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Abstract
We study the equilibria of the standard pivotal-voter participation game between two 
groups of voters of asymmetric sizes (majority and minority), as originally proposed by 
Palfrey and Rosenthal (Public Choice 41(1):7–53, 1983). We find a unique equilibrium 
wherein the minority votes with certainty and the majority votes with probability in (0, 
1); we prove that this is the only equilibrium in which voters of only one group play a pure 
strategy, and we provide sufficient conditions for its existence. Equilibria where voters of 
both groups vote with probability in (0, 1) are analyzed numerically.

Keywords  Costly voting · Pivotal voter model · Complete information

1  Introduction

Pivotal-voter models were pioneered by the seminal contribution of Palfrey and Rosenthal 
(1983)—henceforth, PR. They analyze a complete information setting wherein two groups 
of individuals, each preferring one of two alternatives, simultaneously choose between 
abstaining or voting for their preferred alternative. Voting is costly and the winner is 
decided by simple majority rule. Despite the simplicity of this pivotal-voter game, when 
solving for its equilibria technical difficulties and multiplicity issues arise. PR provide a 
partial characterization of these equilibria, some conjectures, and the analysis of two spe-
cial cases.1 Nevertheless, though PR’s work has been proven to be highly influential in 
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1  In particular, PR analyze (1) identical group sizes and symmetry of strategies across groups and (2) 
aggregate probabilities of voting across individuals of different groups summing to 1. Besides (1) and (2), 
which are special cases of our analysis, they also study two alternative and tractable settings: one assuming 
a status quo (ties are broken in favor of one group, instead of randomly), and another, namely “k equilibria”, 
in which the individuals of one group mix with identical probability, whereas among the individuals of the 
other group, k vote with probability 1 and the remaining with probability 0.
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recent decades, a complete characterization of the equilibria of their original game is still 
missing. The work of Nöldeke and Peña (2016)—henceforth, NP—uses Bernstein polyno-
mials to characterize the equilibria under symmetric group sizes and symmetric probabili-
ties of voting across groups.2 In contrast, we allow the two groups of voters to be of dif-
ferent sizes and the voters in each group to vote with asymmetric probabilities, as initially 
proposed by PR.

An equilibrium is a pair of voting probabilities that the individuals in each group follow 
such that no individual has a profitable deviation.

NP confirm PR’s conjectures about “Totally Mixed” equilibria (i.e., equilibria at which 
all individuals vote with the same probability p ∈ (0, 1) ) in the symmetric setting, namely, 
that individuals face a cost-of-voting threshold with the following three properties. Below 
the threshold, no “Totally Mixed” equilibrium exists; at the threshold, a unique “Totally 
Mixed” equilibrium requires that everyone votes with a probability 0.5; and above the 
threshold, there exist exactly two “Totally Mixed” equilibria, one at which everyone votes 
with a probability less than 0.5 and one at which everyone votes with probability greater 
than 0.5.

In the present paper, the two groups are assumed to differ in size. The main result is that 
for sufficiently low costs of voting, there is a unique “Partially Mixed” equilibrium where 
the individuals in the minority (i.e., the smaller group) vote with probability 1 and the 
individuals in the majority (i.e., the bigger group) vote with a probability p ∈ (0, 1) , which 
decreases in the size of the majority and increases in the size of the minority as well as in 
the cost of voting. This “Partially Mixed” equilibrium resembles the equilibrium of the 
pivotal-voter model with private information on the cost of voting—see Taylor and Yildi-
rim (2010)—where members of the minority vote with a strictly greater probability than 
those of the majority do. This result is often called the “underdog effect.”3 Thus, in the 
“Partially Mixed” equilibrium, on the one hand, the minority has a higher individual prob-
ability of voting, but, on the other hand, it is composed of fewer members. We shed light 
on that tradeoff by providing sufficient conditions for the minority’s preferred alternative 
to be more likely to win than that of the majority. The characterization of this equibrium 
as well as the equilibria of this model in general are of particular interest to experimental 
studies of voter turnout, since the theoretical predictions of the model have been tested 
against behavior observed in the lab. See, for instance, experimental work based on the PR 
model in Schram and Sonnemans (1996) and Palfrey and Pogorelskiy (forthcoming).

