
Quantum Error-Correcting Output Codes

David Windridge1,2, Riccardo Mengoni3, Rajagopal Nagarajan1

1. Dept. of Computer Science, Faculty of Science & Technology, Middlesex University, London, UK

2. Centre for Vision, Speech & Signal Processing, University of Surrey, Guildford, UK

3. Department of Philosophy, Freedman College, Periwinkle, Colorado 84320, USA

E-mail: D. Windridge: d.windridge@mdx.ac.uk; R. Mengoni: riccardo.mengoni@univr.it

R. Nagarajan: r.nagarajan@mdx.ac.uk

Abstract

Quantum Machine Learning is the aspect of quantum computing con-
cerned with the design of algorithms capable of generalized learning from
labelled training data by effectively exploiting quantum effects. Error Cor-
recting Output Codes (ECOC) are a standard setting in Machine Learning
for efficiently rendering the collective outputs of a binary classifier, such as
the Support Vector Machine, as a multi-class decision procedure. Appro-
priate choice of error correcting codes further enables incorrect individual
classification decisions to be effectively corrected in the composite output.
In this paper, we propose an appropriate quantization of the ECOC pro-
cess, based on the quantum Support Vector Machine. We will show that,
in addition to the usual benefits of quantizing machine learning, this tech-
nique leads to an exponential reduction in the number of logic gates re-
quired for effective correction of classification error.

1 Introduction

Quantum Machine Learning (QML) is a emerging field of research within quan-
tum computing that can be said to have commenced with the implementation
of the quantum Support Vector Machine by Rebentrost, Mohseni & Lloyd [1],
and the quantum k-means algorithm by Aı̈meur, Brassard & Gambs [2]. In the
last few years many quantum versions of well known machine learning methods
have been proposed; examples include quantum neural networks [3], quantum
principal component analysis [4], quantum nearest neighbours [5], partially ob-
servable Markov decision processes [6], Bayesian networks [7], quantum decision
trees [8] and quantum annealing [9, 10] 1.

1Quantum annealing does not utilise a Turing-complete computational model, but rather
exploits the quantum ability of efficiently seeking minima of an energy landscape characterized
by high, narrow barriers and shallow minima.
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On the other hand, a well studied aspect of Quantum Computing is that of
error correction [11], which is crucial in order to protect quantum algorithms
from errors induced by environmental de-coherence [12]. Within the emerging
subtopic of QML, however, other forms of error become apparent; in particular,
classification error.

It will be the endeavour of this paper to demonstrate that decision errors
with respect to the output of quantum classifier ensembles are also amenable to
error correction. In particular, this work will demonstrate that the existing up-to
exponential advantages of quantizing machine learning algorithms demonstrated
in [1–5,8] can be further applied to the problem of multi-class ensemble decision-
error correction. This will lead to a cumulative performance boost i.e. with
respect to both the collaborative decision process and the underlying classifiers
in the ensemble.

In this paper, we will first look at the individual classifiers of the ensemble
in both their classical and quantum variants; in particular we will focus on
the Support Vector Machine (SVM) as this exhibits the dual characteristics of
being both a binary and discriminative (as opposed to generative) classifier.
Subsequently we will present the standard classical setting for Error Correcting
Output Codes (ECOC) and finally we will discuss our proposal for a quantum
version of ECOC for multi-class classification problems.

2 The Classical SVM

The SVM [13] represent perhaps the most significant example of a supervised
binary classifier, i.e. a classifier that is capable of learning an optimal discrim-
inative decision hyperplane taking as input a collection of M labelled vectors
{(~x, y) | ~x ∈ RN , y ∈ {−1,+1}} living in some feature space. The SVM
attempts to maximize the distance, called margin, between the decision hyper-
plane and the nearest data points. This optimization is subjected to a constraint
on the accuracy for the classification of the labelling determined by the decision
boundary.

In its standard setting, the soft margin SVM optimization can be expressed
as the following Lagrangian optimization problem:

arg min
(~w,b)

{
1

2
‖~w‖2 + C

M∑
i=1

ξi

}
(1)

subject to the constraint

∀i yi(~w · ~xi − b) ≥ 1− ξi, ξi ≥ 0,

where ~xi for i = 1 . . .M are the training vectors, yi ∈ {−1,+1} are the labels,
~w is the normal vector to the decision hyperplane, and b is the offset of the
hyperplane. The margin is given by 2

‖~w‖ and the ξi are slack variables that

produce a soft margin tuned by the hyper-parameter C.
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In the dual form of the SVM [13], parameters ξi disappear and the problem
can be recast as follows, employing the Karush–Kuhn–Tucker multipliers αi:

arg max
(αi)

M∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj(~x
T
i ~xj) (2)

subject to ∑
αiyi = 0 , ∀i 0 ≤ αi ≤ C.

