

Copyright © 2018 Tech Science Press CMC, vol.56, no.2, pp.273-283, 2018

CMC. doi:10.3970/cmc.2018.03587 www.techscience.com/cmc

Research on Trust Model in Container-Based Cloud Service

Xiaolan Xie1, 2, Tianwei Yuan1, *, Xiao Zhou3 and Xiaochun Cheng4

Abstract: Container virtual technology aims to provide program independence and

resource sharing. The container enables flexible cloud service. Compared with traditional

virtualization, traditional virtual machines have difficulty in resource and expense

requirements. The container technology has the advantages of smaller size, faster

migration, lower resource overhead, and higher utilization. Within container-based cloud

environment, services can adopt multi-target nodes. This paper reports research results to

improve the traditional trust model with consideration of cooperation effects.

Cooperation trust means that in a container-based cloud environment, services can be

divided into multiple containers for different container nodes. When multiple target nodes

work for one service at the same time, these nodes are in a cooperation state. When

multi-target nodes cooperate to complete the service, the target nodes evaluate each other.

The calculation of cooperation trust evaluation is used to update the degree of

comprehensive trust. Experimental simulation results show that the cooperation trust

evaluation can help solving the trust problem in the container-based cloud environment

and can improve the success rate of following cooperation.

Keywords: Security, cloud service, trust model, container, cooperation.

1 Introduction

With the rapid development of cloud computing, virtualization technology is

continuously developing as a key technology in cloud computing. Virtual machine

technology is a hardware virtualization technology based on a virtual machine

management program. Virtual machine technology uses software to simulate a complete

hardware system, implements the allocation and isolation of computing resources, and

provides resource management and multi-user support for cloud computing [Borisova,

Schenderlein and Shchukin (2013)]. Independence and resource contention between

applications is a major problem of virtual machine technology.

Container technology is a virtualization technology. Perfectly solves the problem of

program independence and resource sharing. And compared with other traditional

1 College of Information Science and Engineering, Guilin University of Technology, Guilin, 541004, China.

2 Guangxi Universities Key Laboratory of Embedded Technology and Intelligent Information Processing,

Guilin University of Technology, Guilin, 541004, China.

3 College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541004, China.

4 Department of Computer Science, Middlesex University, London, NW4 4BT, UK.
 Corresponding Author: Tianwei Yuan. Email: yuantianwei@glut.edu.cn.

274 Copyright © 2018 Tech Science Press CMC, vol.56, no.2, pp.273-283, 2018

systems, container-based cloud platform is more flexible. The implementation technologies

and security mechanisms of different cloud platforms are different, undoubtedly raising

higher and broader security requirements for container cloud cross-platform applications.

Container virtualization technology provides a lightweight solution that allows bundled

applications. This virtualization approach achieves horizontal scalability.

Compared with traditional virtualization, traditional virtual machines have difficulty in

resource and expense requirements. The container technology has the advantages of smaller

size, faster migration, lower resource overhead, and higher utilization. Containers running

on a single machine share that machine’s operating system kernel; they start instantly and

use less compute and RAM. Images are constructed from file system layers and share

common files. This minimizes disk usage and image downloads are much faster.

Containers isolate applications from one another and from the underlying infrastructure.

It provides the most powerful default isolation. You can limit application problems to a

single container instead of the entire machine.

Containers have some advantages that virtual machines cannot match, and these

advantages can be used on specific occasions. For example, the annual “double eleven”

Ali, Jing Dong and other e-commerce promotions, Spring Festival train ticket sales and

so on. When the application providing these services runs in a container, the service

provider can instantaneously expand the number of service units to eliminate the peak

and guarantee the user experience. Among multiple container resource nodes, some

resources are necessarily unreliable, which can greatly affect the execution and

scheduling of jobs. There are many insecure factors in the container cloud environment.

If the nodes of the network resource in the container cloud are attacked, it will directly

affect the task execution on the node. Therefore, some security verification work can be

ignored only when tasks and resources trust each other. Therefore, the proposal of a

safety mechanism is indispensable [Fu, Liu and Chu (2016)]. The distributed dynamic

trust management model is applied in a container cloud environment to ultimately

implement trusted management in a trusted container cloud environment.

The general trust model consists of a central node that manages domain-wide entity trust

information. Problems with the general trust model: There is no distinction between the

credibility of the evaluation; lack of time applicability; single point of failure; not easy to

extend, etc. The distributed trust model is based on the trust relationship established in

human society [Geng, Zeng and Hu (2017)]. Network nodes independently maintain their

own trust data and do not need to manage the central node. This model is applied to the

container cloud environment in order to achieve the desired management goals and build

a trusted container cloud environment.