The remainder of the paper is structured as follows. In Sect. 2 we describe PR’s origi-
nal voter participation game. In Sect. 3 we analyze the equilibria, examining whether they 
entail pure strategies played by the individuals belonging to both groups (Sect.  3), one 
group only (Sect. 4), or no group (Sect. 5). Section 6 concludes.

2 � Model

Consider a complete information setting with two groups of individuals of size m and n, 
with m, n ∈ ℕ+ . Throughout the paper, we assume that m > n > 1 . The analysis of n = 1 
is ruled out to avoid having to deal with trivial cases. The analysis of m = n produces 

3  Laboratory experiments under private information confirm the underdog effect, e.g., Levine and Palfrey 
(2007).

2  Demichelis and Dhillon (2010) provide some heuristic approximations to test PR’s conjectures when the 
population grows large and group sizes are symmetric.
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different results—see NP. We use subindex i ∈ {m, n} to identify the group. The individu-
als are called upon to cast votes between two alternatives, M and N. An m-individual (i.e., 
an individual of group m) prefers alternative M, and an n-individual (i.e., an individual of 
group n) prefers alternative N. That is, if M (N) wins, the benefit of an m−(n−)individual 
equals 1; otherwise, it equals 0. If an individual casts a vote, she faces a cost of voting, 
c > 0 . Thus, the payoff for an individual when her preferred alternative wins is 1 − c if 
she voted, and 1 if she did not vote. Individuals simultaneously choose whether to vote 
for their preferred alternative or abstain, since voting for the non-preferred alternative is 
strictly dominated. The winning alternative is decided by majority rule, and ties are broken 
by a fair coin toss.

Each i-individual chooses the probability of voting, denoted by pi , that maximizes her 
expected payoff, given the choices of all other individuals. We consider Quasi-Symmetric 
Nash Equilibria (QSNE), that is, all i-individuals follow the same equilibrium strategy p∗

i
 . 

Besides being used in PR,4 the QSNE has been exploited in private-information pivotal-
voter models to obtain that individuals adopt cut-off strategies regarding the cost of voting 
(e.g., Börgers 2004; Taylor and Yildirim 2010).

A pair (p∗
i
, p∗

j
) is a QSNE if an i-individual does not want to deviate from p∗

i
 if she 

expects every other i− individual likewise to play p∗
i
 and all j-individuals to play p∗

j
 . A 

QSNE can be of one of the following three types:

1.	 “Pure” (Sect. 3) (p∗
m
, p∗

n
) ∈ {0, 1}2,

2.	 “Partially Mixed” (Sect. 4) p∗
m
∈ {0, 1}, p∗

n
∈ (0, 1) or p∗

m
∈ (0, 1), p∗

n
∈ {0, 1} , or

3.	 “Totally Mixed” (Sect. 5) (p∗
m
, p∗

n
) ∈ (0, 1)2.

Define Ai with i ∈ {m, n} as the probability that the vote of an i-individual is pivotal. Then5

and

(1)

Am =

n∑

s=0

(
m − 1

s

)(
n

s

)

ps
m
(1 − pm)

m−s−1ps
n
(1 − pn)

n−s

+

n−1∑

s=0

(
m − 1

s

)(
n

s + 1

)

ps
m
(1 − pm)

m−s−1ps+1
n

(1 − pn)
n−s−1

(2)

An =

n−1∑

s=0

(
m

s

)(
n − 1

s

)

ps
m
(1 − pm)

m−sps
n
(1 − pn)

n−s−1

+

n−1∑

s=0

(
m

s + 1

)(
n − 1

s

)

ps+1
m

(1 − pm)
m−s−1ps

n
(1 − pn)

n−s−1

4  PR’s definition of QSNE allows for asymmetries across group members if they adopt pure strategies. In 
other words, only players playing a totally mixed strategy (i.e., pi ∈ (0, 1) ) are supposed to follow the same 
equilibrium strategy p∗

i
 ; some players within the same group who play pure strategies play p∗

i
= 0 and oth-

ers play p∗
i
= 1 . Such mixing gives rise to what PR call “k-equilibria.”