This dual maximization problem is quadratic in the parameter αi and it is
efficiently solvable using quadratic programming algorithms. Moreover, only a
sparse collection of αi are different from zero. These αi denote the support
vectors, i.e. points ~xi that sit on the margin’s boundary, defining the decision
hyperplane.

Suppose now that we want to obtain a non-linear classification that corre-
sponds to a linear decision boundary for the transformed data points φ(~xi).
This is simply obtained by replacing the term (~xTi ~xj) in (2) by a function

K(~xi, ~xj) ≡ ~φ(~xi)
T (~φ( ~xj)), called kernel, such that it satisfies the Mercer con-

dition of positive semi-definiteness.
This method, known as the kernel trick, extends the applicability of SVM

by enabling the mapping from the input space into a higher dimensional Mercer
embedding space where linear separability applies. It is worth noting that at
no stage is it required to compute ~φ(~xi), in fact the Mercer theorem guarantees

the existence of a mapping ~φ whenever the kernel function K(~xi, ~xj) gives rise
to a kernel matrix obeying the Mercer condition.

An alternative version of the SVM optimization that will play a key role in
the following section is the least squares support vector machines (LS-SVM) [14].
In this alternative formulation, parameters defining the decision boundary are
found by solving a set of linear equations, instead of the quadratic programming
problem for ordinary SVMs. The problem to be solved thus now becomes:

F

(
b
~α

)
.
=

(
0 ~1T

~1 K + γ−1I

)(
b
~α

)
=

(
0
~y

)
(3)

where F is a (M + 1) × (M + 1) matrix, ~1T ≡ (1, 1, 1 . . .)T , K is the kernel
matrix and γ−1 is the trade-off parameter between the SVM optimization and
accuracy. Binary class labels are denoted by the vector ~y ∈ ([−1, 1]

M
)T for the

M training objects vectors ~xk that are order-correlated with the kernel matrix
K. Finally, ~α and b, i.e. the object of the optimization, are respectively the
weight and bias offset parameters of the decision hyperplane within the Mercer
embedding space induced by the kernel.
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3 Quantum SVM Implementation

A starting point for the quantum SVM (Q-SVM) implementation [1] is the
representation of training vectors ~x by means of quantum states | ~x〉 as follows,

| ~x〉 =
1

|~x|

N∑
k=1

(~x)k |k〉 . (4)

Such states could in principle be constructed querying a Quantum Random
Access Memory (QRAM) a number of times equal to O(logN).

The central idea of the quantum alorithm of Rebentrost, Mohseni & Lloyd
[1], is to use the LS-SVM of Eq.(3) so as to implicate the efficient quantum
matrix inversion [15, 16] of F to solve for the SVM parameters ~α, b. More
explicitly, we write Eq.(3) in terms of quantum states as

F̂ |b, ~α〉 = |~y〉 (5)

where F̂ = F/tr(F ) with ||F || ≤ 1. Secondly, if we express the state |~y〉 in
the eigenbasis |ei〉 of F̂ and add an ancillary qubit initially in state |0〉, we can
use the quantum phase estimation algorithm to store an approximation of the
eigenvalues λi of F̂ in the ancilla (first arrow of Eq.(6)):

| ~y〉 | 0〉 →
M+1∑
i=1

〈ei | ~y〉 | ei〉 |λi〉 →
M+1∑
i=1

〈ei | ~y〉
λi

| ei〉. (6)

As can be seen from the second arrow of Eq.(6), we can invert the eigenvalue
with a controlled rotation and un-compute the eigenbasis in order to obtain, in
the training set basis, the solution state for the SVM parameters

| ~α, β〉 =
1

b2 +
∑M
k=1 α

2
k

(
b | 0〉+

M∑
k=1

αk | k〉

)
(7)

with an overall time complexity for the training of the SVM parameters ~α, b
given by O(log(NM)). Note that ~α are non-sparse and represent distances from
the margin, thus, we do not obtain support vectors as in the dual Lagrangian
formulation.

