bandwidth. Each read operation requires some select vectors to
retrieve the block and happened in O(logN) paths. To fetch one splinter
we need logN vectors and logN splinters formed one block. Therefore the
communication of select vectors is O(log3N). The Damg̊ard-Jurik cryp-
tosystem [38] will make ciphertext expand to 1.5 times the original. As
logN splinters forming a block, the whole communication complexity is
O(log3N · ν + 1.5 · B), where ν is the vector size. If the plaintext splin-
ter size µ is γs0, the ciphertext splinter size is γ(s0 + 1) bits. Therefore, the
ideal overall bandwidth of DivORAM is O(log2N ·γ(s0+1)·B+1.5·B). In the
usual sense, the way to achieve constant bandwidth is bandwidth limited by
B. To achieve constant bandwidth, the block size should be B ∈ Ω(log5N).
Therefore the constant communication in DivORAM read opearation is O(1).

Write bandwidth. According to the simple operation, we only analyze
the worst case that logN splinters being written. Therefore, we achieve the
constant communication in O(1).

Evict bandwidth. With the help of the trusted agent, there is no interac-
tion between the server and the client during the eviction phase. Hence we
only analyze the communication between the server and TP. Since each E-
victPath will happen in every A = logN access, an average of 3 buckets need
to be shuffle in each visit. Due to the different size of bucket, the average
communication in an access behaviour is O(2logN/ logN).

5.2. Proxy storage

For the proper operation of the eviction and shuffle processes, we must
consider the worst-case scenario to determine the size of the proxy. As men-
tioned before that as the depth of the tree increases, the size of the bucket
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decreases, the number of splinters to be shuffled reaches the highest value
when shuffling the root and its two children buckets. According to that, we
have the trusted proxy size TP = 2l+1 · γ(s0 + 1).

5.3. Cache Size

In write operation, the block can not be divided and written back im-
mediately due to the leakage of block size. For the sake of server storage
and less generation of dummy splinters, we set the cache size is O(logN). In
practice, 2 logN can meet the needs of the correct operation. As mentioned
before, each block can be divided to at most logN splinters. Once a block
has been divided and stored in the cache, it will be written back randomly.
Consider the worst case, that is, blocks have never been written back to the
server so backlog in the cache. The only way to reduce the number of blocks
in the cache is to write logN splinters back to the server deterministically
when the number of splinters in the cache reaches logN . When the cache
exists in the original logN − 1 splinters without triggering write operation.
In the ensuing visit, logN splinters were deposited. Therefore, the maximum
capacity of cache is 2 logN−1. For simplicity, we choose the size of the cache
as 2 logN .

6. Experiment

In order to more accurately evaluate the performance of the DivORAM
solution, we implemented the entire simulator of our construction. We rent-
ed two cloud servers, one as the server that stores the primary data and
the other as the trusted proxy. At the same time, we set the local PC as
a client simulator to simulate the launch of the request. To compare with
Ring ORAM, we simulate the main steps of Ring ORAM, such as the pro-
cess of reading the real block and evict a path, which is compared with our
scheme. Roughly speaking, we measured the response time, communication
bandwidth, and the amount of computation for each device at each step of
each scenario to make statistics and comparisons. In practice, we choose
Damg̊ard-Jurik cryptosystem [38] as the AHE-based protocol, which used in
Onion ORAM [16]. It will help us to minimize the ciphertext expansion as
much as possible.
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ORAM implementations. We deployed our DivORAM in three cloud
providers and rented 1 servers per cloud from Alibaba and Baidu cloud.
We implement all our experiments on computer of Intel(R) Core(TM) i7-
7500U CPU @ 2.70GHZ with Ubuntu OS, 16GB memory and 8 threads for
each CPU. We implemented DivORAM in C/C++ with about 1000 lines of
codes. We utilized MongoDB as the database to store and access data. In
our procedure, we initialize a collection for a binary tree, where each splin-
ter is the ciphertext of 0 encrypted by Damg̊ard-Jurik cryptosystem. We
simulate any read/write access with the help of read and updated operations
in MongoDB. For convenience, we specify that the length of the splinter is
the key size of Damg̊ard-Jurik cryptosystem. Some experiments are run in
the local network environments. The source codes are available at: http-
s://github.com/liuzheli/SSORAM.

Network bandwidth. As shown in Figure 3, we can observe that the
network bandwidth of DivORAM is reduced by about 30% compared to
Ring ORAM and 40% to HIRB ORAM. The reduction is from two aspects:
1) DivORAM achieves constant communication in the whole process of access
behaviour; 2) DivORAM employs the trusted proxy to implement eviction
to reduce the bandwidth between the server and the client.

Response time. Figure 4 shows the comparison of response time between
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DivORAM and Ring ORAM. We note that DivORAM has better perfor-
mance than Ring ORAM. In the case of different number of visits, DivORAM
is 10× shorter than Ring ORAM. The improvement comes from the follow-
ings: 1) the constant communication reduce the response time in transferring
data; 2) the eviction process can be carried out in the background without
taking the normal access behavior of the visit time..

Load distribution. The detailed network bandwidth distribution of data
access in DivORAM is shown in Figure 5. The bandwidth is divided into
three parts: ReadPath, WriteRoot and EvictPath. For DivORAM, the band-
width for the server to trusted proxy accounts for the largest proportion,
which accounts for 60% of the total bandwidth. The bandwidth for Read-
Path is approximately equal to WriteRoot because bandwidth can almost be
considered only in the transmission of a block in the communication.

7. Conclusion

In this paper, we propose DivORAM protocol to solve the problem caused
by variable block-size, which is a bandwidth efficient scheme and has con-
stant communication. DivORAM rebuilds the traditional structure of the
tree to accommodate the need to store data of different size. Besides, Di-
vORAM resort to the trusted proxy to reduce the computation in the client
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and communication between the client and the server. With the result of
experiment, we show that DivORAM improves bandwidth by 4× and re-
sponse time by 10×. In general, DivORAM is practical to meet the needs of
practical applications.
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