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Abstract  

Environmental contamination due to heavy metals (HMs) is of serious ecotoxicological concern worldwide 

because of their increasing use at industries. Due to non-biodegradable and persistent nature, HMs cause 

serious soil/water pollution and severe health hazards in living beings upon exposure. HMs can be 

genotoxic, carcinogenic, mutagenic, and teratogenic in nature even at low concentration. They may also act 

as endocrine disruptors and induce developmental as well as neurological disorders and thus, their removal 

from our natural environment is crucial for the rehabilitation of contaminated sites. To cope with HM 

pollution, phytoremediation has emerged as a low-cost and eco-sustainable solution to conventional 

physico-chemical cleanup methods that require high capital investment and labor alter soil properties and 

disturb soil microflora. Phytoremediation is a green technology wherein plants and associated microbes are 

used to remediate HM-contaminated sites to safeguard the environment and protect public health. Hence, 

in view of the above, the present paper aims to examine the feasibility of phytoremediation as a sustainable 

remediation technology for the management of metals-contaminated sites. Therefore, this paper provides 

an in-depth review on both the conventional and novel phytoremediation approaches, evaluate their efficacy 

to remove toxic metals from our natural environment, explore current scientific progresses, field 

experiences and sustainability issues and revise world over trends in phytoremediation research for its wider 

recognition and public acceptance as a sustainable remediation technology for the management of 

contaminated sites in 21st century.  
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1  Introduction  

Environmental pollution is of serious ecological concern worldwide with a continually rising public outcry 

to ensure the safest and healthiest environment. A variety of organic and inorganic pollutants have been 

reported to cause environmental pollution and severe health hazards in living beings (Maszenan et al. 2011; 

Saxena and Bharagava 2017). Among them, heavy metals (HMs) are highly notorious pollutants due to their 

high abundance and nonbiodegradable and persistent nature in the environment. Hence, they cause 

soil/water pollution and toxic, genotoxic, teratogenic and mutagenic effects in living beings (Dixit et al. 

2015; Sarwar et al. 2017). They also cause endocrine disruption and neurological disorders even at low 

concentration (Yadav 2010; Maszenan et al. 2011; Dixit et al. 2015; Sarwar et al. 2017). Any naturally 

occurring metal/metalloid having an atomic number greater than 20 and elemental density greater than 5 g 

cm-3 is termed as HM. They includes copper (Cu), cadmium (Cd), chromium (Cr), cobalt (Co), zinc (Zn), 

iron (Fe), nickel (Ni), mercury (Hg), lead (Pb), arsenic (As), silver (Ag) and platinum group elements (Ali 

et al. 2013; Ali and Khan 2018a). Among them, Cd, As, Hg, and Pb don’t have any biological function in 

the body and thus, are non-essential elements. They can cause severe health hazards and are listed as priority 

pollutants by many environmental protection agencies worldwide (Jaishankar et al., 2014; Dixit et al., 2015; 

Sarwar et al., 2017). Therefore, the removal of HMs from the contaminated matrix is an urgent need to 

safeguard the environment and human health. Phytoremediation has been identified as an emerging, low-

cost and eco-sustainable solution for HM pollution prevention and control. It is the most suitable alternative 

to conventional physicochemical remediation technologies, which are highly expensive, technically more 

suited to small areas, create secondary pollution and deteriorate soil fertility and thus, adversely affects 

agro-ecosystem (Ali et al. 2013; Chandra et al. 2015; Mahar et al. 2016; Muthusaravanan et al. 2018).   

Phytoremediation is the engineered use of green plants with associated soil beneficial microbes to 

remove toxic pollutants via degradation and detoxification mechanisms from contaminated soil and 

water/wastewaters (Bharagava et al. 2017a; Mukhopadhyay and Maiti 2010; Ali et al. 2013). It is an eco-
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friendly, non-intrusive and aesthetically pleasing remediation technology that removes metal pollutants 

from the contaminated sites (Lee 2013; Chandra et al. 2015; Chirakkara et al. 2016). It can be 

commercialized and income can be generated, if metals removed from contaminated sites could be used to 

extract usable form of economically viable metals (i.e. phytomining) (Chandra et al. 2015; Mahar et al. 

2016). In addition, energy can be generated through the burning of plant biomass and land restoration could 

be achieved for sustainable agricultural development or general habitation (Stephenson and Black 2014; 

Mahar et al. 2016). The rationale, mechanisms and economic feasibility of phytoremediation have been 

discussed elsewhere (Ali et al. 2013; Wan et al. 2016; Sarwar et al. 2017). However, extensive research is 

currently underway to testify the phytoremediation potential of hyperaccumulating plants at field scale for 

the treatment and management of HM-contaminated sites.   

The deadly poisonous and indestructible nature of HMs is mainly responsible for the eco-toxicity and 

health hazards. Thus, an eco-friendly solution (i.e. phytoremediation) is required for the treatment and 

management of HMcontaminated sites. This paper aims to provide a comprehensive review on the following 

areas of phytoremediation: (a) environmental pollution and toxicity profile of HMs; (b) conventional and 

novel phytoremediation approaches and their role in environmental management with merits and demerits; 

(c) field studies and sustainability issues associated with phytoremediation of HMs-contaminated sites; (d) 

plant-microbe interactions (PMIs) and their role in enhanced phytoremediation; (e) challenges and 

opportunities for valorization of plant biomass in biofuel/bioenergy production; (f) challenges in transgenic 

approaches to modify the hyperaccumulating plants (designer plants) and associated microbes (engineered 

bacteria); and (g) the knowledge gaps and potential areas for further research in the phytoremediation of 

HMs-contaminated sites.   

2      Sources of Heavy Metals Contamination and Toxicity in Environment   

HMs can be introduced into the environment either by natural or anthropogenic processes. Natural processes 

are geological activities; for instance, mineral weathering, erosion, volcanic eruptions, and continental dust. 

Anthropogenic activities include industrial operations such as mining, smelting, electroplating, and 
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industrial effluent discharge as well as agricultural practices like use of pesticides and phosphate fertilizers 

and release of agricultural wastes (Ali et al. 2013; Mahar et al. 2016; Antoniadis et al. 2017). Industrial 

activities are the major source of HM pollution (water and soil) in the environment. If HMs enters the food 

chain, they may bioaccumulate and/or biomagnify at higher trophic levels resulting in severe health threats 

and thus, are of serious eco-toxicological concern.  

The indiscriminate discharge of toxic metals-rich industrial effluents is one of the major sources of 

environmental pollution. The effluent discharged from metal-based industries, especially leather industries 

(Cr used in leather tanning) cause serious soil and water pollution and hence, its treatment and management 

is a key challenge to pollution control authorities (Sahu et al. 2007; Saxena et al. 2016). A high concentration 

of HMs has been reported in sediments of river Ganga and its tributaries receiving Cr-loaded tannery 

effluent (Beg and Ali 2008). In addition, HMs beyond the permissible limits also deteriorates water quality 

and makes it unfit for drinking and irrigation purpose (Nazeer et al. 2014). The effluent released from 

electroplating and distillery industries also constitute a highly rich source of HMs and hence, considered as 

hazardous to living beings (Venkateswaran et al. 2007; Chandra et al. 2008). Furthermore, effluent released 

from domestic activities is also responsible for HM pollution and thus, is of serious eco-toxicological 

concerns (Bhardwaj et al. 2017).  

In an aquatic ecosystem, HMs adversely affects gamete production, sperm quality, embryonic 

development, delay hatching and causes physical deformities in fishes and ultimately, leads to the death of 

newly hatched larvae (Segura et al. 2006; Jezierska et al. 2009; Fatima et al. 2014). HMs also causes 

endocrine disruption, oxidative stress and genotoxicity in fishes (Jezierska et al. 2009; Luszczek-Trojnar et 

al. 2014; Javed et al. 2016). Further, HMs also causes a reduction in hematological parameters and glycogen 

reserve and thus, make the fishes weak, anemic and vulnerable to diseases (Javed and Usmani 2015).  