Subsequently, the use of | ~α, β〉 to classify novel data |~x〉 requires the imple-
mentation of a query oracle involving all the labelled data

| ũ〉 =
1(

b2 +
∑M
k=1 α

2
k| ~xk|2

) 1
2

(
b | 0〉 | 0〉+

M∑
k=1

| ~xk| αk | k〉 | ~xk〉

)
(8)

and also the query state

| x̃〉 =
1

M |~x|2 + 1

(
| 0〉 | 0〉+

M∑
k=1

|~x| | k〉 | ~x〉

)
(9)
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where state | k〉 is an index state over training vectors.
The classification is then carried out as the inner product of the two states

〈x̃|ũ〉, obtained by a swap test [16]. An ancillary qubit is employed to construct
the state |ψ〉 = 1√

2
( | 0〉a | ũ〉+ | 1〉a | x̃〉) which is then measured in the state |φ〉 =

1√
2
( | 0〉a−| 1〉a) with a success probability given by P = |〈ψ|φ〉|2 = 1

2 (1− 〈x̃|ũ〉).
Such probability P can be calculated to some accuracy ε in O(P (1−P )

ε2 ) time and
class labels are allocated depending whether P is greater than 1

2 (in this case
we label |~x〉 as −1) or less than 1

2 (in this other case we label |~x〉 as 1).
Quantum kernelization can be achieved by directly acting on the training

vector basis, an approach that lends itself most readily to polynomial kernels.

4 Error Correcting Output Codes (ECOC) in
Classical Machine Learning

Real world data typically exhibits multiple classes – for example photographs of
street scenes may exhibit buildings of various kinds, pedestrians, vehicle, distinct
species of animal and plant life etc. Machine learning is therefore commonly
tasked with identifying from amongst the different classes when presented with
novel data. A powerful way to approach these problems, one that maximizes
the use of training data in relation to discriminative classifiers, is to break the
multi-class problem down into a series of smaller binary classification tasks.

Such two-class problems can then be treated by appropriate binary classifiers
(e.g. SVMs) whose decision outputs are combined to provide the sought multi-
class classification. Perhaps the simplest such approach is ‘one versus one’,
in which classifiers are trained for all pairwise combinations of classes and a
majority vote of their decisions is applied. A more efficient alternative with
respect to the number of classifiers is the ‘one versus all’ approach in which
a binary classifier is built to distinguish each of the individual classes from
the others. Again, a decision is made by majority vote to obtain a final class
decision allocation. Thus, both methods suffice to convert binary classifiers into
multi-class classifiers.

A key difference between ‘one versus one’ and ‘one versus all’ is that both
methods have a diverse degree of resilience to classification error. The commit-
tee decision making process (e.g. majority vote) of the ensemble of classifiers
potentially allows for some individually-incorrect decisions, whilst still arriving
at a correct collective decision. They are thus, to an extent, error-correcting.
However, it is demonstrable that neither of these approaches is optimal in this
respect nor are they optimal in terms of the training requirements of the clas-
sifiers.

For this, we need to consider Error Correcting Output Codes (ECOC) [17,
18]. Suppose, again, that (~xi, yi) with i = 1 . . .M are the training vectors/labels,
where and ~xi ∈ RN and the label set now extends to yi ∈ {ω1, ω2, ..ωc}. The
binary classifiers in the ensemble are denoted as h ∈ {h1, h2, . . . hL}. The ‘one
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versus one’ committee decision is thus defined as [19]

y = arg max
i∈1,...,c

hi(~x) (10)

ECOC utilises a codeword for each class ωi. There hence exists a c × L code
matrix M with values Mij , with each of the Mij values drawn from the set
{1,−1}2. The code matrix M represents L distinct binary classification prob-
lems, where each of the individual codes divides the set of classes into two
meta-classes (in the literature it dichotomises them). It is important to note
that the division of the set of class labels into two meta-classes for each of di-
chotomisers is carried over to the training vectors themselves, i.e. each of the
binary dichotomisers are trained on all of the training vectors to maximize their
generalising capacity. Both ‘one versus one’ and ‘one versus all’ can thus be
phrased in ECOC terms.

