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Abstract. In recent years, some impressive AI systems have been built
that can play games and answer questions about large quantities of data.
However, we are still a very long way from AI systems that can think and
learn in a human-like way. We have a great deal of information about
how the brain works and can simulate networks of hundreds of millions
of neurons. So it seems likely that we could use our neuroscientific knowl-
edge to build brain-inspired artificial intelligence that acts like humans
on similar timescales. This paper describes an AI system that we have
built using a brain-inspired network of artificial spiking neurons. On a
word recognition and colour naming task our system behaves like human
subjects on a similar timescale. In the longer term, this type of AI tech-
nology could lead to more flexible general purpose artificial intelligence
and to more natural human-computer interaction.

Keywords: Spiking Neural Network · Small-World Topology · Cell As-
sembly · Stroop Effect

1 Introduction

In recent years there has been an explosion of interest in AI. This has partly been
the result of developments in deep neural networks, which have achieved success
in a wide range of areas, such as face recognition [40] and games [37, 31]. AI
systems are also capable of doing impressive feats of natural language process-
ing - for example, IBM’s recent successes with Watson [8] and Project Debater
[22]. These systems have generated a lot of excitement as well as doom-laden
predictions about widespread job losses and apocalyptic takeovers by malevolent
machine intelligence.

The recent successes in AI have occurred in situations where a large amount of
data is available or there is a highly constrained environment. These AI systems
are poor at finding new solutions to problems and they do not think in a human-
like way. This creates problems when humans have to interact with the AI.
Humans typically use their own minds to model the minds of other people, but
this breaks down when humans try to understand an AI system, whose behaviour
might be controlled by the processing of vast quantities of text. The mind of an
artificial intelligence is opaque to the human mind, which makes it difficult for
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humans to collaborate with AI systems and teach them new things. It also leads
to major issues with transparency, accountability and trust.

Neuroscience has made big advances in recent years. We have a great deal of
information about how the brain works and can simulate hundreds of millions of
neurons in real time [9]. Models have been built of the fruit fly brain [1], worms
[41] and there are ongoing attempts to simulate the human brain with increasing
accuracy [29]. These networks not only aim to build an ’in silico’ duplicate of
a static brain, but also to simulate the learning and developmental processes:
capturing how groups of neurons evolve to perform highly complex cognitive
functions.

The human brain is the best example of a general-purpose intelligence that we
have. So one way of addressing AI’s current limitations could be to build brain-
inspired systems that ’think’ in a similar way to the human brain. A system that
works in a similar way to humans could be more easily understood by humans,
which would help to address the issues of trust, accountability and transparency.

In our research we are investigating how cognitive systems can be built using
brain-inspired spiking neural networks. The basic unit for these models is a cell
assembly [21]: a group of neurons that displays persistent activation. Groups
of cell assemblies can be wired together, potentially using learning, into brain-
inspired cognitive systems. One of our aims is to produce systems that think in
a human-like way. A good way of evaluating this is to measure the system using
tests that have been developed by experimental psychology. For example, in this
paper we describe a system that shows a similar Stroop effect to human subjects.
The construction of brain-inspired systems can also help us to understand the
human brain. This can lead to a positive feedback loop in which the results
from neuroscience and experimental psychology help us to build AI systems and
these AI systems lead to better explanations in neuroscience and experimental
psychology.

This paper describes an AI system that performs a word recognition and
colour naming task in a human-like way on a similar time scale to humans. It is
based on a brain-inspired architecture and implemented using spiking neurons.
To evaluate the extent to which our system thinks in a human-like way we
measured the timing of its word recognition and colour naming when the colour
of the word was congruent with its meaning (for example, ’red’ written in red
ink) and when the colour of the word was incongruent with its meaning (for
example, the word ’red’ written in blue ink). When humans perform this task
there is a well known interference effect, known as the Stroop effect [38], such
that human reaction times vary between the congruent and incongruent tasks.
We were hoping to reproduce this Stroop effect in our system.