The soil is a non-renewable resource for sustainable agriculture and acts as a major sink for HMs. The 

contamination of agricultural soil with toxic metals affects its physico-chemical and biological properties 

and reduces land usability for agricultural farming leading to food insecurity and thus, creates land tenure 
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problems (Wuana and Okieimen 2011). Moreover, the co-existence and persistence of HMs in soil is also 

responsible for the entry of toxic metals into the food chain and thus, lead to severe health hazards in living 

beings (Khan et al. 2008) (Table 1).  

HMs inhibits several microbial metabolic processes such as respiration, denitrification, and enzymatic 

activity and hence, retard the bioremediation processes (Zhuang et al. 2007; Sobolev and Begonia 2008). 

HMs also causes a reduction in the number of specific microbial populations and a shift in the microbial 

community structure. For instance, Ding et al. (2017) evaluated the effect of Cd and Cr on the microbial 

community structure in the rhizospheric soil of rice plant during a pot experiment. Results revealed that the 

relative abundance of a bacterial genus, Longilinea was significantly higher in the control soil than in Cd 

and Cr-treated soils whereas the relative abundance of the genus, Pseudomonas was significantly higher in 

the Cd-treated soils than in the Cr-treated and control soils. However, the relative abundance of a genus, 

Sulfuricurvum was also significantly higher in the Cdtreated soil than in the Cr-treated and control soils 

whereas the relative abundance of the genus, Bellilinea was significantly higher in the Cr-treated soil than 

in the other treated soils. HMs also inhibit the cell division, transcription process, denaturation of protein 

and adversely affect the cell membrane distribution in microbes (Jacob et al. 2018). Hexavalent chromium 

(Cr6+) is also reported to cause DNA damage by exerting oxidative stress in soil bacteria and thus, leads to 

genotoxic effects (Quievryn et al. 2003).  

The irrigation of food crops in the agriculture field with water contaminated with toxic metals-rich 

industrial effluents is a common practice in many developing countries. It may provide a chance for the 

movement of potentially toxic metals from contaminated soil to edible crops, ultimately, reaches into the 

human/animal body via consumption, and thus, renders severe toxic effects. HMs affects various metal-

sensitive enzymes in plants such as alcohol dehydrogenase, nitrogenase, nitrate reductase, amylase, and 

hydrolytic (phosphatase and ribonuclease), and carboxylating (phosphoenolpyruvatecarboxylase and 

ribulose-1,5-bisphosphate carboxylase) enzymes (Nagajyoti et al. 2010; Yadav 2010). Hence, HMs disrupts 

several biochemical/physiological processes in plants such as seed germination, enzymatic activities, 
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nitrogen metabolism, electron transport system, transpiration, CO2 assimilation, antioxidant defense system, 

photosynthesis, photophosphorylation, cellular metabolism, nitrogen fixation, water balance, mineral 

nutrition, cellular ionic homeostasis and ultimately, leads to plants death (Yadav 2010; Lajayar et al. 2017). 

Irrigation of agricultural crops with heavy metal-loaded industrial effluents also disrupt several cytological 

processes in plants such as root growth and elongation, cell membrane permeability, mitotic activity, the 

stability of genetic material and also create chromosomal abnormalities (Nagajyoti et al. 2010; Yadav 2010). 

For example, the irrigation of agricultural crops with the HM-rich distillery and tannery effluent have been 

reported to cause a reduction in root/shoot growth and biomass, seed germination, seedling growth, and also 

induce chlorosis, photosynthetic impairment (Chandra et al. 2009; Bharagava et al. 2017b).  

HMs may cause oxidative stress by forming reactive oxygen species (ROS), which disrupt the 

antioxidants defense system and lead to cell damage in humans/animals; and in extreme cases can be fatal 

(Jaishankar et al. 2014). For instance, hexavalent chromium (Cr6+) has been reported to cause cancer in 

humans and damage cellular components during its reduction into trivalent chromium (Cr3+), leading to the 

generation of free radicals that cause DNA damage (Mishra and Bharagava 2016). Therefore, the 

remediation of HM-contaminated sites is utmost important for environmental safety.  

3      Trophic Transfer of Toxic Heavy Metals and Its Consequences   

Trophic transfer or biotransference is an ecological phenomenon by which a contaminant enters the food 

chain through uptake either from ambient abiotic environment (bioconcentration) or both ambient abiotic 

environment and organism’s food/diet (bioaccumulation), passage from one trophic level to the next higher 

trophic level (biomagnification) and consequently poses risks to human/animal health (Ali and Khan 2018). 

The trophic transfer of toxic HMs from soil to plants to humans and organism’s food to humans is depicted 

in Fig. 1. The primary route of HM entry into the food chain is through the soil-to-plant transfer mechanism. 

In the soil-to-plant transfer mechanism, HMs are transferred from soil to agricultural crops/vegetables that 

constitute a large source of human diet and thus, may result in catastrophic health hazards (Table 1). 

According to a study, the daily intake of metal (DIM) were higher for vegetables grown on soils irrigated 



 

8  
  

with HMs rich-wastewater compared to those of control soils (Jan et al. 2010). The consumption of fishes 

contaminated with toxic HMs also poses serious risks to human health. Hence, their dietary role has been 

questioned though they provide omega-3 fatty acids that have cardioprotective effects. In the 1950s, 

Minamata disease in Japan caused by the consumption of Hg-contaminated fishes by the local people is 

considered as one of the major environmental chemical disasters of the 20th century (Ali and Khan 2017). 

Moreover, HMs accumulation in invertebrates (due to varying feeding habits of insects), amphibians and 

reptiles (due to absorption through highly permeable skin), and birds (due to ingestion of contaminated food 

and water) also adversely affect their development, growth, health, feeding behavior, physiology, and 

reproduction (Ali and Khan 2018b). Thus, the trophic transfer, bioaccumulation, and biomagnification of 

toxic HMs in food chains have important implications for wildlife and human health. Further, more details 

on the subject can be found in a good review article published by Ali and Khan (2018).  

4      Phytoremediation Approaches for Environmental Cleanup  

The engineered use of green plants with associated beneficial microbes to degrade/detoxify pollutants from 

the contaminated medium (soil/water/wastewaters) is technically described as phytoremediation. The term  

“phytoremediation: is made up of two words i.e. Greek head “phyto” (means plant) and Latin root 

“remedium” (means to correct or remove an evil). It can be applied for the eco-restoration of sites primarily 

contaminated with HMs, radionuclides and various recalcitrant organic pollutants (Ali et al. 2013; Mahar 

et al. 2016). It comprises different phytotechniques for the amelioration of various pollutants using different 

mechanisms depending on their applications (Fig. 2). However, all the mechanisms cannot be applied for 

the remedy of all the pollutants. Different phytoremediation techniques such as phytoextraction, 

phytostabilization, phytovolatilization, rhizodegradation, phytodegradation, and rhizofiltration have been 

extensively discussed elsewhere (Ali et al. 2013; Chandra et al. 2015; Chirakkara et al. 2016; Sarwar et al. 

2017). The definition, application, and bottlenecks of traditional phytoremediation techniques are 

summarized in Table 2.   
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Among the phytoremediation techniques, phytoextraction is a major mechanism of HM removal from 

contaminated sites. When green plants are used to remove metal pollutants from contaminated sites via root 

absorption and their sequestration/concentration in the above-ground harvestable parts is technically 

described as phytoextraction (Vangronsveld et al. 2009; Mukhopadhyay and Maiti 2010; Mahar et al. 2016). 

It could be an economically viable technology when metals extracted from contaminated sites using plants 

biomass can be utilized as “bio-ore” to extract the functional and valuable metals and this process is 

technically regarded as phytomining  

(Chandra et al. 2015). Thus, it can generate income and offer additional employment opportunity to the 

public (Sheoran et al. 2009; Chandra et al. 2015; Stephenson and Black 2014).  