5  Notice that, in order to lighten the notation, we use Ai rather than Ai(m, n, pm, pn).
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We now explain how expression (1) is constructed. A single m− individual, who computes 
her probability of being pivotal, takes as given the voting probabilities ( pm , pn ) of all other 
individuals. The m-individual is pivotal when her vote either breaks a tie or when it creates 
one. In (1), the first summation is the voter’s probability of breaking a tie, and the second 
of creating a tie. She can break a tie with her vote if the number of m-individuals who vote 
equals the number of n-individuals who vote. Let us call that number s. Of the m − 1 other 

m-individuals, exactly s vote with probability 
(
m − 1

s

)

ps
m
(1 − pm)

m−s−1 . On the other 

hand, out of n n-individuals, exactly s vote with probability 
(
n

s

)

ps
n
(1 − pn)

n−s . The second 

summation of (1) is constructed similarly: an m-individual can create a tie with her vote if 
the number of m-individuals who vote (which is again called s) is one less than the number 
of n− individuals who vote. Expression (2) is the analogous expression for an n-individual.

An i-individual casts a vote if her expected utility from casting the pivotal vote is greater 
than her cost of voting. Since ties are broken by a fair coin toss, if the vote of a pivotal indi-
vidual creates (breaks) a tie, her expected utility increases from 0 to 1/2 (from 1/2 to 1). In 
both cases, the increase in utility is 1/2. Thus, the condition for an i-individual to vote reads

3 � “Pure” equilibria

If Ai < 2c or Ai > 2c , then an i-individual respectively abstains or votes with certainty 
(i.e., pure strategy). If Ai = 2c , the i-individuals are indifferent between voting or not (i.e., 
mixed strategy). Therefore, 2c can be interpreted as the minimum probability of being piv-
otal such that an i-individual will vote. For that reason, if c > 1∕2 no individual votes in 
equilibrium. This turns out to be true even if c = 1∕2 . We formalize these results in the 
following proposition.

Proposition 1  If c ≥ 1∕2 , a unique QSNE exists. It is given by p∗
m
= p∗

n
= 0.

Proof  Fix i ∈ {m, n} and let p∗
i
> 0 . First, if c > 1∕2 , by (3) we have Ai > 1 , which is a 

contradiction, since Ai is a probability. Second, if c = 1∕2 , by (3) Ai = 1 . Then p∗
i
∉ (0, 1) 

because otherwise no i-individual would be pivotal with certainty, so Ai < 1 , which leads 
to a contradiction. Therefore, we need to rule out only c = 1∕2 and p∗

i
= 1 , which we do in 

the remainder of the proof. To do so we need to distinguish the following cases:
Case 1 If p∗

m
= 1 , then alternative M wins regardless of p∗

n
 because m > n . Then, no 

n-individual would want to incur the cost of voting, so p∗
n
= 0 . Thus, for a single m-indi-

vidual a deviation to pm = 0 would be profitable, leading to a contradiction.
Case 2 If p∗

n
= 1 , then it is necessary that An ≥ 2c = 1 , and thus An = 1 . This is the case 

if the n-individuals are certain that either n or n − 1 of the m-individuals vote. However, 
that cannot happen either if p∗

m
∈ (0, 1) (because it would imply a stochastic number of 

votes cast by the m−group) or if p∗
m
= {0, 1} (because it would imply m or 0 votes cast by 

the m−group). Thus, we reach a contradiction. 	� □

The previous proposition shows that if the cost of voting is high enough, the only equi-
librium that exists is the “Pure” one in which nobody votes. In the remainder of the paper 
we analyze the more interesting case of a lower cost of voting ( c < 1∕2 ), so that individuals 

(3)Ai ≥ 2c.
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may vote with positive probability. The result causes strategic interactions that will gener-
ate multiple equilibria.

We conclude this section proving that when c < 1∕2 no “Pure” equilibria exist.

Proposition 2  For c < 1∕2 , there exists no “Pure” QSNE.

Proof  Fix i ∈ {m, n} and j ≠ i . Assume that p∗
i
= 0 . Then p∗

j
= 0 cannot be a QSNE 

because Aj = 1 so a deviation to voting for a j-individual would be profitable. Also p∗
j
= 1 

cannot be a QSNE because a deviation to abstention of a j-individual would not affect 
the outcome of the election and save her cost of voting. Finally, p∗

m
= p∗

n
= 1 cannot be a 

QSNE because the n-individuals lose for sure and they would thus be better-off not voting. 	
� □

Having completely characterized the QSNE when c ≥ 1∕2 (Proposition 1) and having 
ruled out any “Pure” QSNE when c < 1∕2 (Proposition 2), we are left to analyze “Partially 
Mixed” and “Totally Mixed” equilibria when c < 1∕2.