The matrix formulation adopted illustrates an important duality: while ma-
trix columns represent the meta-structure of the dichotomisers, matrix rows
define uniquely-identifying codewords for each of the underlying classes class
ωi. There are hence two stages to the ECOC process: an encoding and a decod-
ing stage. The coding stage is the constitution of an appropriate code matrix
M; the decoding process is the derivation of a collective decision from the set
of dichotomisers. To see how this works, consider an unlabelled test vector ~x.
Each of the meta-class dichotomisers predicts a value in the set {1,−1} such
that the test vector generates a codeword of length L. This codeword is then
compared against the set of codewords constituting the row-wise entries of M
ie M(i,·). The class i with the closest code value is then allocated as the final
ensemble decision:

y = arg min
i∈1,...,c

{
Σj |hj −Mij |2

}
(11)

Typically, the metric for this evaluation is Hamming distance; the error correct-
ing capacity of the ECOC matrix is thus determined by the minimal hamming
distance between codes.

Because the mapping of arbitrary codewords in the test vectors space onto
the codeword contained inM is many to one, the ECOC coding/decoding pro-
cess has an intrinsic error correction property. A subset of the L dichotomisers
can reach incorrect classification decisions with regard to the test vector while
retaining a correct ensemble decision. Their errors have, in effect, cancelled
themselves out (it may be shown that the ECOC ensemble reduces both classi-
fier bias and variance errors [21]). This property is invaluable in any non-trivial,
non-linearly-separable classification problem where there is an intrinsic, inalien-
able likelihood of error lower-bounded by the Bayes error for each dichotomiser.

2This is the simplest form of ECOC; three valued Mij are possible i.e. Mij ∈ {−1, 0, 1},
where the zero value represents omission of a class from the meta-class allocation [20].
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5 Strategy for Quantum Error Correcting Out-
put Codes

Our approach to quantize the ECOC is based on the implementation of the Q-
SVM, discussed in Section 3, of which we present the multi-class version. Since
we have to deal with L binary classifiers {h1, h2, . . . hL}, it is necessary to train
each of these dichotomisers according to the Q-SVM in order to reproduce a
multi-class classification.

We thus introduce a secondary index over training vector labels to take
into account the different label allocation of the training vectors for each di-
chotomiser. Each of the training vectors class label allocations for the set of
code vectors, indexed by jM, is hence projected into the eigenbasis |ei〉 of the
SVM kernel function F̂ , with eigenvalues λi, as follows

| ỹ〉 | jM〉 | 0〉 →
M+1∑
i=1

〈ei | ỹ〉 | ei〉 | jM〉 |λi〉 →
M+1∑
i=1

〈ei | ỹ〉
λi

| jM〉 | ei〉 (12)

A quantum phase estimation algorithm (first arrow of Eq.(12)) with a successive
employment of an eigenvalues inversion and a qubit discard are applied. In the
training set basis this gives the solution state for the SVM parameters ~αj and
bj associated to the jth dichotomiser, with an overall time complexity given by
O(L log(NM)) for all dichotomisers.

We can now construct an oracle |ũ〉 as a quantum superposition of all the
single dichotomisers oracles. Such query oracle is given by modified α′ values
with an additional index over jM, along with the appropriate normalisation.

| ũ〉 =
1√
L

L∑
jM=1

(
bjM
Z(jM)

| 0〉 | 0〉 | jM〉+

M∑
k=1

α′jM,k

Z(jM)
| ~xk| | k〉 | ~xk〉 | jM〉

)
(13)

where Z(jM) =
(
b2jM +

∑M
k=1 α

′2
jM,k| ~xk|2

) 1
2

. The query state is given by

| x̃〉 =
1√
L

L∑
jM=1

1

M |~x|2 + 1

(
| 0〉 | 0〉 | jM〉+

M∑
k=1

|~x| | k〉 | ~x〉 | jM〉

)
. (14)

Applying the projector |jM 〉〈 jM| to the previous two states we get

| x̃jM〉 = | jM〉〈jM|x̃〉 and | ũjM〉 = | jM〉〈jM|ũ〉

which equate the oracle and the query of Eq.s (8-9). We can thus rewrite Eq.s
(13-14) respectively as

| ũ〉 =
1√
L

L∑
jM=1

| ũjM〉 | jM〉 (15)
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| x̃〉 = | x̃jM〉