The phytoextraction efficiency of green plants primarily depends on the bioconcentration factor (BCF) 

and translocation factor (TF). BCF represents metal concentration in root/soil and denotes metal 

accumulation whereas TF represents metal concentration in shoot/root and denotes metal translocation 

(Goel et al. 2009; Ali et al. 2013; Antoniadis et al. 2017). Plants with high biomass, fast growth rate, and 

high metals tolerance and accumulation are chiefly preferred for metal’s phytoextraction (Mukhopadhyay 

and Maiti 2010; Lee 2013; Chandra et al. 2015). Phytoextraction is performed in two different ways (Ali et 

al. 2013): natural (plants accumulate metals under natural conditions) and induced or assisted (application 

of enhancers to increase metal accumulation in plants). Enhancers are used to increase the phytoextraction 

efficiency and include chelators or soil amendments (Sarwar et al. 2017). Chelators are the organic and 

mineral acids that increase the bioavailability of insoluble or unavailable form of metals in soil and makes 

them available for plants uptake (Ali et al. 2013; Mahar et al. 2016). Thus, enhance the phytoremediation 

efficiency by solving the low metal phytoavailability issue. Some commonly available chelators are EDTA: 

ethylenediaminetetraacetic acid; HEDTA: N-hydroxyethylenediaminetriacetic acid; DTPA: 

diethylenetriaminepentaaceticacid; EGTA: ethyleneglycolbis(b-aminoethyl ether),N,N,N0 ,N-tetraacetic 

acid; EDDHA: ethylenediamine-di(o-hydroxyphenylacetic acid); EDDS: ethylenediamine-N,N'-disuccinic 

acid; NTA: nitrilotriacetic acid, and CA: citric acid. The ability of chelators to enhance the metal 
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accumulation in plants has been tested and reviewed by many workers (Xie et al. 2012; Ramamurthy and 

Memarian 2014; Sun et al. 2015; Chirakkara et al. 2016). Organic soil amendments are cheaper, eco-

friendly, and non- or less toxic and degradable in nature. These help to minimize environmental pollution 

and reduce toxicity to remediating plants and ultimately, enhance phytoremediation efficiency 

(Wiszniewska et al. 2016). Some specific kinds of organic soil amendments include agro- and industrial 

wastes (such as sugar beet residue, wheat, and rice straw, composted sewage sludge or molasses), biochar, 

compost, humic substances, plant extracts, and exudates and are of great significance in 

HMphytoremediation (Wiszniewska et al. 2016). The use of organic soil amendments to enhance the 

phytoremediation efficiency has been evaluated (Park et al. 2011; Paz-Ferreiro et al. 2014; Wiszniewska et 

al. 2016; Chirakkara et al.  

2016; Reddy et al. 2017). The biotic and abiotic factors are also affect the efficiency of phytoremediation 

(Fig. 3). Biotic factors include plant and root zone characteristics whereas abiotic factors comprise 

pollutants and chelators characteristics, properties of the medium (e.g. soil) and climate conditions.  

Further, the environmental risks associated with synthetic chelators such as low biodegradability of 

chelators, groundwater contamination due to leaching of highly water-soluble metal-chelator complexes to 

deeper layer of soil, slow decomposition of organic acids, and toxicity to remediating plants and soil 

beneficial microorganisms (SBMs) should also be considered before application (Vangronsveld et al. 2009; 

Stephenson and Black 2014; Mahar et al. 2016). However, the selection of chelators with optimum dose and 

application time could help to minimize the associated environmental risks and toxic effects in remediating 

plants.  

5      Hyperaccumulating Plants for Phytoremediation of Heavy Metals  

5.1     Classification of metallophytes   

Plants that tolerate and survive in soil containing an exceptionally high concentration of HMs without 

suffering toxicity are termed as metallophytes. The soil, where ores are outcropping is termed as 

metalliferous or orogenic soil. According to growth potential in HMs-contaminated sites, metallophytes can 
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be grouped into the following categories: (a) metal excluders (those accumulate metals in their roots but 

restrict transport and entry into their aerial parts possibly by altering cell membrane permeability and 

changing cell wall metal binding capacity via modulating ionic channels, ion pump activity, and activation 

of new ionic conductance or exudating more chelating substances in soil); (b) metal indicators (those 

actively accumulate metals in their aerial parts by releasing intracellular metal binding chemicals i.e. 

chelators, or altering the pattern of metal compartmentalization by storing them in nonsensitive plant parts 

such as vacuoles and cell wall and generally reflect metal concentration in soil); and (c) metal accumulators 

(those actively accumulate exceedingly large concentration of metals from the soil in the aboveground plant 

parts, especially leaves with no symptoms of phytotoxicity) (Mukhopadhyay and Maiti 2010; Chandra et 

al. 2015; Antoniadis et al. 2017). The use of metallophytes alone or in combination with microorganisms is 

an excellent strategy for the phytoremediation and HM pollution prevention and control.  

To date, several metallophytes have been identified and used in the phytoremediation of HMs-

contaminated sites. Some specific examples include Pteris vittata, which can accumulate Cr and As up to 

35,303 and 20,707 mg kg-1 dry weight (DW), respectively (Kalve et al. 2011), Alyssum murale can 

accumulate Ni in range of 4730-20100 mg kg-1 DW (Bani et al. 2010), Tagetes minuta can accumulate As 

up to 380.5 mg kg-1 DW (Salazar and Pignata 2014), Eleocharis acicularis can accumulate Zn up to 11,200 

mg kg-1 DW (Sakakibara et al. 2011), Corrigiola telephiifolia can accumulate As up to 2110 mg kg-1 DW 

(Garcia-Salgado et al. 2012), and Noccaea caerulescens can accumulate Pb in range of 1700-2300 mg kg-1 DW 

(Dinh et al. 2018).  

5.2   Selection Criteria for Hyperaccumulating Plants for Phytoremediation  

Plants (woody/herbaceous) that accumulate high metals concentration in their shoot (100-1000 fold higher 

than those found in non-hyperaccumulating species) without any visible symptoms are regarded as 

hyperaccumulators (represented by < 0.2% of angiosperms) and overall process is termed as 

hyperaccumulation (Ghosh and Singh 2005; Mukhopadhyay and Maiti 2010; Lee 2013). An ideal 

hyperaccumulator plant should accumulate at least 100 mg kg-1 (0.01% dry wt.) of As and Cd, 1000 mg kg-
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1 (0.1 % dry wt.) of Co, Cu, Cr, Ni, Se and Pb, and 10,000 mg kg-1 (1% dry wt.) of Zn and Mn (Reeves and 

Baker 2000). Metal hyperaccumulating plants are chiefly preferred for phytoremediation. However, some 

hyperaccumulating plants are not successfully applied because of several reasons: (a) low biomass, (b) slow 

growth rate, (c) metals (such as Ni, Zn, and Cu) under scope of phytoextraction are not the priority 

pollutants, and (d) agronomic practices and crop protection measures for their cultivation and protection 

have not been developed (Goel et al. 2009; Marques et al. 2009; Mahar et al. 2016; Yadav et al. 2018).   