2 Based on container-based cloud dynamic trust management model

2.1 Basic concept definition

To synthesize various documents, we first give some descriptive definitions related to

trust.

Research on Trust Model in Container-Based Cloud Service 275

Definition 1. Trust is the belief in each other. It is a kind of judgment based on one’s own

knowledge and experience. It is a kind of subjective behavior. In this paper we define A

Trust B as T(A → B).

Definition 2. Satisfaction refers to the completion of the interaction. The demand node A

evaluates the service quality (service response time, service operating efficiency,

completion degree, etc.) of the interaction. Calculate the degree of confidence for later

calculations. The range of satisfaction is [0, 1]: 0 means very dissatisfied and 1 means

very satisfied.

Definition 3. The degree of trust describes the demand node’s expected judgment of the

service capability of the target node. The degree of trust is only affected by the degree of

satisfaction and represents the evaluation of the node’s service capabilities to other nodes.

The degree of trust is in the range [0, 1]: 0 indicates absolute distrust, and 1 indicates

absolute trust.

Definition 4. Direct trust degree means that a node makes a unilateral trust assessment to

the target node based on the historical service data that has interacted before. In this paper

we define A direct trust B as DT(A → B).

Definition 5. The recommended trust degree indicates the degree of trust formed by the

indirect recommendation of other nodes between nodes. In this paper we define A

recommendation trust B as RT(A → B).

Definition 6. The cooperative trust degree indicates the degree of trust formed after

evaluation by each cooperative node after the multi-target nodes work together. In this

paper we define a cooperative trust B as CT(A → B).

Definition 7. Comprehensive trust degree is the weighted average of direct trust,

recommended trust, and cooperative trust.

2.2 A trust management model for container-based cloud environment

In container-based cloud environment, services can be split into multiple containers

distributed over multiple node environments. Different traditional cloud computing, a

service can only be communicated and deployed on one node. Container cloud is a

lightweight service solution with smaller instance size, faster migration, and lower

resource overhead. During service operation, task distribution can run on different nodes.

The demand node selects multiple target nodes for trust calculation. In this way, it is

possible to avoid the existence of malicious spoofing in the calculation of direct trust in

the selection of a single target node, and to avoid co-deception of the target node. We

extracted the multi-objective nodes that we worked together and evaluated each other. In

the local resource store for this service, each node also evaluates other target nodes in the

same team [Kale and Chirchi (2017)] as a basis for cooperative trust calculations.

In this paper, the trust management system is shown in Fig. 1.

276 Copyright © 2018 Tech Science Press CMC, vol.56, no.2, pp.273-283, 2018

(4) Target node

②

Candidate

Service node

set

Trust

calculation

Demand

node

Service node

set

(1)

(2)

(3)

(5)

(6)

(4) Target node

③

Target node

①

(4)

Figure 1: Diagram of trust management system

In this model, the demand node seeks the target service through the following steps.

(1) Trust calculation on the service node set. Calculate their direct trust, recommended

trust, collaborative trust, and comprehensive trust, respectively.

(2) Filter candidate service node sets by calculation results.

(3) Select n nodes as the final interactive service node according to the requirements and

comprehensive trust.

(4) Evaluation of cooperation satisfaction: n ∗ (n − 1) satisfaction evaluation is evaluated

between n nodes that work collaboratively after completing a service. Finally, the

evaluation is stored in their local trust store.

(5) Interaction. After the service is completed, the demand node and the target node

mutually evaluate their satisfaction according to the information of the service.

(6) Demand node performs trust calculation based on interaction records.

3 Trust calculation

3.1 Local trust store

A trust model for the construction of container-based clouds in the network. Any node in

the container-based cloud is not only a service provider but also a user. The model uses a

non-centered construction model [Liu, Datta and Rzadca (2013)]. In the process of

calculating the degree of trust, no matter whether the direct degree of trust is calculated,

whether the recommended degree of trust or the cooperative trust requires the

participation of a local database, two types of data are stored in each node.

The interactive history sequence Hall, where each record H in the sequence contains target

node information, interaction satisfaction data, and interaction time.

The cooperative work history sequence Call, each record C in the sequence, contains

cooperative work node information, cooperative satisfaction data, and cooperative time.