The first part of the paper gives some background on the word recognition
and colour naming tasks and the Stroop effect that is observed when humans
perform them. The background section also covers previous computer simula-
tions of the Stroop effect and some of the earlier cognitive systems that have been
built with cell assemblies. Section 3 describes how we constructed our system
and Section 4 gives the results of our experiments and compares the behaviour
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of our system with that of human subjects. The paper concludes with a discus-
sion and our plans for creating AI systems that use learning to develop complex
cognitive functions.

2 Background

2.1 Word Recognition and Colour Naming Stroop Effect

In word recognition and colour naming tasks the subjects are presented with
a colour word, such as ’red’ or blue’, which is written in coloured ink. In the
congruent situation, the colour of the ink matches the meaning of the word (for
example, ’red’ written in red ink). In the incongruent situation the colour of
the word is different from the colour of the ink (for example, the word ’red’
written in blue ink). The subjects have to recognize and repeat the word (WR)
or name the colour of the ink (CN). When humans perform these tasks they
have a faster reaction time in WR tasks compared with CN tasks. Subjects also
have slower reaction times on CN tasks in the incongruent situation where the
word and ink colour disagree, but the difference in reaction time is not significant
in incongruent WR tasks (see Table 1). This shows that word-reading interferes
with colour-naming but colour-naming does not significantly interfere with word-
reading. This difference in response times is known as the Stroop effect [38].

The Stroop effect is one of the most studied phenomena of cognitive inter-
ference and many variations on Stroop’s original experiments have been carried
out. For example, Glaser and Glaser [13] introduced stimulus onset asynchrony
(SOA) when presenting colour and word stimuli at different temporal positions;
the compensated processing time for colour-naming did not result in interfer-
ence on reading words. Dunbar and Macleod [6] modified the words in different
rotations so that participants took longer to read the word. In this situation
the hindered word reading still interfered with colour naming. Macleod, Colin
and Dunbar [27] introduced shape naming and associated different shapes to
different colours. After intensive practicing, slower shape naming interfered with
faster colour-naming tasks when participants were asked to name the colour of
a shape.

A number of theories have been proposed to explain the Stroop effect [26].
Stroop [39] assumed that people can read words much faster than name colours
and attributed the interference on colour-naming to incomplete inhibition on
the faster processed word-reading. This model was challenged when slow word
reading was shown to strongly interfere with fast colour naming. A different
theory was put forward by Cohen, Dunbar and McClelland [4], who suggested
that there are parallel distributed processes of word-reading and colour-naming.
The strength of the word-reading pathway is stronger than the colour-naming
pathway, as there are more experiences of reading words. The pathway strength
affects the processing speed and priority in the interference scenario. Melara and
Algom [30] suggested that there could be perceptual biases towards word reading
compared with colour naming. The attention selection is biased by the dimen-
sional imbalance and uncertainty in linking the stimulus to word or colour per-
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ceptions. As words are more salient than colours, word-naming would interfere
with colour naming. Roelofs [35] argues that there are architectural difference
in the processing of colours and words. In this proposal, colour-naming requires
more steps than word reading, so colour-naming requires more attention and is
less automatic than word reading.

2.2 Computer Simulations of the Stroop Effect

One of the most influential computer simulations of the Stroop effect was built
by Cohen et al. [4]. A multilayer perceptron (MLP) network was trained on
control conditions when only colour or word inputs were present. The input
layer had input nodes for ink colour, word text and task and it was connected
to the output layers via a hidden layer. The activation of sensory inputs and
commands were fed through the network to produce output vectors. Training in
word or colour conditions increased the strength of the pathways. As reading is
highly practiced, there were ten times as many word training items than colour
training items. The trained MLP was run repeatedly to generate the output
time, which was determined when the accumulated output of one of the output
vectors exceeded a response threshold. The system was able to reproduce the
basic Stroop effect and predicted a reverse-Stroop effect that has been recently
observhed [45].