Serpentine/ultramafic soils (most abundant metalliferous soil on earth) are the most important natural 

resource in the screening of hyperaccumulating plants especially for metals like Ni and/or Zn. Plant species 

inhabiting such soils are called as “serpentinophytes”. Serpentinophytes are of great significance in 

phytoremediation due to their specific adaptation (might be confined to the physiological state) to such high 

HMs-rich soil. Several plant species like Crotalaria micans, Leucaena leucocephala, Bidens pilosa, 

Pueraria lobata, and Conyza canadensis have been reported to remove Ni from a serpentine site for 

successful phytoremediation applications in Taiwan (Ho et al. 2013). Similarly, many research reports have 

been published on the screening of hyperaccumulating plants for metals like Zn and Ni from serpentine soils 

(Ho et al. 2013; Tomovic et al. 2013; Salihaj et al. 2016; Bini et al. 2017). According to Bini et al. (2017), 

Alyssum bertolonii accumulated an exceptionally high concentration of Ni  

(i.e. 2118 mg kg-1 in aerial parts) from serpentine soils of Tuscany (Central Italy). They also suggested the 

use of Alyssum bertoloni in the remediation of Ni-contaminated soils with both the phytoextraction and 

phytostabilization and in phytomining as well. Thus, serpentinophytes are the key metal hyperaccumulators 

and amicable for the phytoremediation and phytomining. However, the ecological significance of metal 

hyperaccumulation in plants is still unclear. It has been suggested that the hyperaccumulation in plants 

might result from the development of high metal tolerance, drought resistance, unintended metals 

absorption, competition with other metal-tolerant plants, and defense mechanisms for the protection against 

herbivores and pathogens (Lee 2013; Mahar et al. 2016). Further, unveiling the ecological roles of metal 

hyperaccumulation in plants may help us to clearly understand the mechanism of phytoremediation.  
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The selection of hyperaccumulating plants for phytoremediation purpose is a tedious task. Hence, 

indigenous plants are often recommended due to their high metal removal efficiency, less competition 

among them under local environmental conditions, and the lesser threat of becoming invasive (Ghosh and 

Singh 2005; Mukhopadhyay and Maiti 2010; Chandra et al. 2015). The ideal plants for phytoremediation 

should possess a series of characteristics: (a) ability to hyperaccumulate HMs preferably in the aboveground 

parts; (b) tolerance to high pH, salt and accumulated toxic metals concentration; (c) fast growth and high 

biomass; (d) widespread highly branched roots; (e) easy to cultivable and harvestable; and (f) resistant to 

diseases and pests (Vangronsveld et al. 2009; Chandra et al. 2015; Mahar et al. 2016). To date, some 

hyperaccumulator satisfies the above said criteria to be applied for HMs phytoremediation. Metal 

hyperaccumulating plants are often preferred over non-accumulators because they produce a high volume 

of metal-rich biomass and are economic to process for metal recovery and safe disposal, which have an 

additional eco-environmental benefit. To date, more than 500 plant species have been identified as 

metalhyperaccumulators. Notable representative includes the members of Brassicaceae, Asteraceae, 

Caryophyllaceae, Lamiaceae, Euphorbiaceae, Poaceae etc., and have been reviewed elsewhere (Ali et al. 

2013; Chandra et al. 2015; Mahar et al. 2016). Some examples of hyperaccumulating plants with their metal 

accumulation capacity are listed in  

Table 3.   

6      Emerging Halophytes in Phytoremediation  

Plants that tolerate and thrive in a highly saline environment with an extreme salt concentration (200 mM 

NaCl or more) are termed as halophytes (Liang et al. 2017). Halophytes are cultivable in soils irrigated with 

highly saline water/wastewater where good quality water may not be available or limited in supply (due to 

high urban requirements and climate change) for crops irrigation in the arid environment (Manousaki and 

Kalogerakis 2011). It represents an additional eco-environmental benefit for phytoremediation. High 

salinity increases the mobility of HMs in soil and therefore, facilitates their greater uptake and translocation 



 

14  
  

from root to shoot to achieve phytoremediation (Wang et al. 2014; Liang et al. 2017). For example, the 

halophyte, Tamarix smyrnensis removes  

9.4, 19.7 and 38.3 μg of Cd in a solution containing 0, 0.5 and 3% NaCl, respectively (Manousaki et al. 
2008).   

High salt (like NaCl) concentration increase HM accumulation in halophytes either by enhancing metal 

mobility or by modifying root functions and alleviate metals-induced phytotoxicity through improved 

management of osmotic solutes and oxidative status (Chai et al. 2013). Thus, halophytes are suitable 

candidates for the phytoremediation of HM-contaminated saline soils (Table 4). The role of salinity in 

increasing Cd bioavailability is mainly attributable to the formation of Cd-Cl complexes (CdCl+ and CdCl2) 

(Weggler-Beaton et al. 2000; Chai et al. 2013). These complexes are less strongly sorbed to soil than a free 

Cd2+ ion and hence, increase Cd mobility at the soil-root interface. Moreover, these complexes also stimulate 

transport of Cd across the zone encompassing soilrhizosphere apoplast-plasma membrane. Thus, increased 

soil-plant transfer of Cd can occur under salinity. Although the detailed interaction between salinity and 

HMs accumulation is still not fully understood.  

The halophytes applied for the phytoremediation of HM-contaminated saline soils have been recently 

reviewed (Oosten and Maggio 2015; Liang et al. 2017). The mechanism of metals and salt tolerance in 

halophytes include; (a) osmotic adjustment through ion accumulation/compartmentalization or exclusion, 

and biosynthesis of compatible solutes; (b) involvement of antioxidant defense system; (c) cell walls and 

sub-cellular compartmentalization; (d) metal chelation or detoxification; and (e) metal excretion and 

complexing ligands (Liang et al. 2017). Recently, “phytoexcretion” has been introduced as a novel 

phytoremediation process for salt affected metal-contaminated sites (Liang et al. 2017). It is a type of metal 

detoxification strategy in halophytes, wherein toxic metals are excreted through specialized salt glands from 

leaf tissue onto leaf surface (Manousaki and Kalogerakis 2011; Liang et al. 2017). Thus, applying 

phytoextraction in conjunction with phytoexcretion using halophytes represents a promising strategy for the 

phytoremediation of high salt affected metal-contaminated sites.  
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Halophytes such as Atriplex halimus, Echinochloa stagnina, Spartina alterniflora, Zygophyllum fabago, 

Sesuvium portulacastrum, and Tamarix africana have been well reported for the 

phytoextraction/phytostabilization of HM-contaminated saline soils (Liang et al. 2017). The use of 

halophyte, Atriplex nummularia in the remediation of saline and sodic soils is also reported due to its high 

biomass and salt extraction capability (de Souza et al. 2014).  

However, the suitability of different halophytes for the phytoremediation of HM-contaminated sites is still 

under evaluation. The future research should be focused on the: (a) mechanistic understanding of 

simultaneous salt and HM tolerance; (b) use of halophytes of economic importance for HM 

phytoremediation to gain better economic returns; (c) use of transgenics to develop engineered halophytes 

with high biomass and fast growth rate for effective HM phytoremediation under abiotic stress; and (d) use 

of biochar and other soil amendments for the improved phytoremediation of salt-affected HM-contaminated 

sites (Liang et al. 2017).  

7      Medicinal and Aromatic Plants in Phytoremediation  

Generally, edible crops are not suitable for the phytoremediation of HMs-contaminated sites due to the risk 

of entering into the food chain via consumption by humans/animals and associated health hazards. The 

application of medicinal and aromatic plants for the phytoremediation of HM-contaminated sites could be 

an innovative approach. Aromatic plants are mostly non-edible and are not being consumed directly by 

humans or animal due to their essence. They have low metal accumulation potential as compared to edible 

plant hyperaccumulators but are economically important as their harvested foliage are the chief source of 

essential oil. The essential oil obtained from aromatic plants is free from the risk of HMs accumulation from 

plant biomass and thus, prevents entry of HMs into the food chain (Gupta et al. 2013; Lajayar et al. 2017). 