4 � “Partially Mixed” equilibria

The next Proposition establishes the existence of a unique “Partially Mixed” equilibrium at 
which the members of the minority (i.e., the n-individuals) vote with certainty. Note that 
PR do not analyze this case.6

Proposition 3  A ĉ < 1∕2 exists such that: if c > ĉ , no “Partially Mixed” QSNE is pos-
sible, and if c ≤ ĉ , there exists a unique “Partially Mixed” QSNE. The latter is given by 
p∗
n
= 1 and p∗

m
∈ (0, 1) which is decreasing in m and increasing in n and c.

Proof  Fix i ∈ {m, n} and j ≠ i.
Step 1 We show that there is no “Partially Mixed” QSNE that involves the mem-

bers of one group abstaining, p∗
i
= 0 , and members of the other group playing a mixed 

strategy, p∗
j
∈ (0, 1) . If i-individuals abstain, a j− individual is pivotal only if none of 

her groupmates happen to vote. Thus, we can write the probabilities of being pivotal as 
Aj = (1 − pj)

j−1 and Ai = (1 − pj)
j + jpj(1 − pj)

j−1.
In order to sustain any such “Partially Mixed” QSNE, it has to be that Ai ≤ 2c and 

Aj = 2c and, thus, Ai ≤ Aj , or equivalently

Since pj ∈ (0, 1) , we can divide the above condition by (1 − pj)
j−1 and obtain j ≤ 1 , which 

is a contradiction.
Step 2 We show that no “Partially Mixed” QSNE exists that involves the members of 

the majority voting with certainty: p∗
m
= 1 and p∗

n
∈ (0, 1) . Since m > n , the m−group wins 

(1 − pj)
j + jpj(1 − pj)

j−1 ≤ (1 − pj)
j−1

6  In particular, in Sect. 5 of PR, cases 1 to 7 consider situations of status quo biased rules or cases wherein 
only a fraction of the members of a certain group vote with certainty. In PR’s notation, the missing case, 
which we analyze, would be k = N and M > N (which PR denote as R1).
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with certainty, so the n− individuals are better off abstaining ( p∗
n
= 0 ) so as to save the cost 

c without affecting their preferred alternative’s probability of victory.
Step 3 The last case to analyze is that of a “Partially Mixed” QSNE with p∗

n
= 1 and 

p∗
m
∈ (0, 1) . We then have

and

In order to sustain any such “Partially Mixed” QSNE, it has to be that Am = 2c and 
An ≥ 2c . Thus, Am ≤ An.

We divide the remainder of the proof of this proposition into two steps. We will use 
Fig. 1 to provide the intuition behind the two steps.

In Step 3.1, we consider Am ≤ An and show that it holds if and only if pm ≤ p∗∗
m

∈ [0, 1] 
with a unique p∗∗

m
 . In Step 3.2, we consider Am = 2c and show that: (i) Am = 0 if pm = 0 , 

(ii) the unique maximum of Am in pm ∈ [0, 1] occurs at p̂m , and (iii) p̂m > p∗∗
m

 . Those prop-
erties can be seen in Fig. 1, which helps follow the proof. Thus, in the interval wherein the 
“Partially Mixed” QSNE must lie, namely, pm ∈ (0, p∗∗

m
] (see Step 3.1), Am increases in pm . 

Therefore, setting ĉ = 1

2
Am

|
|pm=p∗∗m

 provides the unique cut-off value for c below (above) 

which a “Partially Mixed” equilibrium does (not) exist. The result thus follows.
Step 3.1 Consider Am ≤ An . Multiply both sides by p1−n

m
(1 − pm)

1+n−m to obtain

Divide by (m − 1)! and multiply by n!(m − n + 1)! both sides of the inequality and obtain

Am =

(
m − 1

n

)

pn
m
(1 − pm)

m−n−1 +

(
m − 1

n − 1

)

pn−1
m

(1 − pm)
m−n

An =

(
m

n − 1

)

pn−1
m

(1 − pm)
m−n+1 +

(
m

n

)

pn
m
(1 − pm)

m−n

(4)
(
m − 1

n

)

pm +

(
m − 1

n − 1

)

