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Abstract We discuss a relation between the Kantorovich-Wasserstein (KW)
metric and the Kullback-Leibler (KL) divergence. The former is defined us-
ing the optimal transport problem (OTP) in the Kantorovich formulation.
The latter is used to define entropy and mutual information, which appear in
variational problems to find optimal channel (OCP) from the rate distortion
and the value of information theories. We show that OTP is equivalent to
OCP with one additional constraint fixing the output measure, and there-
fore OCP with constraints on the KL-divergence gives a lower bound on the
KW-metric. The dual formulation of OTP allows us to explore the relation
between the KL-divergence and the KW-metric using decomposition of the
former based on the law of cosines. This way we show the link between two
divergences using the variational and geometric principles.
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1 Introduction

The study of the optimal transport problem (OTP), initiated by Gaspar
Monge [9], was advanced greatly when Leonid Kantorovich reformulated the
problem in the language of probability theory [7]. Let X and Y be two mea-
surable sets, and let P(X) and P(Y ) be the sets of all probability measures
on X and Y respectively, and let P(X ×Y ) be the set of all joint probability
measures on X × Y . Let c : X × Y → R be a non-negative measurable func-
tion, which we shall refer to as the cost function. Often one takes X ≡ Y and
c(x, y) to be a metric. We remind that when X is a complete and separable
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metric space (or if it is a homeomorphic image of it), then all probability
measures on X are Radon (i.e. inner regular).

The expected cost with respect to probability measure w ∈ P(X × Y ) is
the corresponding integral:

Ew{c} :=

∫
X×Y

c(x, y) dw(x, y)

It is often assumed that the cost function is such that the above integral is
lower semicontonuous or closed functional of w (i.e. the set {w : Ew{c} ≤ υ}
is closed for all υ ∈ R). In particular, this is the case when c(w) := Ew{c} is
a continuous linear functional.

Given two probability measures q ∈ P(X) and p ∈ P(Y ), we denote by
Γ [q, p] the set of all joint probability measures w ∈ P(X×Y ) such that their
marginal measures are πXw = q and πY w = p:

Γ [q, p] := {w ∈ P(X × Y ) : πXw = q, πY w = p}

Kantorovich’s formulation of OTP is to find optimal joint probability measure
in Γ [q, p] minimizing the expected cost Ew{c}. The optimal joint probability
measure w ∈ P(X × Y ) (or the corresponding conditional probability mea-
sure dw(y | x)) is called the optimal transportation plan. The corresponding
optimal value is often denoted

Kc[p, q] := inf {Ew{c} : w ∈ Γ [q, p]} (1)

The non-negative value above allows one to compare probability measures,
and when the cost function c(x, y) is a metric on X ≡ Y , then Kc[p, q]
is a metric on the set P(X) of all probability measures on X, and it is
often called the Wasserstein metric due to a paper by Dobrushin [6, 13],
even though it was introduced much earlier by Kantorovich [7]. It is known
that the Kantorovich-Wasserstein (KW) metric (or related to it Kantorovich-
Rubinstein metric) induces a topology equivalent to the weak topology on
P(X) [5].

Another important functional used to compare probability measures is the
Kullback-Leibler divergence [8]:

D[p, q] :=

∫
X

[
ln
dp(x)

dq(x)

]
dp(x) (2)

where it is assumed that p is absolutely continuous with respect to q (other-
wise the divergence can be infinite). It is not a metric, because it does not sat-
isfy the symmetry and the triangle axioms, but it is non-negative, D[p, q] ≥ 0,
and D[p, q] = 0 if and only if p = q. The KL-divergence has a number of use-
ful and sometimes unique to it properties (e.g. see [3] for an overview), and it
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plays an important role in physics and information theory, because entropy
and Shannon’s information are defined using the KL-divergence.

The main question that we discuss in this paper is whether these two,
seemingly unrelated divergences have anything in common. In the next sec-
tion, we recall some definitions and properties of the KL-divergence. Then we
show that the optimal transport problem (OTP) has an implicit constraint,
which allows us to relate OTP to variational problems of finding an optimal
channel (OCP) that were studied in the rate distortion and the information
value theories [10, 11]. Using the fact that OCP has fewer constraints than
OTP, we show that OCP defines a lower bound on the Kantorovich metric,
and it depends on the KL-divergence. Then we consider the dual formulation
of the OTP and introduce an additional constraint, which allows us to de-
fine another lower bound on the Kantorovich metric. We then show that the
KL-divergence can be decomposed into a sum, one element of which is this
lower bound on the Kantorovich metric.