 1√
L

L∑
jM=1

| jM〉

 (16)

where | x̃jM〉 = 1
M |~x|2+1

(
| 0〉 | 0〉+

∑M
k=1 |~x| | k〉 | ~x〉

)
was taken out of the sum-

mation because it has no actual dependence on jM.
It is worth noting that the individual classification decision obtained by a

specific dichotomiser jM could, in principle, be achieved by projecting | x̃〉 and
| ũ〉 into the subspaces of | x̃j〉 and | ũj〉. This would be followed by the construc-
tion of the state 1√

2
( | 0〉 | ũj〉+ | 1〉 | x̃j〉) which would again be measured in state

1√
2
( | 0〉 − | 1〉) to give a measurement probability of P = 1

2 (1− 〈ũj |x̃j〉), with a

likelihood of less than 1
2 being allocated to the negative class and greater likeli-

hoods being allocated to the positive class. We thus have what is, in essence, a
decision ensemble - it was shown in [22] that quantum decisions ensembles can
be straightforwardly formed and combined via summation in the binary class
case.

However, in order to obtain the requisite multi-class decision and implement
the ECOC scheme, we need an additional decoding stage. Hence, we require
a set of projection operators in the training basis to reflect the rows of M i.e.
M(i,·). For a specific class label indexed by i, such an operator Ei is given by

Ei =

L∑
j=1

M(i,j) | jM〉〈jM | (17)

Since the QRAM enables exponentially efficient storage of matrix values with
access in quantum parallel, state preparation for storing each row of the binary-
valued matrix M thus takes place in O(logL) steps.

An individual class likelihood is thus obtained by projecting | ũ〉 into the
respective class subspaces:

| ũi〉 = Ei | ũ〉 =

L∑
jM=1

M(i,jM) | jM〉〈jM |

 1√
L

L∑
j′M=1

| ũj′M〉 | j
′
M〉

 =

=
1√
L

L∑
jM=1

M(i,jM) | ũjM〉 | jM〉

(18)

where the relation 〈jM|j′M〉 = δj,j′ has been applied. This is again followed
by a swap test reveals the value of

〈
x̃|ũi

〉
: after the construction of state

1√
2
( | 0〉 | ũi〉+ | 1〉 | x̃〉), the probability of measuring the state 1√

2
( | 0〉 − | 1〉) is

given by

Pi =
1

2
(1−

〈
x̃|ũi

〉
) =

1

2
(1− 〈x̃|Ei | ũ〉) (19)
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which can be obtained with accuracy ε in O(Pi(1−Pi)
ε2 ) times.

Note that the inner product
〈
x̃|ũi

〉
can be written as〈

x̃|ũi
〉

= 〈x̃|Ei | ũ〉 =

=
1

L

〈x̃j′M ∣∣ L∑
j′M=1

〈j′M|

 L∑
jM=1

M(i,jM) | ũjM〉 | jM〉 =

=
1

L

L∑
jM=1

M(i,jM) 〈x̃jM |ũjM〉

(20)

where the term 〈x̃jM |ũjM〉 is the one responsible for the classification of the un-
labelled state |~x〉 with respect to the jthM dichotomiser. In fact, if the value
of 〈x̃jM |ũjM〉 > 0, then the label associated to |~x〉 is +1. Conversely, for
〈x̃jM |ũjM〉 < 0, the classification gives a −1.

The role ofM(i,jM) inside the summation appearing in Eq.(20) can be better
understood with a simple example. Suppose of having a set of three binary
classifiers {h1, h2, h3} and three classes {w1, w2, w3} with ECOC codewords c1 =
{1, 1, 1}, c2 = {−1,−1,−1} and c3 = {1,−1,−1} respectively. MatrixM hence
has the following form

M =

 1 1 1
−1 −1 −1
1 −1 −1

 (21)

For the first class w1, Eq.(20) becomes〈
x̃|ũ1

〉
= 〈x̃|E1 | ũ〉 =

=
1

3

(
M(1,1) 〈x̃1|ũ1〉+M(1,2) 〈x̃2|ũ2〉+M(1,3) 〈x̃3|ũ3〉

)
=

=
1

3
(〈x̃1|ũ1〉+ 〈x̃2|ũ2〉+ 〈x̃3|ũ3〉) ,

(22)

for the second class w2 instead we get〈
x̃|ũ2

〉
= 〈x̃|E2 | ũ〉 =

=
1

3

(
M(2,1) 〈x̃1|ũ1〉+M(2,2) 〈x̃2|ũ2〉+M(2,3) 〈x̃3|ũ3〉

)
=

=
1

3
(−〈x̃1|ũ1〉 − 〈x̃2|ũ2〉 − 〈x̃3|ũ3〉)