(1 − pm) ≤

(
m

n − 1

)

(1 − pm)
2 +

(
m

n

)

pm(1 − pm)

Fig. 1   Am (solid line) and An (dotted line) as a function of pm , on the left for (m, n) = (3, 2) and on the right 
for (m, n) = (4, 2)
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which can be rewritten as:

In order to find the roots of the quadratic Eq.  (5) we use a non-standard method that 
simplifies the computation significantly. In particular, the solution of a general equation 
Ax2 + Bx + C = 0 can be written as:7

Formula (6) is equivalent to the standard formula for finding the roots of a quadratic equa-
tion, but it is more convenient in our case because: (1) it gives one valid root when A = 0 , 
which could happen in our case, and (2) the root is easier to compare with p̂m , which we 
will discuss in Step 3.2, since they are both roots of quadratic equations with identical coef-
ficients B and C, but with different As.

By (6), the roots of (5) are

Next we simplify the discriminant:

and, thus,

(m − n)(m − n + 1)pm + n(m − n + 1)(1 − pm)

≤ nm(1 − pm)
2 + m(m − n + 1)pm(1 − pm)

⟺ n(m − n + 1) − 2n(m − n + 1)pm ≤ −m(m − n + 1)p2
m
+ mn − 2mnpm + mnp2

m

⟺ −n(n − 1) + 2n(n − 1)pm ≤ m(2n − m − 1)p2
m

(5)m(m − 2n + 1)p2
m
+ 2n(n − 1)pm − n(n − 1) ≤ 0

(6)x =
−2C

B ±
√
B2 − 4AC

pm =
2n(n − 1)

2n(n − 1) ±
√
4n2(n − 1)2 + 4m(m − 2n + 1)n(n − 1)

4n2(n − 1)2 + 4m(m − 2n + 1)n(n − 1) = 4n(n − 1)
[
n2 − n + m2 − 2mn + m

]

= 4n(n − 1)(m − n)(m − n + 1)

(7)pm =
n(n − 1)

n(n − 1) ±
√
n(n − 1)(m − n)(m − n + 1)

7  The formula is used in Muller’s method and is based on Vieta’s formula. See Muller (1956). A simple 
way to verify the formula is to note that

That is, the standard formula for the roots of a quadratic equation times 1 yields (6). We thank an anony-
mous referee for suggesting this straightforward way of validating the formula.

�
−B ±

√
B2 − 4AC

2A

��
B ±

√
B2 − 4AC

−2C

��
−2C

B ±
√
B2 − 4AC

�

=
−2C

B ±
√
B2 − 4AC
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The root with “+” in (7) belongs to the interval [0, 1]. If m − 2n + 1 > 0 , the root with “-” 
is negative and the function defined by (5) is convex; thus, (5) is satisfied at all pm s smaller 
than its root with “+”. If m − 2n + 1 < 0 , the root with “-” is greater than 1 and the func-
tion defined by (5) is concave; thus, once again, (5) is satisfied at all pm s smaller than its 
root with “+”. If m = 2n − 1 , p∗∗

m
=

1

2
 trivially and the function defined by (5) is increasing. 

Thus pm ≤ p∗∗
m

 , with

concluding Step 3.1 of the proof.
Step 3.2 The fact that Am = 0 if pm = 0 is trivial since p∗

n
= 1 . Consider Am = 2c . Call 

p̂m the maximum of the function Am in pm ∈ [0, 1] , which we will prove to be unique. In 
order to compute p̂m , take the derivative of Am with respect to pm , which equals 0 if and 
only if

Again, apply the quadratic formula (6), and obtain

If m = 2n , trivially p̂m =
1

2
 (see Fig. 1, right panel), which is a case broadly analyzed in PR. 