HMs remains in the extracted plant residues during oil extraction through the distillation process and hence, 

limits the detectable concentration in the essential oil. The export of essential oil for selling is a major 

economic incentive along with phytoremediation because it is being used in soaps, detergents, insect 

repellents, cosmetic, perfumes, and food processing industries (Gupta et al. 2013; Lajayar et al. 2017).  
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Some aromatic plants, such as Artemisia annua, Mentha arvensis, Cannabis sativa, Lavandula vera, 

Matricaria chamomilla, Mellissa officinalis, Ocimum gratissimum, Portulaca oleracea; and Salvia 

officinalis have been investigated for the phytoremediation of HM-contaminated soil (Lajayar et al. 2017) 

(Table 4). However, due to higher ability of some aromatic plants to accumulate HMs in their aerial parts, 

when the intention of their cultivation on contaminated soil is non-phytoremediation (i.e. edible 

consumption), the consumption of such aromatic plants may result in serious health hazards and thus, 

require continuous monitoring (Lajayar et al. 2017). The phytoremediation of HM-contaminated sites using 

aromatic plants is a newly emerging concept and currently under research. There are very few available 

studies to date and hence, additional research is required to explore their potential in phytoremediation. 

Furthermore, transgenic approaches could be used to enhance the metal accumulation capacity in such 

plants. For instance, Dhankher et al. (2002) developed transgenic Arabidopsis thaliana plants (medicinal 

herb used to cure sores in the mouth) with increased tolerance and accumulation of As for enhanced 

phytoremediation.  

8      Molecular Mechanism of Heavy Metals Tolerance, Uptake, Translocation, and phytoremediation 

HMs are highly toxic to plants as they disturb the redox status (balance between oxidants and antioxidants) 

and lead to oxidative stress responsible for the physiological damage. Plants always maintain a very low 

concentration of free radicals to avoid any physiological damage. This balance is established by the uptake 

and translocation of toxic metals, their sequestration, and binding to proteins and organic ligands. Plants 

uptake toxic metals from polluted matrix via roots and store them either in roots or translocate to the shoots 

through xylem vessels, where they sequester in the vacuoles. Vacuoles help to reduce the excess metal ions 

from the cytosol and, prevent their interactions with other metabolic processes due to low metabolic activity 

and thus, are considered to be the ideal sites of metals sequestration (Wu et al. 2010; Ali et al. 2013; Chandra 

et al. 2015). Metal tolerance is a pivotal requirement for metal accumulation and phytoremediation and 

governed by a variety of biomolecules. Membrane transporter proteins (MTPs) such as ATPases, zinc-iron 

permease (ZIP), cation diffusion facilitators (CDF), copper transporters (COPTs), ATP-binding cassettes 
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(ABC), and cation exchangers (CAXs) and heavy metal ATPase (HMA) such as P1B-ATPase, HMA4 and 

HMA5 help in the uptake and transport of metals across the cell membrane and facilitate their detoxification 

(Ali et al. 2013; Sarwar et al. 2017). Metal binding proteins (such as Cu-chaperone ATX1-like proteins, 

glutathione (GSH), metallothioneins (MTs) and phytochelatins (PCs)) and organic ligands are involved in 

the binding, sequestration and detoxification of toxic metals in the above-ground plant parts preferably in 

the cuticle, epidermis and trichomes as these have less chance of cellular damage (Wu et al. 2010; Chandra 

et al. 2015; Sarwar et al. 2017). GSH protect the plants from physiological damage caused by toxic metal 

stress, MTs reduce metal accumulation in shoots by trapping them in roots and PCs enhance HM-tolerance, 

accumulation, and detoxification in plants (Goel et al. 2009; Wu et al. 2010). Thiol groups present in these 

biomolecules form complexes with HMs (GSH-PC-MT-HM) and thus, play a crucial role in the 

detoxification of toxic metals in plants (Sarwar et al. 2017).   

9      Exploiting Plant-Microbe Interactions for Enhanced Metals Phytoremediation  

The longtime frame required for phytoremediation and physiological damage to remediating plants under 

toxic metal stress is a major issue. Therefore, exploiting plant-microbe interactions (PMIs) could be 

exploited to enhance the plant growth and phytoremediation of HMs-contaminated sites.  

The root/rhizosphere colonizing, plant growth promoting rhizobacteria (PGPR) have been reported to 

enhance host plant growth in toxic metals-contaminated sites (Yuan et al. 2013; Ma et al. 2015; 2016a). 

PGPR produces growth hormones such as auxins (IAA: Indole-3-acetic acid), cytokinins, gibberellins and 

ethylene (Rajkumar et al. 2012; Ma et al. 2015). The mechanisms of plant growth promotion may vary from 

bacterial strain to strain and depends on various secondary metabolites produced (Ma et al. 2011; Backer et 

al. 2018). PGPR also produces some other beneficial compounds such as enzymes, osmolytes, 

biosurfactants, organic acids, metal chelating siderophores, nitric oxide, and antibiotics (Rajkumar et al. 

2012; Ma et al. 2015). These beneficial compounds reduces ethylene production via synthesis of ACC (1-

aminocyclopropane-1-carboxylate) deaminase that prevents the inhibition of root elongation, lateral root 

growth, and root hair formation, and also improve the minerals (N, P & K) uptake in acidic soil (Babu et al. 
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2013; Ma et al. 2015). These compounds also suppress phytopathogens, provide tolerance to abiotic stress 

and helps in associated nitrogen fixation (Rajkumar et al. 2012; Babu et al. 2013; Ma et al. 2015). Hence, 

PGPR are applied in sustainable agriculture development. Besides these, PGPR can lower the metal toxicity 

to remediating plants through biosorption/bioaccumulation as bacterial cells have an extremely high ratio 

of surface area to volume (Ma et al. 2016b; Li et al. 2018). PGPR could adsorb high metals concentration 

by either a metabolism-independent passive or metabolism-dependent active processes. Hence, using PGPR 

in environmental bioremediation could be a useful strategy for plants survival in the stressed environment. 

PGPR reported for the enhanced HMs phytoremediation with associated benefits have been reviewed in 

past (Ma et al. 2011; Rajkumar et al. 2012; Ullah et al. 2015). Some updated examples from recent studies 

are summarized in Table 5.   

Endophytes are the microbes (bacteria/fungi) that reside in the inner tissues of plants without causing 

harm to host. They also help in plant growth promotion and development under biotic or abiotic stressed 

environment and exert many beneficial effects than rhizobacteria (Luo et al. 2011; Ma et al. 2011; 2015). 

They are able to tolerate high metals concentration and hence, lower phytotoxicity to remediating plants as 

well as helps in growth promotion enhancing through biocontrol mechanism and induced systemic 

resistance against phytopathogens (Ma et al. 2011; 2015). They produce phytohormones, organic acids, 

siderophores, biosurfactants, enzymes, and growth regulators that help in water and nutrients (P, N & K) 

uptake, osmolytes accumulation, osmotic adjustment, stomatal regulation and associated nitrogen fixation 

as additional benefits to host plants (Ma et al. 2011; 2016b). Thus, inoculating plants with endophytes could 

be an excellent strategy to enhance the phytoremediation of HM-contaminated sites.  

Endophytes applied to enhance HMs phytoremediation with associated benefits have been recently 

reviewed by several researchers (Afzal et al. 2014; Ma et al. 2016b).  

Arbuscular mycorrhizal fungi (AMF: colonize plant roots) have been also reported to protect their host 

plants against heavy metal toxicity through their mobilization from soil and thus, helps in phytoremediation 

(Marques et al. 2009; Meier et al. 2012; Khan et al. 2014). The possible mechanisms by which AMF protect 
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their host plants through metal mobilization from soil include: (a) immobilization by chelation; (b) binding 

of metals to biopolymers in the cell wall; (c) superficial immobilization in the plasmatic membrane once 

metals crosses the cell wall; (d) membrane transportation that mobilizes metals from the soil to the cytosol 

(e) intracellular chelation through MTs, organic acids, and amino acids; (f) export of metals from cytosol 

by membrane transporters; (g) sequestration of metals into vacuoles; (h) transportation of metals by means 

of fungal hyphae; (i) storage of metals in fungal spores; and (j) exportation by the fungus, and access into 

the plant cells, involving both active and passive transportation into the mycorrhizae (Meier et al. 2012; 

Cabral et al. 2015). They confer resistance against drought, high salt, and toxic metals concentration, and 

improve nutrient supply and soil physical properties (Khan et al. 2014). The exact mechanism of plant 

protection is still not fully understood and further research is required to explore their role in the 

phytoremediation. In addition, isolating and characterizing suitable plant associated beneficial microbes is 

a timeconsuming process. It also requires the analysis of more than thousands of isolates and thus, 

identification of specific biomarkers may help to select the effective plant-microbe associationships for 

microbe-assisted phytoremediation (Rajkumar et al. 2012). Further, to ameliorate metal toxicity, plant 

growth promotion and metal sequestration, extensive research efforts are also required to explore novel 

microbial diversity, their distribution, as well as functions in the autochthonous and allochthonous soil 

habitats for microbe-assisted phytoremediation of  

HM-contaminated sites.  