3.2 Direct trust calculation

The direct trust is influenced by the local trust data, and the time factor also affects the

calculation of trust.

Research on Trust Model in Container-Based Cloud Service 277

Step 1. Read node A’s local store satisfaction

Node A reads the satisfaction degree of target node B from the local storage sequence

Hall, which is recorded as sequence H. The sequence H={h1, h2,...,hn}, n is the number

of interactions. In sequence H, each element hi contains the time of service satisfaction

sati and interaction time.

Step 2. Calculate the decay coefficient over time of local satisfaction

Trust has timeliness, and the degree of trust will decay with time.

Ti = θ(t − ti) (1)

sati represents the satisfaction of the history service; θ(t − ti) is the time influence

function;t represents the current time; ti is the time when the hi was recorded.

Step3. Calculate trust in direct trust DT(A→B)

 DT(A → B) = {
∑

Ti

∑ Ti
n
j=1

sati，n > 0n
i=1

0.5 ，n = 0
 (2)

A trust calculation between AB after an interaction is defined as dt(A → B) =
Ti

∑ Ti
n
j=1

sati.

When (t − ti) → ∞，Ti → 0. dt(A → B) =
Ti

∑ Ti
n
j=1

sati = 0.

Indicates that the interactive information is not reliable and has no reference value.

dt(A → B) has no effect on DT(A → B) . The number of interactions is reduced once.

n → n − 1.

When (t − ti) → 0, Ti → 0. dt(A → B) =
Ti

∑ Ti
n
j=1

sati =
sati

∑ Ti
n
j=1

.

Indicates that the information is reliable and has reference value.

Because sati ∈ [0,1] ，when n > 0，sati = 1, DTmax = 1. Indicate absolute trust.

When n > 0，sati = 0， DTmin = 0. Indicate distrust.

When n = 0，DT = 0.5. There is no history, indicating neither "trust" nor "distrust".

3.3 Recommended trust calculation

When the demand node is looking for the target node, it will consider the

recommendation of other nodes in addition to direct interaction. Recommended trust

means that the demand node can understand the target node's credibility more

comprehensively and extensively in other ways [Lang (2010)]. To prevent fraud in a

single interaction, the reliability and success rate of interaction can be improved by

calculating the overall trust degree. In the container-based cloud trust model,

recommendation trust is calculated by iterating the recommended chain.

Step 1. Build recommended chain

In a container-based cloud environment, when an interaction occurs, a path formed from

the demand node to the target node is called a recommended chain. The recommended

chain requires interaction history between two adjacent nodes [Shi, Liu and Wang

278 Copyright © 2018 Tech Science Press CMC, vol.56, no.2, pp.273-283, 2018

(2010)]. In other words, there is a direct trust relationship between two adjacent nodes. In

the process of calculating the recommended trust degree, the recommended trust level in

the recommended chain will decrease as the number of layer increases. The probability of

selecting the node with which the recommended chain is selected as the recommended

trust is also reduced. The reason for adding recommended trust in the trust calculation is

mainly to predict the distrust of the interactive node through direct trust calculation alone

[Tian, Jiang, Zhi-Guo et al. (2010); Mejia, Peña and Muñoz (2011)]. Adding recommended

trust can improve the overall stability of the trust model and increase the success rate of

interaction.

Step 2. Calculate trust in recommended trust RT(A→B)

Average the recommended trust degree of the iterative trust values of all recommended

chains. The recommended trust degree represents the degree of trust between the demand

node and the target node without considering the direct interaction, or when there is no

direct interaction experience between the demand node and the target node. The demand

node uses the recommended trust degree as one of the criteria for selecting the target

node for interaction. The definition formula is as follows:

RTij = ∑ √DTik1
∙ DTk1k2

∙∙∙∙∙ DTknj
n /mm

a=1 (3)

RT is a recommended trust evaluation value for the target node j, m denotes m

recommended chains, DTik1
∙ DTk1k2

∙∙∙∙∙ DTknj is the recommendation credibility of a

single recommendation chain. Because of the trust between two adjacent nodes, there is a

direct trust relationship. DTik1
 shows the direct trust between the demand node and the

first recommended node. DTik1
∙ DTk1k2

∙∙∙∙∙ DTknj is the recommended trust degree of the

recommended node k for the target node j. The value of the result of direct trust is in the

range of [0, 1]. Multiplied by the indirect credibility of multiple values that are less than

one, the calculation results will be smaller and smaller. This also complies with the law

of attenuation in the recommended chain with the increase of the number of

recommended layers and the smaller the indirect credibility [Hada, Singh and Meghwal

(2011); Can and Bhargava (2013)].