The discriminant can be simplified to:

and, thus,

p∗∗
m

=
n(n − 1)

n(n − 1) +
√
n(n − 1)(m − n)(m − n + 1)

(
m − 1

n

)
[
npn−1

m
(1 − pm)

m−n−1 − (m − n − 1)pn
m
(1 − pm)

m−n−2
]
+

+

(
m − 1

n − 1

)
[
(n − 1)pn−2

m
(1 − pm)

m−n − (m − n)pn−1
m

(1 − pm)
m−n−1

]
= 0

⟺ (m − n)
[
npm(1 − pm) − (m − n − 1)p2

m

]
+

+ n
[
(n − 1)(1 − pm)

2 − (m − n)pm(1 − pm)
]
= 0

⟺ −(m − n)(m − n − 1)p2
m
+ n(n − 1)(1 − pm)

2 = 0

⟺ (2n − m)(m − 1)p2
m
− 2n(n − 1)pm + n(n − 1) = 0

(8)p̂m =
−2n(n − 1)

−2n(n − 1) ±
√
4n2(n − 1)2 − 4n(n − 1)(2n − m)(m − 1)

4n2(n − 1)2 − 4n(n − 1)(2n − m)(m − 1) = 4n(n − 1)
[
n2 − n − 2mn + 2n + m2 − m

]

= 4n(n − 1)(m − n)(m − n − 1)

p̂m =
n(n − 1)

n(n − 1) +
√
n(n − 1)(m − n)(m − n − 1)
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where we discarded the root with “+” in front of the square root in (8) because it is not in 
[0, 1].8 Notice that m = n + 1 ⟹ p̂m = 1 , as can be seen in Fig. 1.

A straightforward comparison of p̂m and p∗∗
m

 yields p̂m > p∗∗
m

 , and the reasoning before 
Step 3.1 concludes the proof of the first part of the proposition.

We are left to show the comparative statics of p∗
m
 with respect to c, m, n. We proved 

already that Am increases in pm in the relevant interval pm ∈ (0, p∗∗
m
] and, thus, the equi-

librium p∗
m
 , which solves Am = 2c , increases in c. By the same argument, it is sufficient to 

conclude the comparative statics exercise to show that Am increases if one substitutes m + 1 
for m, and that it decreases if one substitutes n + 1 for n. The former condition coincides 
with inequality Am ≤ An,9 which has to hold in a “Partially Mixed” equilibrium, whereas 
the latter condition is equivalent to:

where the last inequality is similar to (5). In fact, the only difference is that the coefficient 
of the term p2

m
 is now smaller and (5) thus implies (9), which concludes the proof. 	�  □

In the “Partially Mixed” QSNE we found, the minority votes with certainty and the 
majority plays a mixed strategy. Thus, on the one hand, the minority is composed of fewer 
members than the majority, but, on the other hand, each of them votes with greater proba-
bility (in fact, with certainty) than the members of the majority. Which of these two effects 
is stronger is an interesting question that tells us which of the two alternatives {M,N} is 
more likely to win. In the following proposition, we provide sufficient conditions for the 
latter effect to dominate the former.

Proposition 4  In the “Partially Mixed” QSNE the preferred alternative of the minority 
(n−group) is more likely to win than that of the majority (m−group) if at least one of these 
conditions hold:

1.	� mp∗
m
 is an integer

2.	� c → 0

3.	� n = km with k ∈ (0, 1) and m → ∞

(9)

(
m − 1

n

)

pn
m
(1 − pm)

m−n−1 +

(
m − 1

n − 1

)

pn−1
m

(1 − pm)
m−n

≥

(
m − 1

n + 1

)

pn+1
m

(1 − pm)
m−n−2 +

(
m − 1

n

)

pn
m
(1 − pm)

m−n−1

⟺

(
m − 1

n − 1

)

pn−1
m

(1 − pm)
m−n ≥

(
m − 1

n + 1

)

pn+1
m

(1 − pm)
m−n−2

⟺ n(n + 1)(1 − pm)
2 ≥ (m − n)(m − n − 1)p2

m

⟺ m(m − 2n − 1)p2
m
+ 2n(n − 1)pm − n(n − 1) ≤ 0

8  In particular, the root with “+” in front of the square root in (8) is negative if m > 2n and greater than 1 if 
m < 2n.
9  To see this, note that An = Am if the latter is evaluated at m + 1.