10      Molecular Approaches for Enhanced Phytoremediation of Heavy Metals  

Transgenic approaches are decisive in genetic manipulation of low biomass and slow-growing 

hyperaccumulating plants to enhance the phytoremediation of HM-contaminated sites. The main objective 

is to introduce genes (from organisms such as plants, bacteria, and mammals) that confer plants the ability 

to resist, tolerate and hyperaccumulate toxic metals from contaminated sites under changeable environment 

with increased biomass and metal storage capacity (Goel et al. 2009; Marques et al. 2009; Mukhopadhyay 

and Maiti 2010). The general approach behind the transgenic approaches is to over-express or knockdown 
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genes that encode for metal binding PCs, metal chelating MTs and MTPs, which are crucial in toxic metals 

detoxification and thus, phytoremediation (Goel et al. 2009; Mukhopadhyay and Maiti 2010; Dhankher et 

al. 2011; Sarwar et al. 2017).   

Chloroplast engineering is an innovative approach that allows the transfer of entire operons from 

bacteria into plants for the overexpression of enzymes responsible for HM phytoremediation (Dhankher et 

al. 2011; Goel et al. 2013). Identification of novel genes and their transfer from natural hyperaccumulators 

and microbes into fastgrowing metal hyperaccumulators may also create new opportunities for enhancing 

phytoremediation efficiency. To date, transgenic plants have not yet been applied for field scale application 

and genes escaping from transgenic plants to wild relatives are very rare. Genetically engineered plants 

(GEPs) applied for the enhanced metals phytoremediation in the laboratory has been reviewed (Kotrba et 

al. 2009; Goel et al. 2009; Vangronsveld et al. 2009; Chandra et al. 2015). Some updated examples from 

the recent studies are summarized in Table 6. However, there are several environmental risks associated 

with transgenic plants applied for metals phytoremediation at the field should also be considered.  

Environmental risks may include (a) exposure of toxic metals to wildlife and humans to their more 

bioavailable forms; (b) uncontrolled spread of transgenic plants due to interbreeding with their wild relatives 

or superior fitness because of weedy nature in environment (genetic pollution); (c) transformation of natural 

flora through cross-pollination; and (d) risk of invasion of free plants and potential loss of diversity (Kotrba 

et al. 2009; Marques et al. 2009; Wu et al. 2010). Hence, risk assessment should be performed before 

applying GEPs at the field scale.   

The engineering of symbiotic plant-associated microbes (i.e. PGPRs and endophytes) could also be a 

promising phytobacterial technology to enhance the tolerance to high metal concentrations and 

detoxification (Weyens et al. 2013; Huang et al. 2016). It involves the introduction of one or more genes of 

interest that code for enzymes responsible for the enhanced remediation, stress tolerance, metals chelators, 

uptake regulators, transporters and homeostasis (Ullah et al. 2015). Some updated examples from the recent 

studies on the genetically engineered bacteria applied for enhanced metals phytoremediation are listed in 
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Table 7. However, engineering plant-associated microbe are of limited scope as these mainly concentrate 

around the roots, show limited distribution outside rhizosphere and depends chiefly on the host plants (Wu 

et al. 2006). Hence, their controlled use outside rhizosphere is not an easy task  

Recent advances in “omics” technologies (such as proteomics, metabolomics, genomics, metagenomics, 

and transcriptomics) also offer greater opportunities to identify traits that maximize the benefits of 

phytoremediation through manipulating tolerance, accumulation, and pollutants degradation/detoxification 

potential of plants and microbes. Thus, the insertion and overexpression of genes and metal-binding proteins 

and their exploitation to increase metal-binding capacity and tolerance or accumulation of toxic metals in 

bacteria and plants could be an excellent strategy for the enhanced phytoremediation.    

11      Energy Crops in Phytoremediation and Bioenergy Production  

The treatment and safe disposal of huge quantity of metals-contaminated biomass associated with 

phytoextraction is an environmental concern. Non-edible and perennial energy crops can be used to 

maximize the benefits of phytoremediation. Energy crops have high density, biomass, and mechanization, 

fast growth rate, and short rotation time and are resistant to diseases and pests. The biomass of energy crops 

could be economically valorized for renewable energy (biogas, biofuels, and combustion for energy 

generation and heating) production to fulfill the global energy demands, which is one of the major 

challenges of the 21st century (Lavanya et al. 2012; Ahmad et al. 2016). An energy crop, Miscanthus x 

giganteus has been predicted to supply up to 12% energy of the total energy need of the European Union 

(EU) (Fruhwirth and Liebhard 2004). Applying energy crops in phytoremediation represents as an 

additional eco-environmental benefit in controlling soil erosion, improving soil health and providing the 

wildlife habitat (Simpson et al. 2009; Gomes 2012). It could also be an economic incentive for 

phytoremediation, particularly when energy crops are grown in barren metal-contaminated land that does 

not compete for food production. It will reduce the consumption of non-renewable fossil fuels and creates 

wide employment opportunities for locals with the low-impact treatment of barren metals-contaminated 
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lands (Gomes 2012). A list of energy crops used for the phytoremediation and biofuels/bioenergy production 

is presented in Table 8.   

In addition to phytoremediation and bioenergy production, the energy crops also help in carbon 

sequestration and biodiversity management due to their giant structure, longer life cycle, and high above- 

and below ground biomass, which favors soil microfauna and shelters invertebrates and birds and flora 

(Blanco-Canqui 2010). They improve soil characteristics by improving soil organic matter, soil aggregation, 

water retention, hydraulic conductivity, macroporosity, nutrient recycling, and storage and fluxes of water, 

air, and heat and thus, reduce water and wind erosion (Blanco-Canqui 2010). They also improve water 

quality by reducing the off-site transport of metal pollutants and thus, reduce the risks of water pollution 

(Blanco-Canqui 2010). However, the utilization of energy crops in phytoremediation has some distinct 

disadvantages, which includes: (a) scarcity of agricultural land and threat to food production; (b) diverse 

agro-climatic conditions for cultivation and difficulty in producing biofuels for the entire year; (c) long 

maturation phase especially in case of Jatropha that discourage small farmers for its cultivation on 

agricultural field; (d) air pollution and health hazards due to harmful gaseous emissions during the burning 

of contaminated biomass; and (e) cost involved in production, growth, transportation, and storage of 

biomass and its processing. The introduction of a new plant to the agricultural field for phytoremediation 

and bioenergy production may negatively affect the ecosystem by land use changes, biodiversity and 

nutrients loss, low yield and finally food security issues (Pandey et al. 2016). Moreover, issues related to 

the transfer of toxic metals during the burning of contaminated biomass are the major constraints associated 

with bioenergy production (Gomes 2012). Hence, a thorough life cycle assessment (LCA) is required to 

fully understand the potential hazards of using contaminated biomass for bioenergy production with low 

environmental impacts. Further, the quality assessment of produced biofuels and evaluating the suitability 

of energy crops for biofuel production and phytoremediation of metals-contaminated sites are required 

before applying at the field scale.  
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Further, more volume reduction of contaminated biomass is required for its safe disposal and 

commercial success of phytoremediation. Several methods such as incineration, compaction, ashing, 