(23)

and for the third class w3 we obtain〈
x̃|ũ3

〉
= 〈x̃|E3 | ũ〉 =

=
1

3

(
M(3,1) 〈x̃1|ũ1〉+M(3,2) 〈x̃2|ũ2〉+M(3,3) 〈x̃3|ũ3〉

)
=

=
1

3
(〈x̃1|ũ1〉 − 〈x̃2|ũ2〉 − 〈x̃3|ũ3〉) .

(24)
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Suppose now that the single dichotomisers classify the unlabelled state |~x〉 as
shown below

〈x̃1|ũ1〉 > 0 → |~x〉 labelled + 1 by h1,

〈x̃2|ũ2〉 > 0 → |~x〉 labelled + 1 by h2,

〈x̃3|ũ3〉 < 0 → |~x〉 labelled − 1 by h3.

(25)

To the state |~x〉, it is hence associated the codeword cx = {+1,+1,−1}. We
can now rewrite Eq.s (22-23-24) respectively as follows〈

x̃|ũ1
〉

= 〈x̃|E1 | ũ〉 =
1

3
(| 〈x̃1|ũ1〉 |+ | 〈x̃2|ũ2〉 | − | 〈x̃3|ũ3〉 |) (26)

〈
x̃|ũ2

〉
= 〈x̃|E2 | ũ〉 =

1

3
(−| 〈x̃1|ũ1〉 | − | 〈x̃2|ũ2〉 |+ | 〈x̃3|ũ3〉 |) (27)

〈
x̃|ũ3

〉
= 〈x̃|E3 | ũ〉 =

1

3
(| 〈x̃1|ũ1〉 | − | 〈x̃2|ũ2〉 |+ | 〈x̃3|ũ3〉 |) (28)

As we can see from Eq.s (26),(27) and (28), when the sign of 〈x̃jM |ũjM〉 is in
accordance with the sign of the correspondent elementM(i,jM), the summation
in (20) obtains a positive contribution. Conversely, when the sign of 〈x̃jM |ũjM〉
is opposite to the one of M(i,jM), the summation in (20) gets a negative con-

tribution. The effect of this procedure is to increase the value of
〈
x̃|ũi

〉
whose

related class i has the closest codeword with respect to cx. The unlabelled vector
|~x〉 is therefore assigned to the class with the highest

〈
x̃|ũi

〉
.

The estimation of probability Pi of equation (19) is used to decide the final
class allocation via an argmax process, with an implicit error correction capacity
equivalent to the class posterior margin over the next nearest class likelihood.
If all dichotomisers are ideal, the classes fully linearly separable and the query
vector within the hamming bound for the ECOC codes, then the probability
mass should be entirely centred on the relevant class.

Note that we have an implicit logarithmic compression of the ECOC scheme
relative to the classical approach by virtue of propagating the ECOC decision
parameters back into the training basis, within which the training vectors are
log2 compressed and accessed simultaneously via the QRAM. Moreover only
log2L + 1 additional qubit to the Q-SVM are required to index all the L di-
chotomisers in the state |jM〉. ECOC gains thus exist in addition to the QSVM
speedup.

6 Conclusion

The emergent field of Quantum Machine Learning proposes to leverage the ca-
pabilities of quantum computation in order to achieve greater machine learning
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performance than would be possible classically. One of the principal quantum
machine learning algorithms, the quantum support vector machine of Reben-
trost, Mohseni & Lloyd [1] is able to obtain a significant computational speed
increment in the case of a binary SVM classifier.

In this paper, we extended the contribution in [1] to the multi-class scenario.
This is possible due to the quantization of the ECOC scheme, a method that
combines many binary classifiers, called dichotomisers, to solve a multi-class
problem. Moreover, our quantum implementation of ECOC implicitly performs
an error correction on the test vector label allocation, with a capacity equivalent
to the class posterior margin over the next-nearest class likelihood. It does so
with an additional speedup associated with efficient QRAM calls.

Consequently, we anticipate that the present work constitutes a fruitful ex-
pansion of the current range of quantum algorithms that can be applied to
recognize patterns in data, specifically in the context of multi-class classifica-
tion.
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