62	 Public Choice (2018) 177:53–66

1 3

Proof  The number of votes cast by the n-individuals equals n, and the number of votes cast 
by the m-individuals follows a binomial distribution Bi(m, p∗

m
)

1.	 If mp∗
m
 is an integer, then the median of the distribution is exactly mp∗

m
 , and, thus, the 

claim is identical to mp∗
m
< n . For that to hold, it suffices to show that mp∗∗

m
< n because 

we know from the above analysis that p∗
m
∈ (0, p∗∗

m
] in the “Partially Mixed” QSNE. 

which trivially holds true.
2.	 We next prove that the claim holds under the alternative assumption that c → 0 . The 

expected number of votes cast by m-individuals increases in p∗
m
 since it is the outcome 

of a binomial distribution Bi(m, p∗
m
) , and from Proposition 3 we know that p∗

m
 increases 

in c; thus, the expected number of votes cast by m-individuals increases in c. Also, the 
number of votes cast by n-individuals equals n and, thus, it does not change in c. We 
conclude the argument by showing that for c sufficiently small ( c → 0 ) the expected 
number of votes cast by m-individuals is less than n, so that the claim follows.

	   If c → 0 , the mixing condition for m-individuals dictates that Am = 2c ; thus, Am → 0 . 
Since p∗

n
= 1 , the only possibility for Am → 0 is that p∗

m
→ 0 , which implies that the 

minority wins with certainty by casting exactly n votes.
3.	 First, we show the limit of p∗∗

m
 as m goes to infinity. 

Since in the “Partially Mixed” QSNE p∗
m
≤ p∗∗

m
 we multiply both sides by m

n
 , and then 

take the limit as m goes to infinity: 

 Therefore, we have that 

mp∗∗
m

<n

⟺

mn(n − 1)

n(n − 1) +
√
n(n − 1)(m − n)(m − n + 1)

< n

⟺ m(n − 1) < n(n − 1) +
√
n(n − 1)(m − n)(m − n + 1)

⟺ (m − n)(n − 1) <
√
n(n − 1)(m − n)(m − n + 1)

⟺ (m − n)(n − 1) < n(m − n + 1)

⟺ mn − n2 − m + n < mn − n2 + n

lim
m→∞

p∗∗
m

= lim
m→∞

km(km − 1)

km(km − 1) +
√
km(km − 1)(m − km)(m − km + 1)

=
k2

k2 +
√
k2(1 − k)2

= k

lim
m→∞

mp∗
m

n
≤ lim

m→∞

mp∗∗
m

n
=

k

k
= 1.

(10)lim
m→∞

mp∗
m

n
≤ 1.
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Define Xm to be the random variable determining the number of votes cast by group m. 
That variable follows the binomial distribution Bi(m, p∗

m
) and as m goes to infinity the 

distribution of random variable Xm−np
∗
m√

np∗
m
(1−p∗

m
)
 converges to a standard normal distribution 

N(0, 1), meaning that as m goes to infinity the distribution of Xm converges to the nor-
mal distribution N(np∗

m
, np∗

m
(1 − p∗

m
)) . In a normal distribution the mean and median 

coincide. As such (10) implies that as m goes to infinity group n is more likely to win 
than group m.	� □

The three sufficient conditions of Proposition  4 are strong, but while condition 1 is 
purely technical, conditions 2 and 3 mirror some interesting real-life applications. Condi-
tion 2 resembles situations in which the cost of voting is negligible. One example is when 
the time needed to cast a vote is insignificant, as it is often the case for online or postal 
voting. Another example is when the ballot box is very close to every individual, as in case 
of small firms or academic departments. Condition 3 approximates the case of large elec-
torates such as national elections or referendums. The use of a fixed proportion between m 
and n (i.e., k), provides us with a tractable setting to analyze such large electorates.

While the three conditions are sufficient they are not necessary for the result. A coun-
terexample is the following. Let m = 70 and n = 45 . In the “Partially Mixed” equilibrium 
we have Am = 2c and An ≥ 2c , which when c ≅ 0.0979 can sustain an equilibrium with 
p∗
m
=

198−3
√
1430

133
 and p∗

n
= 1 . This equilibrium gives rise to group m winning with probabil-

ity approximately equal to 0.5445.