Based on the architecture of the Cohen model, Laeng et al. [25] replaced the
single unit colour inputs with three input nodes that worked in combination to
represent a much wider range of colours. Kaplan et al. [23] introduced a number
of models of neuroanatomic components: a habitual response module, an atten-
tional module, an inhibition module and an error detection module. The authors
claimed that the multi-perception network was a duplicate of prefrontal circuits.
Benbassat and Henik [2] applied an evolutionary algorithm to the Cohen model
to generate the outputs. Different parameters of the networks were imported as
part of the genome segments and the system evolved based on its performance
in control conditions when only colour or word input was present. This network
was able to produce the basic Stroop effect. Kello [24] implemented a simplified
articulation process with an inhibition model (gain) to control the information
flow through the system. By varying response latencies, a different stimulus onset
asynchrony effect was simulated. Phaf [34] built representations of experimental
conditions as different feature attributes. By manipulating connection weights,
the multi-layer perceptron system was able to perform winner-take-all filtering
on input patterns. The recurrent connection between different modules forced
the system to converge to a stable state for any given input. This system was able
to demonstrate the cooperative and competitive interferences that are detected
in some of the Stroop tests.

Roelofs [35] simulated the Stroop effect in a interactive activation model
[36] of word production. Based on similar architecture, Van Maanen et al. [43]
focused on semantic interference during retrieval. Although colour-naming and
word-reading had similar input structure and the symbolic processing unit was
biased towards words during retrieval, the system was able to duplicate results
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for semantic gradient effects [14] and the SOA effects. Fennell [7] further pa-
rameterized the decision process by introducing both boundary and diffusion
models [15]. Yusoff, Gruning and Browne [46] simulated the Stroop tests in an
auto-associative Hopfield network. This network was initiated with partially en-
abled (turned on) bits forming colour or word memory as task requirements, and
the system took different numbers of cycles to converge on a stable state under
different conditions.

2.3 Cognitive Models with Cell Assemblies

The Cell Assembly hypothesis is that CAs are the neural basis of internal resen-
tations of concepts, ideas and mental states [16]. A CA is a group of neurons that
has relatively high synaptic connectivity, and relatively highly weighted synaptic
connectivity. Thus, once some neurons with in a given CA start to fire, there is
a cascade of firing that causes the larger portion of the CA population to fire.
This firing is the neural basis of a psychological short-term memory. The synap-
tic change required to make this connectivity is a long-term memory. When a
concept (for example, a word red) is presented to a participant, a group activa-
tion pattern of neurons will emerge and persist when a ’red’ word is recognized
by the participant.

One of the core principles of Hebbian theory [16] is that CAs emerge from
Hebbian plasticity; if a group of neurons often fire together, their connecting
weights will increase and the particular co-firing neurons will form a CA that
acts as a basic unit for neuronal computation. There is considerable theoretical
support for CAs (e.g. [3]) and there is a large community of researchers that,
in essence, assumes that the CA hypothesis is correct (see [21] for a review).
Although imaging data is consistent with the idea of CAs, it cannot provide
conclusive evidence because it is not currently possible to record the spiking
behaviour of all neurons [11].

In previous work, CAs have been used to build a number of cognitive systems.
Researchers have been developing CA based systems for quite some time[33]. In
particular, the authors have done work on, for example, associative memory [18],
natural language parsing [19], and category learning [20]. Others have developed,
for example, systems for robot control [42], and the semantics of words [10].
Simualted spiking neurons are powerful computational devices. It is relatively
simple to build systems based on spiking neurons that are incompatible with
the CA hypothesis. These systems are suspect as models of human psychological
behaviour.

3 Methodology

Our cognitive system was constructed using the spiking neuron simulation plat-
form NEST [12]1.