gasification, pyrolysis, direct disposal, and liquid extraction have been suggested for the post-harvest 

treatment and biomass disposal (Ghosh and Singh 2005; Gomes 2012). Among the available methods, 

incineration (smelting) is the most acceptable eco-friendly and economically feasible method. It reduces the 

expenditure for the transportation of biomass but increases the risks of toxic metals leaching to a deeper 

layer of soil leading to groundwater pollution (Mahar et al. 2016). Pyrolysis can also be a promising method 

for biomass disposal as pyrolysis product (i.e. biochar) is a source of ore/metal concentrate that could be 

utilized for the separation and recovery of metals i.e. phytomining and thus, can generate revenue (Ghosh 

and Singh 2005; Paz-Ferreiro et al. 2014; Dilks et al. 2016). The use of biochar as an additive to soil could 

also help to sequester carbon and thus, lower the deleterious effects of human-induced climate change due 

to CO2 emissions (Paz-Ferreiro et al. 2014). However, no single method is effective to date and researches 

are underway to find the best disposal method for the metals contaminated biomass. An integrated concept 

coupling phytoremediation with bioenergy production from contaminated biomass and subsequent metals 

recovery has been also proposed for the sustainable remediation process (Jiang et al. 2015).  

12     Field Experiences  

Despite proven success in the laboratory and academics, phytoremediation is still struggling to get a jump 

from laboratory to field for commercial success. Most of the phytoremediation researches are currently 

laboratory-based, where conditions are actually different from those in the field. At the field scale, 

phytoremediation is restricted by many factors such as low metals bioavailability, slow plants growth rate 

and biomass, reduced metal accumulation and tolerance etc. and several technical difficulties, which need 

to be catching up (as discussed in section 7). Thus, the selection of suitable plant species for the 

phytoremediation of HM-contaminated sites is not an easy task. In addition, due to its time-taking nature, 

remediation industries/companies usually lost their interest in phytoremediation technology to take it up for 

commercial applications. Applying transgenic plants in phytoremediation is extremely challenging due to 



 

24  
  

their highly invasive nature and risk of contaminating non-target species with their pollens, but may well 

remediate the contaminated sites. However, strict US or western countries regulations on their release for 

field applications, lengthy environmental impact assessment and high cost (approx.  

$100-150 million) and long time (approx. 10 yrs.) period are the key constraints to get a GEP to market 

(Beans 2017). Lack of clear-cut understanding about phytoremediation among remediation practitioners is 

also a key concern. Phytoremediation is being investigated at field scale worldwide. Some updated examples 

from recent field studies with field experiences are summarized in Table 9.   

Reddy et al. (2017) conducted a field trial on the phytoremediation of HMs and polyaromatic 

hydrocarbons (PAHs)-contaminated slag fill site (Big Marsh, Calumet region, near Chicago, IL, USA) for 

three years. According to the study, there was no significant decrease in HMs concentrations in soil (no 

phytoextraction), but HMs were immobilized by native grasses in combination with compost amendment 

applied to the soil (phytostabilization). However, PAHs were well-degraded (rhizodegradation) and thus, 

reduced the risk of contaminants to public and environment. Doni et al. (2015) remediated the polluted 

marine sediments at pilot scale (Port of Livorno, Central Italy) using three selected plants (Paspalum 

vaginatum Sw., Tamarix gallica L., and Spartium junceum L.) in association with compost to remove HMs 

(Zn, Cu, Cd, Ni, and Pb). However, Ni and Pb were the lowest translocated metals and the process was 

largely considered phytostabilization and phytoextraction to a lesser extent. Khaokaew and Landrot (2014) 

remediated the Cd-contaminated agricultural field (Mae Sot contaminated field, Mae Sot District, Tak 

Province, Thailand) using Cd-hyperaccumulating plants except for Chromolaena odorata, within two 

months (phytoextraction) under greenhouse condition. Willscher et al. (2013) performed a field study to 

remediate uranium and other HMs such as Al, Ni, and Zn from a uranium mining site (Gessenwiese, 

Ronneburg, Eastern Thuringia, Germany) for 14 months using hyperaccumulators, Helianthus annuus, 

Triticale and Brassica juncea in association with calcareous topsoil, mycorrhiza, and bacterial culture and 

harvested plants biomass was utilized for energy production. According to experience, a very low metal 

accumulation was reported in case of Triticale; H. annuus accumulated high Al whereas B. juncea 
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accumulated high Zn and Ni (phytoextraction). Vamerali et al. (2009) reported that phytoextraction of 

elevated amounts of metals or As from Torviscosa cinder waste site using woody plants, Populus and Salix 

sp. is not feasible. This was largely due to low productivity and low levels of translocation of metals from 

roots and despite an apparent high mobility of Pb and Zn. Thus, the selection of suitable plants is critical 

for the effective phytoremediation of HMs-contaminated sites.  

Further, more long-term field studies are required to document time and cost data for the economic 

evaluation of in-situ phytoremediation at the field scale. Phytoremediation (phytoextraction) is currently 

under investigation in the US Environmental Protection Agency (U.S. EPA) supported Superfund 

Innovative Technology Evaluation (SITE) programme (http://www.epa.gov/superfund/sites) to fully 

understand its economic feasibility, better performance, and wider acceptance. Moreover, phytoremediation 

is also under investigation in the EU demonstrative projects such as Phytosudoe 

(http://www.phytosudoe.eu/) or Life RiverPhy  

(http://liferiverphy.eu/web/en/) to evaluate its success in environmental decontamination at the field scale.  

13       Emerging Phytotechnologies   

Phytotechnology is an emerging field that implements solutions to scientific and engineering problems using 

plants to control and minimize environmental pollution. Phytotechnologies may provide more efficient 

alternatives to traditional cleanup methods because of their low capital costs and maintenance requirements, 

high success rates, end-use value, and aesthetic nature. Some phytotechnologies associated with 

phytoremediation are briefly discussed below:  

13.1      Phytomining  

It is a plant-assisted mining and recovery of precious metals from the ash of combusted-contaminated 

biomass and thus, can generate revenue. If it applied to the agricultural field, is termed as agro-mining 

(Sheoran et al. 2009; Mahar et al. 2016; Jiang et al. 2015). Bioenergy generation and less SOx emission due 

to the low sulphur content of bio-ores are the additional eco-environmental benefit of phytomining as 

compared to conventional mining technologies (Ali et al. 2013). It may be limited by the plant’s 



 

26  
  

phytoextraction efficiency and the market price of metals to be processed. It is more suitable for Au, Tl, Co, 

and Ni due to their high price and concentration in biomass (Mahar et al. 2016). For instance, it has been 

commercialized for Ni because hyperaccumulator plants such as Alyssum murale and Alyssum corsicum can 

accumulate 400 kg Ni ha-1 with a production cost of $250-500 ha-1 (Ali et al. 2013). Hence, it is useful for 

the treatment and management of Ni-contaminated sites. Another successful case study on the phytomining 

is the use of hyperaccumulator, Berkheya coddii for the phytoremediation Nicontaminated soils near an 

industrial plant in Rustenburg, South Africa (Antony et al. 2015). They reported a high yield of 20t/ha and 

active Ni absorption 2-3% with metal accumulation in the ash (15%) makes its profitable for the repeated 

extraction process. The profitability of Ni phytomining using B. coddii on Ni-rich serpentine soils 

(Australia) is estimated at 11,500AU$/ha/yield and the profitability of Au phytomining using B. juncea is 

about 26,000AU$/ha/yield (Mahar et al. 2016). However, the high market price of uranium and its low 

concentration (100 mg/kg) in the biomass (10 t/ha) of Atriplex species makes the phytomining unprofitable 

(Sheoran et al. 2009).   