2 Entropy, Information and the Optimal Channel
Problem

Entropy and Shannon’s mutual information are defined using the KL-divergence.
In particular, entropy of probability measure p ∈ P(X) relative to a reference
measure r is defined as follows:

H[p/r] := −
∫
X

[
ln
dp(x)

dr(x)

]
dp(x)

= ln r(X)−D[p, r/r(X)]

where the second line is written assuming that the reference measure is finite
r(X) < ∞. It shows that entropy is equivalent up to a constant ln r(X) to
negative KL-divergence from a normalized reference measure. The entropy is
usually defined with respect to some Haar measure as a reference, such as the
counting measure (i.e. r(E) = |E| for E ⊆ X or dr(x) = 1). We shall often
write H[p] instead of H[p/r], if the choice of a reference measure is clear (e.g.
dr(x) = 1 or dr(x) = dx). We shall also use notation Hp(X) and Hp(X | Y )
to distinguish between the prior and conditional entropies.

Shannon’s mutual information between two random variables x ∈ X and
y ∈ Y is defined as the KL-divergence of a joint probability measure w ∈
P(X × Y ) from a product q ⊗ p ∈ P(X × Y ) of the marginal measures
πXw = q and πY w = p:

I(X,Y ) := D[w, q ⊗ p] =

∫
X×Y

[
ln

dw(x, y)

dq(x) dp(y)

]
dw(x, y)

= Hq(X)−Hq(X | Y ) = Hp(Y )−Hp(Y | X)
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The second line shows that mutual information can be represented by the
differences of entropies and the corresponding conditional entropies (i.e. com-
puted respectively using the marginal dp(y) and conditional probability mea-
sures dp(y | x)). If both unconditional and conditional entropies are non-
negative (this is always possible with a proper choice of a reference measure),
then we have inequalities Hq(X | Y ) ≤ Hq(X) and Hp(Y | X) ≤ Hp(Y ),
because their differences (i.e. mutual information I(X,Y )) is non-negative.
In this case, mutual information satisfies Shannon’s inequality:

0 ≤ I(X,Y ) ≤ min[Hq(X), Hp(Y )]

Thus, information is the amount by which the entropy is reduced, and entropy
can be defined as the supremum of information or as self-information [4]:

sup{I(X,Y ) : πXw = q} = I(X,X) = Hq(X)

Here, we assume that Hq(X | X) = 0 for the entropy of elementary condi-
tional probability measure q(E | x) = δx(E), E ⊆ X. Let us now consider
the following variational problem.

Given probability measure q ∈ P(X) and cost function c : X×Y → R, find
optimal joint probability measure w = w(· | x) ⊗ q ∈ P(X × Y ) minimizing
the expected cost Ew{c} subject to the constraint on mutual information
I(X,Y ) ≤ λ. Because the marginal measure πXw = q is fixed, this problem
is really to find an optimal conditional probability dw(y | x), which we refer
to as the optimal channel. We shall denote the corresponding optimal value
as follows:

Rc[q](λ) := inf {Ew{c} : I(X,Y ) ≤ λ, πXw = q} (3)

This problem was originally studied in the rate distortion theory [10] and
later in the value of information theory [11]. The value of Shannon’s mutual
information is defined simply as the difference:

V (λ) := Rc[q](0)−Rc[q](λ)

It represents the maximum gain (in terms of reducing the expected cost) that
is possible due to obtaining λ amount of mutual information.

Let us compare the optimal values (3) and (1) of the OCP and Kan-
torovich’s OTP problems. On one hand, the OCP problem has only one
marginal constraint πXw = q, while the OTP has two constraints πXw = q
and πY w = p. On the other hand, the OCP has an information constraint
I(X,Y ) ≤ λ. Notice, however, that because fixing marginal measures q and p
also fixes the values of their entropies Hq(X) and Hp(Y ), the OTP has infor-
mation constraint implicitly, because mutual information is bounded above
I(X,Y ) ≤ min[Hq(X), Hp(Y )] by the entropies. Therefore, in reality the
OTP differs from OCP only by one extra constraint — fixing the output
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measure πY w = p. Let us define the following extended version of OTP by
introducing the information constraint explicitly:

Kc[p, q](λ) := inf {Ew{c} : I(X,Y ) ≤ λ, πXw = q, πY w = p}

For λ = min[Hq(X), Hp(Y )] one recovers the original value Kc[p, q] defined
in (1). It is also clear that the following inequality holds for any λ:

Rc[q](λ) ≤ Kc[p, q](λ)

In fact, the equality holds if and only if both problems have the same joint
probability measure w ∈ P(X × Y ) as their solution.