1 The code can be found on http://www.cwa.mdx.ac.uk/NEAL/NEAL.html
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Integrate and fire neurons were programmatically connected together into
eight Cell Assemblies (CAs) (see figure 3). There is no learning in the neural
network described in this paper. All of the CAs contained one thousand neurons
except for the two word reading CAs, which contained two thousand neurons.
A CA group was inter-connected with excitatory synapses that has static and
identical weights.

The internal connections in a CA follow a small-world-topology [44]. A small
world topology is a sparse topology, where nodes can reach most other nodes
in a small number of, in this case, synapses. In this paper, we adopted a small
world topology that was consistent with neural biology, in which neurons that
have more connections are more likely to be connected, which has been reported
with ’hub’ neurons that are highly connected to other neurons in brain networks
[17]. A demonstration of small world topology is shown in figure 1 that shows a
network of 12 neurons with a small world topology (left) and a random topology
(right). Notice how some neurons in the small world topology are receiving more
synaptic connections while the synaptic connections in the random topology are
more evenly distributed.

Fig. 1. Small-World Topology.

The small world topology in our project are implemented as follows: initially,
each neuron in the CA is connected to its adjacent neuron in a ring. Each
connection is then rewired according to equation 1, which shows how likely
each of the other neurons is to be selected as the post-synaptic neuron. In this
terminology, the connections are one directional synaptic connections. This is a
’rich get richer’ policy: post-synaptic neurons that already have may incoming
connections have a higher chance of getting a new connection.

pi =
ci + 1∑n 6=m

j=1 (cj + 1)
(1)

n is the total number of neurons and n× s is the total number of uni-directional
synaptic connections, with s being the number of synapses leaving each neuron.
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pi is the probability of the ith neuron being selected by a presynaptic neuron
whose connection is being rewired. ci is the number of presynaptic neurons that
are currently connecting to the ith neuron. If a connection is to be rewired from
neuron m, it will always reconnect to another postsynaptic neuron. Note that
we are not implying that small world topologies develop in the brain using this
rewiring mechanism, just that they are common topologies in the brain.

One of the properties of a CA is the ability to ’ignite’ when some of the
neurons in the CA are stimulated. In our experiment, 10 neurons (20 for word
CAs) were stimulated repeatedly. The CA will gradually have more neurons
starting to fire. A demonstration of CA ignition is shown in figure 2. There are
30 connections leaving each neuron to connect to post-synaptic neurons. It is the
same with the random connection condition. Note how the random line never
really has any extra firing, while the small world line slowly builds up firing. The
random 100 line does increase its firing and rapidly goes to saturation.
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Fig. 2. Firing behaviour of groups of neurons with clamped input, and differing topolo-
gies.

The small-world topology was also applied between CAs following the same
’rich get richer’ policy under equation 1, however only the count of synapses
between these populations was used in the equation. Each neuron in a CA was
connected to 1.1% of other neurons in the CA. A gross network structure is shown
in figure 3. All CAs had excitatory internal connections, neurons in colour and
word CAs had both excitatory and inhibitory external connections. Neurons in
task-selection and output CAs only had inhibitory external connections. Excita-
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tory connections are shown as solid arrows and inhibitory connections are shown
as dotted lines.

Task: Word-Reading Task: Colour-Naming

Colour: Red Colour: Blue Word: Red Word: Blue

Output: Red Output: Blue

Fig. 3. Network Structure. There are eight Cell Assemblies consisting of neurons with
excitatory connections between them. There are also inhibitory connections between
CAs, represented by dashed lines, and excitatory connections between CAs, represented
by solid lines. All inhibitory connections are from top to bottom except the output CAs
are mutually inhibitory.

At the start of a simulation run the task, word and ink CAs were externally
activated by injecting a current of 378 mA into a percentage of their neurons.
For instance, if it was a word naming (WN) task and the word red was presented
in blue ink, then neurons in the word naming task CA, the red word CA and
the blue ink CA were activated with the 378 mA injection current, which was
continued throughout the simulation of 1000 milliseconds (ms). Activated neu-
rons continued firing throughout the simulation. The percentage of neurons that
were externally stimulated for each CA is 0.13% for the ink colour and word
CAs, and 0.26% for the task CAs.