3.4 Container cloud-based cooperative trust calculation

Cooperative trust means that in a container-based cloud environment, services can be

divided into multiple containers for different container nodes, that is, there are multiple

target nodes. When multiple target nodes work for one service at the same time, these

nodes are in a cooperative state [Kozhirbayev and Sinnott (2017); Liu, Datta and Rzadca

(2013)]. The target nodes are in the same team, and each node also evaluates other target

nodes in the same team. This evaluation we call cooperative evaluation.

Step 1. Read the satisfaction of other nodes in a collaborative work

 sati = ∑ satj
n
j=1 /n (4)

Step 2. Calculate the decay coefficient over time of local satisfaction

Trust has timeliness, and the degree of trust will decay with time.

Ti = θ(t − ti) (5)

Research on Trust Model in Container-Based Cloud Service 279

sati represents the satisfaction of the history service; θ(t − ti) is the time influence

function;t represents the current time; ti is the time when the hi was recorded.

Step 3. Calculate trust in direct trust CT(A→B)

CT(A → B) = {
∑

Ti

∑ Ti
n
j=1

sati，n > 0n
i=1

0.5 ，n = 0
 (6)

A trust calculation between AB after an interaction is defined as ct(A → B) =
Ti

∑ Ti
n
j=1

sati.

When (t − ti) → ∞，Ti → 0. ct(A → B) =
Ti

∑ Ti
n
j=1

sati = 0.

Indicates that the interactive information is not reliable and has no reference value.

ct(A → B) has no effect on CT(A → B). The number of interactions is reduced once. n →
n − 1.

When (t − ti) → 0, Ti → 0. ct(A → B) =
Ti

∑ Ti
n
j=1

sati =
sati

∑ Ti
n
j=1

.

Indicates that the information is reliable and has reference value.

Because sati ∈ [0,1] ，when n > 0，sati = 1， CTmax = 1. Indicate absolute trust.

When n > 0，sati = 0, CTmin = 0. Indicate distrust.

When n = 0，CT = 0.5. There is no history, indicating neither “trust” nor “distrust”.

3.5 Comprehensive trust calculation

The integrated trust of a node consists of direct trust, recommended trust, and cooperative

trust. The formula is as follows:

T(A → B) = αDT(A → B) + βRT(A → B) + (1 − α − β)CT(A → B) (7)

In general cognition, people often believe in subjective experiences. However, in the real

environment, other people’s suggestions also play an important role. In the article, the

attributes of cooperation are added as one of the judging criteria. In an objective

environment, collaborating on something in a team is also an interaction. Therefore, this

paper believes that when there are multiple target nodes working together, the

cooperation attribute should also be used as one of the attributes for calculating

comprehensive trust. The interactive nodes selected in this way have higher credibility.

4 Simulation experiment

This paper uses simulation experiments to verify the performance of the model, and

simulates a trusted management model based on the container-based cloud. The improved

model is defined as Cotrust. In the simulation, we compared it with EigenTrust mode and

showed better results. The EigenTrust model is a trust model proposed by Stanford

University. It is the current mainstream trust model.

280 Copyright © 2018 Tech Science Press CMC, vol.56, no.2, pp.273-283, 2018

4.1 Parameter setting

In the simulation system, the nodes in the network are transformed into node objects. The

nodes include, node ID, the historical record of the node’s direct interaction, and the

history of the node cooperation. The node selects the nodes with high satisfaction as the

interactive node through the algorithm of simulation trust calculation.

Table 1: Simulation node

Node Service Recommended

evaluation

Cooperative

evaluation

Decision

result

Malicious A Malicious Malicious Malicious Failed

Malicious B Normal Malicious Malicious Success

Malicious C Normal Normal Malicious Success

Malicious D Normal Normal Normal Success

Table 2: Parameter setting

Preselected

point of

trust

Number of

interactive

history

records

Time

influence

function

Cooperating

node upper

limit

Recommended

chain threshold

Test

times

30 20 1

∆t + 1

4 5 5

4.2 Experiment on success rate of transaction under malicious service attack

The experiment described the effect on the success rate of transactions as the proportion

of malicious services increases. In simulation experiments, it is shown that performance

is similar when there are few malicious nodes, but the improved model will have better

performance when there are more malicious nodes. Simulation results as shown in Fig. 2.