5 � “Totally Mixed” equilibria

Propositions 1, 2, and 3 completely characterized the “Pure” and “Partially Mixed” equilib-
ria of the pivotal voter model. In this section we examine numerically the “Totally Mixed” 
equilibria, which may exist only when c < 1∕2 . In any such equilibrium the voting condi-
tions (3) for the two groups hold with equality. That is, the mixing condition for the m-indi-
viduals is

and that of the n-individuals is

In a QSNE all individuals within a group adopt the same strategy. Thus, in order to analyze 
the “Totally Mixed” equilibria we look for pairs (pm, pn) ∈ (0, 1)2 that satisfy both mixing 
conditions (11) and (12). In particular, we focus on the pm solving (11) for pn ∈ (0, 1) and 
on the pn solving (12) for pm ∈ (0, 1) . The intersections between those two sets in the space 
(pm, pn) ∈ (0, 1)2 are the “Totally Mixed” equilibrium pairs (p∗

m
, p∗

n
) , which are what we 

study in this section.
The “Totally Mixed” case—in contrast to the “Pure” and “Partially Mixed” cases—

entails solving a system of two polynomial equations of an arbitrarily large degree—expres-
sions (11) and (12)—and, thus, it presumably is impossible to find an algebraic solution for 
equilibrium strategies. As such, while we found a number of partial characterizations of the 
space on which the solutions to those polynomials lie, we failed to complete the analysis, 

(11)Am = 2c

(12)An = 2c
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which therefore remains an open research question. For that reason, we describe in what 
follows some numerical evidence on “Totally Mixed” equilibria.

Conditions (11) and (12) require Am = An . The set of pairs (pm, pn) ∈ (0, 1)2 at which 
Am = An is depicted in black in Fig. 2 for the special case of m = 3 and n = 2 . That set 
turns out to be composed of a downward-slopping line, namely pm + pn = 1 , which does 
not depend on (m, n), and an upward-slopping line, which starts at (0, 0), corresponds to 
pn = pm when m = n,10 and becomes steeper as m increases. In fact, the upward-sloping 
line touches the upper bound of the unit box at point (p∗∗

m
, 1).11 Any “Totally Mixed” equi-

librium must be on one of those two lines.

Fig. 2   Set of points in the (pm, pn)-space where Am = An (solid line), Am = 2c (dashed line) and An = 2c 
(dotted line) when m = 3 and n = 2 , and from left to right, from top to bottom, c = 0.2, 0.345, 0.349, 0.36

10  In the case of m = n analyzed in NP, the upward-sloping line corresponds to pm = pn.
11  The closed form solution of p∗∗

m
 is found in the proof of Proposition  3. In fact, p∗∗

m
 is the solution to 

Am = An when pn = 1.
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If c < 1∕2 , it turns out that at most two “Totally Mixed” equilibria exist.12 We now pro-
vide a description of how these equilibria behave as c changes. Consider Fig.  2, where 
the crossing between the upward-sloping and downward-sloping lines is labeled X, we 
change c and plot the two mixing conditions (dotted and dashed lines). For small values 
of c, the two equilibria lie on the downward-sloping line close to points (0, 1) and (1, 0). 
As c increases, the two equilibria move towards point X along the downward-sloping line, 
they reach X, and then they move along the upward-sloping line (one upwards and one 
downwards) towards (0, 0) and (p∗∗

m
, 1) , which they reach for sufficiently large c. Thus, the 

equilibria, when moving along the downward sloping line, have the property that the equi-
librium voting probabilities move in the opposite direction, which is diametrically opposed 
to what NP show.

6 � Conclusions

Palfrey and Rosenthal (1983) proposed a seminal pivotal-voter model involving two groups 
of individuals, each preferring one of two alternatives. They provided only a partial charac-
terization of the equilibria, leaving the complete characterization for future research. While 
Nöldeke and Peña (2016) analyze the equilibria of Palfrey and Rosenthal (1983) restricting 
their attention to the case of symmetric group sizes, we contribute to the equilibrium analy-
sis of the pivotal-voter model under asymmetric group sizes, as originally proposed by Pal-
frey and Rosenthal (1983). We deem the asymmetric case particularly interesting because 
it us allows to embrace several applications. In fact, the vast majority of the real-life voting 
situations involve asymmetric group sizes: left- and right-wing supporters in elections, or 
members of a firm’s board of directors voting on an issue, or, in general, members of com-
mittees favoring of or opposing the status quo. These, and many other examples, arise in 
which it is natural to discuss election outcomes when the number of supporters of one 
alternative differs from that of the other alternative.
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