Theorem 1. Let wOCP and wOTP ∈ P(X×Y ) be optimal solutions to OCP
and OTP problems with the same information constraint I(X,Y ) ≤ λ. Then
Rc[q](λ) = Kc[p, q](λ) if and only if wOCP = wOTP ∈ Γ [p, q].

Proof. Measure wOCP is a solution to OCP if and only if it is an element
wOCP ∈ ∂D∗[−βc, q⊗ p] of subdifferential at function u(x, y) = −β c(x, y) of
a convex functional

D∗[u, q ⊗ p] = ln

∫
X×Y

eu(x,y) dq(x) dp(y)

which is the Legendre-Fenchel transform of the KL-divergence D[w, q ⊗ p]
considered as a functional in the first variable (i.e. w). This can be shown
using the standard method of Lagrange multipliers (e.g. see [12, 2]). If there
is another optimal measure wOTP achieving the same optimal value, then it
also must be an element of the subdifferential ∂D∗[−βc, q⊗p], as well as any
convex combination (1− t)wOCP + twOTP , t ∈ [0, 1], because subdifferential
is a convex set. But this means that the KL-divergence D[w, q⊗ p], the dual
of D∗[u, q ⊗ p], is not strictly convex, which is false. ut

The optimal solution to OCP has the following general form

dwOCP (x, y) = dq(x) dp(y) e−β c(x,y)−κ(β,x) (4)

where the exponent β, sometimes called the inverse temperature, is the inverse
of the Lagrange multiplier β−1 defined from the information constraint by
the equality I(X,Y ) = λ. In fact, one can show that β−1 = dV (λ)/dλ.
The normalizing function κ(β, x) = ln

∫
Y
e−β c(x,y) dp(y) is in general non-

constant, and the solution (4) depends on the marginal measure q ∈ P(X).
One can show, however, that if the cost function is translation invariant (i.e.
c(x+ a, y+ a) = c(x, y)), then the function dq(x) e−κ(β,x) = e−κ0(β) does not
depend on x, which gives a simplified expression:

dwOCP (x, y) = dp(y) e−β c(x,y)−κ0(β)



6 Roman Belavkin

The measure above does not depend on the input marginal measure q ∈ P(X)
explicitly, but only via its influence on the output measure p ∈ P(Y ).

The optimal channel wOCP may not coincide with the optimal transporta-
tion plan wOTP . Interestingly, from game-theoretic point of view the optimal
channels should be preferred, because they achieve smaller expected costs. If
specific output measure πY w = p is important, however, then optimal chan-
nel can potentially be useful in the analysis of the optimal transportation
plan.

Finally, let us point out in this section that the KL-divergence D[p, q]
between the measures p, q ∈ P(X) can be related to mutual information via
cross-information:

D[w, q ⊗ q] = D[w, q ⊗ p]︸ ︷︷ ︸
I(X,Y )

+D[p, q] (5)

The term cross-information for the KL-divergence D[w, q⊗ q] (notice the dif-
ference from mutual information D[w, q⊗p]) was introduced in [4] by analogy
with cross-entropy. The expression (5) is a special case of Pythagorean theo-
rem for the KL-divergence. As was shown in [1], a joint probability measure
w ∈ P(X × Y ) together with its marginals πXw = q and πY w = p defines a
triangle (w, q⊗p, q⊗q) in P(X×Y ), which is always a right triangle (and the
same holds for triangle (w, q⊗ p, p⊗ p)). This means that the KL-divergence
between marginal measures q and p can be expressed as the difference:

D[p, q] = D[w, q ⊗ q]− I(X,Y )

Taking into account the constraint I(X,Y ) ≤ λ and assuming that OCP and
OTP have the same solution w ∈ P(X × Y ) (i.e. w ∈ Γ [p, q]), we can relate
the KW-metric and the KL-divergence in one expression:

Kc[p, q](λ) = inf {Ew{c} : D[p, q] ≥ D[w, q ⊗ q]− λ , w ∈ Γ [p, q]}

3 Dual Formulation of the Optimal Transport Problem

Kantorovich’s great achievement was dual formulation of the optimal trans-
port problem way before the development of convex analysis and the dual-
ity theory. Given a cost function c : X × Y → R consider real functions
f : X → R and g : Y → R satisfying the condition: f(x)− g(y) ≤ c(x, y) for
all (x, y) ∈ X × Y . Then the dual formulation is the following maximization
over all such functions:

Jc[p, q] := sup {Ep{f} − Eq{g} : f(x)− g(y) ≤ c(x, y)} (6)

where we assumed X ≡ Y . It is clear that the following inequality holds:
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Jc[p, q] ≤ Kc[p, q]