Figure 2: Malicious node impact diagram

Research on Trust Model in Container-Based Cloud Service 281

4.3 Experiments on the impact of increasing number of interactions on transaction

success

The experiment describes the change in the success rate of the transaction as the number

of interactions increases. When the number of interactions is small, the effect of the co

model is not very good. However, as the number of interactions increases, the Cotrust

model shows a better trend, and after a certain number of times, the area is stable and

shows good feasibility. Simulation results as shown in Fig. 3.

Figure 3: Interaction times impact diagram

5 Conclusion

This paper proposes a trust model for container cloud environment, which uses direct

trust, recommendation trust and cooperative trust to calculate the comprehensive trust

degree in three trust ways. The results of the simulation experiments show that the model

can effectively solve the trusted problem in the container-based cloud.

Acknowledgement: This research work was supported by the National Natural Science

Foundation of China (Grant No. 61762031), Guangxi Key Research and Development

Plan (No. 2017AB51024), Guangxi key Laboratory of Embedded Technology and

Intelligent System, Guangxi Fundamental Laboratory for Embedded Technology and

Intelligent Systems.

References

Borisova, D.; Schenderlein, M.; Shchukin, D. G. (2013): Nanocontainer-based

anticorrosive coatings: Effect of the container size on the self-healing performance.

Advanced Functional Materials, vol. 23, no. 30, pp. 3799-3812.

Can, A. B.; Bhargava, B. (2013): Sort: A self-organizing trust model for peer-to-peer

systems. IEEE Transactions on Dependable & Secure Computing, vol. 10, no. 1, pp. 14-27.

Cheng, X.; Jiang, Y. (1999): Errors related to substitution and set operations. Journal of

Software, vol. 10, no. 2, pp. 201-204.

Cheng, X.; Jiang, Y.; Liu, X. (1996): Fuzzy logic based on debate semantics. Science in

China, vol. 26, no. 1, pp. 64-71.

282 Copyright © 2018 Tech Science Press CMC, vol.56, no.2, pp.273-283, 2018

Cheng, X.; Liu, X. (1995): The operator fuzzy logic based on belief considerations.

Chinese Journal of Computers, vol. 18, no. 12, pp. 881-885.

Cheng, X.; Zhong, S.; Dan, O. (2004): Abstract operator logic and its natural deduction

system. Journal of Northeast Normal University (Natural Science), vol. 36, no. 4, pp. 38-44.

Chillarón, M.; Vidal, V.; Segrelles, D. (2017): Combining grid computing and Docker

containers for the study and parametrization of CT image reconstruction methods.

Procedia Computer Science, vol. 108, no. 2, pp. 1195-1204.

Du, J.; Du, J.; Cheng, X.; Lin, K. (2016): Degradation and encryption for outsourced

png images in cloud storage. International Journal of Grid & Utility Computing, vol. 7,

no. 1, pp. 22-28.

Efthimiadou, E. K.; Tziveleka, L. A.; Bilalis, P. (2012): Novel PLA modification of

organic microcontainers based on ring opening polymerization: Synthesis, characterization,

biocompatibility and drug loading/release properties. International Journal of

Pharmaceutics, vol. 428, pp. 134-142.

Fu, S.; Liu, J.; Chu, X. (2016): Toward a standard interface for cloud providers: The

container as the narrow waist. IEEE Internet Computing, vol. 20, no. 2, pp. 66-71.

Geng, X.; Zeng, X.; Hu, L. (2017): An novel architecture and interprocess communication

scheme to adapt chromium based on docker container. Procedia Computer Science, vol.

104, no. 3, pp. 691-696.

Goldschmidt, T.; Hauck-Stattelmann, S.; Malakuti, S. (2018): Container-based

architect-ture for flexible industrial control applications. Journal of Systems Architecture,

vol. 84, pp. 28-36.

Hacker, T. J.; Romero, F.; Nielsen, J. J. (2012): Secure live migration of parallel

applications using container-based virtual machines. International Journal of Space-

Based and Situated Computing, vol. 2, no. 1, pp. 45-57.

Hada, P. S.; Singh, R.; Meghwal, M. (2011): Security agents: A mobile agent based

trust model for cloud computing. International Journal of Computer Applications, vol. 36,

no. 12, pp. 12-15.

Hu, W.; Wang, H.; Min, Z. (2014): A storage allocation algorithm for outbound

containers based on the outer-inner cellular automaton. Information Sciences, vol. 281,

pp. 147-171.