The ink colour and word CAs had excitatory connections to the output CAs.
Each of these were connected to 0.5% of the appropriate output neurons. They
also had inhibitory connections to 0.6% of the appropriate output neurons. The
task neurons had connections to 1.2% of the appropriate neurons. (Appropriate
here refers to the arcs in figure 3).

The synaptic weights were static and did not change with training or repeated
exposure to the task. The synaptic weights were initially set at the minimum
weight to evoke spikes in post-synaptic neurons. Then the connecting weights
and nodes inside and across different CAs were manually tuned to produce the
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firing delays in output neurons that matched the empirical data from human
subjects.

Six conditions were simulated, which are shown in Table 1. In the two control
conditions either a single word or ink colour CA is stimulated. In the other
four conditions, one task, one word and one ink colour CA was stimulated.
These four conditions were the congruent or incongruent, colour naming or word
reading conditions. So, when one incongruent word reading task was run, the
word reading CA, the red ink CA, and the blue word CA were turned on. In this
case the correct answer was blue.

4 Results

The empirical data from human subjects and the experimental measurements of
our network’s performance are shown in Table 1. The empirical data is a group
average of several human participants obtained from Dunbar and Macleod’s
work [6]. There are three conditions for each task, for congruent and incongru-
ent conditions refer to a colour-word match and mismatch condition. The control
condition is when a stimulus of colour or word was presented without the inter-
ference (for colour task was to tell the colour of a coloured box and for word
task the participants were presented with words that were not related to colour
descriptions).

The reported times for our network are the ramp-up time for the output CA.
The ramp-up time of a CA is the moment at which more than 75% of neurons in
the CA have fired at least once in the last 10 ms. The system output was recorded
when a target CA had ramped-up. If both CAs were ramping-up, the CA that
first reached 75% was reported. In isolation, the ramp-up time for the task CAs
is 90ms, for colour-naming it is 188ms, and for word-reading it is 146ms, that is
faster than colour-naming

Human participants take roughly 300 ms to process visual input and produce
a behaviour response. As our system only performs the cognitive task, the time
for perception and movement can be discounted. Consequently, Table 1 shows the
reported results in brackets, with the results minus 300ms first. The incongruent
times match exactly and the others are within 13 ms.

Table 1. Empirical and simulation results

Human Subjects Congruent (ms) Incongruent (ms) Control (ms)

Colour Naming 310(610) 490(790) 330(630)
Word Reading 210(510) 220(520) 215(515)

Simulation Congruent (ms) Incongruent (ms) Control (ms)

Colour Naming 297 490 370
Word Reading 203 220 216
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5 Discussion and Future Work

The results in the previous section show that our system successfully executes
the word and colour naming tasks with similar timings to human subjects. While
the tasks that our system performs are not particularly intelligent, we believe
that this type of system could eventually lead to the development of AIs that
think in a human-like way and can be more easily understood and trusted by
human subjects.

There is no one size fits all recipe for producing an AI system. When large
amounts of data are available, deep neural networks are often the best solution.
However, deep learning has limitations [28] and other situations have different
requirements, such as one shot learning, transparency, symbol manipulation,
etc. This paper has demonstrated how a symbol manipulating AI system can be
implemented in spiking neurons in a way that is constrained by the brain archi-
tecture and measurements of human performance in experimental psychology. In
some situations this approach to AI could be a better choice. In the longer term
this type of brain-inspired system could prove to be better at flexible general
purpose AI than the current state of the art systems.

Although our neural network is a very approximate model of the brain struc-
tures that are responsible for naming colours and words, it does have features
that might point towards novel explanations of the Stroop effect in the human
brain. For example, the small world topology provides important functionality
in our CA based system (see Section 3) and our network’s Stroop effect is partly
driven by the fact that the number of neurons in the word CAs is twice that of
those in the ink CAs.