We shall attempt to use this dual formulation to find another relation be-
tween the KL-divergence and the KW-metric. First, consider the following
decomposition of the KL-divergence:

D[p, q] = D[p, r] +D[r, q]−
∫
X

ln
dq(x)

dr(x)
[dp(x)− dr(x)] (7)

= D[p, r]−D[q, r]−
∫
X

ln
dq(x)

dr(x)
[dp(x)− dq(x)] (8)

Equation (7) is the law of cosines for the KL-divergence (e.g. see [1]). It can
be proved either by second order Taylor expansion in the first argument or
directly by substitution. Equation (8) can be proved by using the formula:

D[q, r] +D[r, q] =

∫
X

ln
dq(x)

dr(x)
[dq(x)− dr(x)]

We now consider functions f(x)− g(y) ≤ c(x, y) satisfying additional con-
straints:

βf(x) = ∇D[p, r] = ln
dp(x)

dr(x)
, β ≥ 0

αg(x) = ∇D[q, r] = ln
dq(x)

dr(x)
, α ≥ 0

Thus, β f and α g are the gradients of divergences D[p, r] and D[q, r] re-
spectively, and this means that probability measures p, q ∈ P(X) have the
following exponential representations:

dp(x) = eβ f(x)−κ[βf ] dr(x)

dq(x) = eαg(x)−κ[αg] dr(x)

where κ[(·)] = ln
∫
X
e(·) dr(x) is the normalizing constant (the value of the

cumulant generating function). One can show that

d

dβ
κ[β f ] = Ep{f} , D[p, r] = β Ep{f} − κ[β f ]

d

dα
κ[α g] = Eq{g} , D[q, r] = αEq{g} − κ[α g]

Substituting these formulae into (8) we obtain

D[p, q] = βEp{f} − αEq{g} − (κ[βf ]− κ[αg])− α
∫
X

g(x) [dp(x)− dq(x)]

Let us define the following value:
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Jc,ε[p, q] :=
1

ε
[βEp{f} − αEq{g}]

where ε = inf{ε ≥ 0 : βf(x)−αg(y) ≤ ε c(x, y)}. The value above reminds the
value Jc[p, q] of the dual problem to OTP, defined in (6). However, because
we also require that functions f and g to satisfy additional constraints (the
gradient conditions), we have the following inequality:

Jc,ε[p, q] ≤ Jc[p, q] ≤ Kc[p, q]

Using these inequalities, we can rewrite equation (8) as follows:

D[p, q] ≤ εKc[p, q]− (κ[βf ]− κ[αg])− α
∫
g(x) [dp(x)− dq(x)]

Theorem 2. Let the pair of functions (f, g) be the solution to the dual
OTP (6). If there exists a reference measure r ∈ P(X) such that f = ∇D[p, r]
and g = ∇D[q, r], then

D[p, q] = Kc[p, q]− (κ[f ]− κ[g])−
∫
g(x) [dp(x)− dq(x)]

Proof. The assumptions f = ∇D[p, r] and g = ∇D[q, r] mean that the La-
grange multipliers are α = β = 1, and probability measures have the form
p = exp(f − κ[f ]) r and q = exp(g − κ[g]) r. Substituting these expressions
into equation (8) will result in the expression containing the difference of
expectations Ep{f} − Eq{g}, which equals to Jc[p, q] = Kc[p, q]. ut

Discussion

In their original definitions, the optimal transport problem and the related
to it Kantorovich-Wasserstein metric have no connection to the Kullback-
Leibler divergence. We have demonstrated that by relaxing one constraint,
namely fixing the output measure, the optimal transport problem becomes
mathematically equivalent to the optimal channel problem in information
theory, which uses a constraint on the KL-divergence between the joint and
the product of marginal measures (i.e. on mutual information). This way,
an optimal channel defines a lower bound on the KW-metric. Interestingly,
for this reason optimal channels should be preferred to optimal transporta-
tion plans purely from game-theoretic point of view. Applying Pythagorean
theorem for joint and product of marginal measures allowed us to relate the
constraint on mutual information to the constraint on the KL-divergence
between the marginal measures of optimal channel.
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In addition to this variational approach, we have considered a geometric
idea based on the law of cosines for the KL-divergence to decompose the
divergence between two probability measures into a sum that includes diver-
gences from a third reference measure. We have shown then that a component
of this decomposition can be related to the dual formulation of the optimal
transport problem.

Generally, the relations presented have a form of inequalities. Additional
conditions have been derived in Theorems 1 and 2 for the cases when the
relations hold with equalities.
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