Jiang, J.; Han, G.; Wang, F. (2015): An efficient distributed trust model for wireless

sensor networks. IEEE Transactions on Parallel & Distributed Systems, vol. 26, no. 5, pp.

1228-1237.

Kale, J.; Chirchi, V. R. (2017): Result and analysis: Data sharing between peer-to-peer

using trust model. International Journal of Computer Applications, vol. 157, no. 8, pp.

30-33.

Kozhirbayev, Z.; Sinnott, R. O. (2017): A performance comparison of container-based

technologies for the cloud. Future Generation Computer Systems, vol. 68, pp. 175-182.

Lang, B. (2010): A computational trust model for access control in p2p. Science China

(Information Sciences), vol. 53, no. 5, pp. 896-910.

Research on Trust Model in Container-Based Cloud Service 283

Li, X.; Du, J. (2013): Adaptive and attribute-based trust model for service level agreement

guarantee in cloud computing. IET Information Security, vol. 7, no. 1, pp. 39-50.

Liu, X.; Datta, A.; Rzadca, K. (2013): Trust beyond reputation: a computational trust

model based on stereotypes. Electronic Commerce Research & Applications, vol. 12, no.

1, pp. 24-39.

Liu, Z.; Huang, Y.; Li, Jin; Cheng, X; Shen, C. (2018): DivORAM: Towards a practical

oblivious RAM with variable block size. Information Sciences, vol. 447, pp. 1-11.

Mei, J. P.; Yu, H.; Shen, Z. (2017): A social influence based trust model for

recommender systems. Intelligent Data Analysis, vol. 21, no. 2, pp. 263-277.

Mejia, M.; Peña, N.; Muñoz, J. L. (2011): A game theoretic trust model for on-line

distributed evolution of cooperation inMANETs. Journal of Network & Computer

Applications, vol. 34, no. 1, pp. 39-51.

Pérez, A.; Moltó, G.; Caballer, M. (2018): Serverless computing for container-based

architectures. Future Generation Computer Systems, vol. 83, pp. 50-59.

Selvaraj, C.; Anand, S. (2012): Peer profile based trust model for p2p systems using

genetic algorithm. Peer-to-Peer Networking and Applications, vol. 5, no. 1, pp. 92-103.

Shchukin, D. G. (2013): Container-based multifunctional self-healing polymer coatings.

Polymer Chemistry, vol. 4, no.18, pp. 4871-4877.

Shi, J.; Bochmann, G. V.; Adams, C. (2012): A trust model with statistical foundation.

IFIP Advances in Information & Communication Technology, vol. 173, pp. 145-158.

Shi, Z. G.; Liu, J. W.; Wang, Z. L. (2010): Dynamic p2p trust model based on time-

window feedback mechanism. Journal on Communications, vol. 31, no. 2, pp. 120-129.

Tajeddine, A.; Kayssi, A.; Chehab, A. (2011): Fuzzy reputation-based trust model.

Applied Soft Computing, vol. 11, no. 1, pp. 345-355.

Tian, C. Q.; Jiang, J. H.; Hu, Z. G.; Li, F. (2010): A novel super-peer based trust

model for peer-to-peer networks: A novel super-peer based trust model for peer-to-peer

networks. Chinese Journal of Computers, vol. 33, no. 2, pp. 345-355.

Tilmans, S.; Russel, K.; Sklar, R. (2015): Container-based sanitation: assessing costs

and effectiveness of excreta management in Cap Haitien, Haiti. Environ Urban, vol. 27,

no. 1, pp. 89-104.

Wang, K.; Wu, M. (2010): Cooperative communications based on trust model for

mobile ad hoc networks. Information Security IET, vol. 4, no. 2, pp. 68-79.

Wang, S. X.; Zhang, L.; Wang, S. (2010): A cloud-based trust model for evaluating

quality of web services. Journal of Computer Science & Technology, vol. 25, no. 6, pp.

1130-1142.

Xie, X.; Liu, R.; Cheng, X.; Hu, X.; Ni, J. (2016): Trust-driven and PSO-SFLA based

job scheduling algorithm on cloud. Intelligent Automation & Soft Computing, vol. 22, no.

4, pp. 561-566.

Zhang, J. A.; Guo, X. E. (2010): Trust model based on dynamic recommendation in p2p

network. Computer Engineering, vol. 36, no. 1, pp. 174-176.