Humans learn new concepts by modifying synaptic connectivity in the brain.
Synaptic connectivity modifications inlude as long-term potentiation and long-
term depression of synapses caused by the spiking patterns of pre and post
synaptic neurons [32]. Some of the co-activation patterns are found to follow
Hebbian plasticity: if a neuron repeatedly causes another neuron to fire, their
connecting weight will tend to be strengthened [16]. In the future, we are plan-
ning to add learning rules to our network so that it could develop its topology
dynamically by interacting with its environment. Part of this research will be
to develop a collection of learning rules that enables the training of simulated
neurons to yield desired functional behaviours.

The hope is that a set of learning rules [47] will lead to a stable usable
memory system. One cognitive task is a question answering task around semantic
nets [5]. This work will be based around encoding known symbolic associative
memories into neurons, a form of symbolic boot-strapping. Large scale neural
associative memories, run in large neuromorphic systems, can be used in, for
example, text mining. Stroop effects should emerge naturally from the behaviour
of large associative memories learned in this fashion as a benchmark test of the
system.

Beyond this, symbol grounding will be explored, with long term memory
units being learned from an environment by a behaving agent; while learning
these units, associations will also be learned. These systems will understand
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their environment in ways similar to humans, and that understanding will grow
as they continue to operate in that environment.

6 Conclusion

This paper has described a system that performs word recognition and colour
naming tasks. It was implemented using spiking neurons and it operated in a
human-like way on a human-like time scale - displaying a similar Stroop effect to
human subjects. In the longer term this type of system could potentially address
some of the limitations of the current generation of AI systems. It can also serve
as a cognitive model that can help us to understand the brain.

The next step on the authors’ plan is to build spiking neural network that can
produce CAs automatically instead of hand-wiring. Another potential direction
is to build associative memories that would eventually scaffold the capability to
conduct word and colour recognitions and then we could re-test the system on
the Stroop task.
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3. Buzsáki, G.: Neural syntax: cell assemblies, synapsembles, and readers. Neuron
68(3), 362–385 (2010)

4. Cohen, J.D., Dunbar, K., McClelland, J.L.: On the control of automatic processes:
a parallel distributed processing account of the stroop effect. Psychological review
97(3), 332 (1990)

5. Collins, A., Quillian, M.: Retrieval time from semantic memory. Journal of verbal
learning and verbal behavior 8(2), 240–247 (1969)

6. Dunbar, K., MacLeod, C.M.: A horse race of a different color: Stroop interference
patterns with transformed words. Journal of Experimental Psychology: Human
Perception and Performance 10(5), 622 (1984)

7. Fennell, A.: Does Response Modality Influence Conflict? Modelling Vocal and Man-
ual Response Stroop Interference. Ph.D. thesis, The Ohio State University (2017)

8. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A.A.,
Lally, A., Murdock, J.W., Nyberg, E., Prager, J., Schlaefer, N., Welty, C.: Building
watson: An overview of the deepqa project. AI Magazine 31(3), 59–79 (2010)



12 Y. Ji, D. Gamez and C. Huyck

9. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker
project. Proceedings of the IEEE 102(5), 652–665 (May 2014).
https://doi.org/10.1109/JPROC.2014.2304638

10. Garagnani, M., Wennekers, T., Pulvermüller, F.: Recruitment and consolidation
of cell assemblies for words by way of hebbian learning and competition in a multi-
layer neural network. Cognitive Computation 1(2), 160–176 (2009)

11. Gerstein, G.L., Kirkland, K.L.: Neural assemblies: technical issues, analysis, and
modeling. Neural Networks 14(6-7), 589–598 (2001)

12. Gewaltig, M., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4),
1430 (2007)

13. Glaser, M.O., Glaser, W.R.: Time course analysis of the stroop phenomenon. Jour-
nal of Experimental Psychology: Human Perception and Performance 8(6), 875
(1982)
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