Phytomining can be more economically feasible if combined with bioenergy production and sale of C-

credit could be a possible benefit (Mahar et al. 2016). Applying energy crops for the phytoremediation of 

contaminated sites could also pave the way for economical phytomining of valuable metals. According to a 

study, the cultivation of energy maize in the Campine region of Netherlands and Belgium could result in 

the generation of 29000038000KV of renewable energy per hectare (Meers et al. 2010). It may reduce the 

need for coal-powered energy and minimize the CO2 emission up to 21 tons/ha/year. However, phytomining 

is not successful in the northern regions of the world because of low plant productivity under harsh weather 

conditions. It is mainly suitable for the treatment and restoration of the disturbed soils, mine tailing waste 

and mining sites in tropical regions and has been accepted by public and commercial enterprises. Thus, 

phytomining could be an economic incentive for low-cost metal recovery and pollution control.  
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13.2      Constructed Wetlands  

The use of constructed wetlands (CWs) for wastewater treatment and management has been increasingly 

recognized worldwide. CWs are the man-engineered systems constructed to utilize the natural processes of 

aquatic macrophytes with their associated microbial assemblages for wastewater treatment within a more 

controlled environment (Stottmeister et al. 2003; Khan et al. 2009). CWs are mainly vegetated with different 

wetland plants having high biomass, fast growth rate and metal accumulation capacity such as Phragmites 

australis, Typha latifolia, Canna indica, Stenotaphrum secundatum, Scirpus americanus, Scirpus scutus, 

Iris pseudacorus etc., for the treatment of metal-rich wastewaters (Bharagava et al. 2017c). CWs have been 

proved to be successful in the removal of a variety of organic and inorganic pollutants such as metals, 

nutrients and a wide range of micro-pollutants, such as pharmaceutical and personal care products, and also 

fecal indicator bacteria and pathogens (Zhang et al. 2015a). The pollutants removal efficiency of CWs 

mainly depends on wastewater treatment rate, organic loading rate, hydrologic regime, hydraulic retention 

time, operational mode, and vegetation type (Zhang et al. 2015a). The application of CWs in pollutants 

removal from wastewaters has been recently reviewed by many workers (Zhang et al. 2014; 2015a; 

Bharagava et al. 2017c).  

CWs may provide many ecological and economic benefits such as require low capital investment for 

construction, low electricity for operation, less maintenance, provides wildlife habitat and human 

recreational opportunities, and a reuse and recycling option for the wastewater treatment facility. CWs are 

more favored in developing countries due to easily available and less costly land and tropical environment, 

which help to flourish the microbial communities responsible for the degradation/detoxification of organic 

and inorganic contaminants in wastewaters (Zhang et al. 2015). Thus, the increasing use of CWs can 

successfully treat/detoxify HM-rich wastewaters and solve various water quality issues in the world. 

Integrating CW plants with a microbial fuel cell (MFC) for wastewater treatment and electricity generation 

could be an innovative approach for the improved degradation of pollutants. According to a recent study, a 

maximum current density of 55 mA m-2 could be achieved during the removal of hexavalent chromium 
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(Cr6+) from solution with greater removal efficiency (up to 90%) in an integrated plant-microbial fuel cell 

(PMFC) system planted with a wetland plant, Lolium perenne (Habibul et al. 2016). Moreover, CWs may 

have great potential for bioenergy production and carbon sequestration, if planted with energy crops. 

According to a recent study, the incineration of harvested biomass (16,737 kg with C content:  

6185 kg) of Ludwigia sp. and Typha sp. recovered from a subtropical constructed wetland could produce 

11,846 kWh energy for one month (Wang et al. 2011). Currently, researches are underway to expand the 

scope and efficacy of CWs for treatment of metals-contaminated wastewaters. However, future research 

should be focused on the following points: (a) understanding of microbiological dynamics and correlation 

of biological and non-biological processes in CWs; (b) knowledge of the dynamics of nutrient cycle to 

understand the fundamental processes of greenhouse gas emission in CWs; and (c) understanding of 

microbial community and plant-microbe interactions to know the underlying mechanism of pollutants 

removal in CWs (Carvalho et al. 2017).   

14      Challenges and Future Research Prospects    

Phytoremediation has untapped potential to apply in developing countries because of its low-cost and solar-

driven nature. However, its field applicability gets limited by low metals phytoavailability, biomass, slow 

growth rate, and unavailability of target metal hyperaccumulators. Such drawbacks together span a long 

time-period for phytoremediation to achieve the desirable remediation goal. Therefore, phytoremediation 

requires a high cost for treatment, safety, and liability of risks involved because long time also adds 

additional cost while evaluating economic feasibility at the field (Maestri and Marmiroli 2011; Conesa et 

al. 2012; Mahar et al. 2016). The application of synthetic chelators to achieve higher metal accumulation 

by plants can also be costly and may lead to undesirable environmental consequences such as disruption of 

physico-chemical properties of soils by dissolving mineral components; toxicity to soil microorganisms and 

plants, and unacceptable leaching to groundwater. Hence, the chelate-assisted phytoremediation of HMs-

contaminated sites is seems to be impractical. For instance, EDTA costs $30,000 ha-1 to accumulate 10 g 

Pb kg-1 dry weight in shoots as well as more readily degradable chemicals are also sometimes very costly 
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(Chaney et al. 2007; Stephenson and Black 2014). The field applications of metal mobilizing amendments 

such as EDTA have been also banned in many European countries (Vangronsveld et al. 2009). The growth 

of plants during phytoremediation leads to changes in soil (e.g., changes in pH, increases in organic acids) 

that can make metals more bioavailable to the food chain before they can be remediated (Gerhardt et al. 

2016). Thus, pose environmental risks that can negative some of the positive effects of phytoremediation. 

The accumulation of inorganic contaminants in planta can lead to their re-release, or release of their toxic 

forms, into the soil via leaf litter. For instance, litter from Populus alba that accumulate high levels of Cd 

and Zn in leaves is deemed to be problematic in the environment (Hu et al. 2013). Moreover, metals that 

are phytostabilized are not removed from the soil and ever-changing soil conditions may lead to contaminant 

re-release in the environment and hence, long-term monitoring of the site may be required to avoid land use 

changes in future (Gerhardt et al. 2016). Phytoremediation efficiency may also be improved by applying 

genetically modified plants, but such application may also increase the cost of phytoremediation because 

contaminated sites require greater maintenance, monitoring and disposal of biomass due to strict existing 

government regulations on their use in the field (Maestri and Marmiroli 2011; Stephenson and Black 2014). 

The lack of funding from public and private sector agencies for supporting further phytoremediation 

research is also a major challenge.   

Despite several challenges, phytoremediation remains a promising technology with lots of prospects for 

future research. In recent years, increasing use of phytotechnologies advancing means of phytoremediation 

by integrating ecological engineering using plants. Phytotechnologies like CWs may provide an eco-

technological solution for pollutants removal from wastewaters and income can be generated, if vegetated 

with local plants such as common reeds, Phragmites australis, and elephant grass, Pennisetum purpureum, 

which are being used to produce goods (Stephenson and Black 2014). The development of CWs for 

wastewater treatment in developing countries is not well reported as in the case of European and American 

countries. But, Putrajaya wetland in Putrajaya city of Malaysia represents an excellent example of the 

commercial success of CWs in developing countries (Mahmood et al. 2013; Stephenson and Black 2014). 
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Fluctuating redox conditions could be helpful in microbial precipitation of iron and sulphate and enhanced 

degradation of organic pollutants in the rhizosphere of aquatic macrophytes. Thus, it represents an 

innovative strategy to overcome the limitations of biotechnology and synthetic chelators (Stottmeister et al. 

2003; Stephenson and Black 2014).  

Exploiting transpiration as a phytotechnology in phytoremediation could be an excellent strategy to 

control migration of subsurface water along with metal pollutants and is termed as hydraulic control or 

phytohydraulics (Robinson et al. 2003; Stephenson and Black 2014). Evapotranspiration caps (ETCs) are 

of great significance in pollution control and management. ETCs are the vegetation cover created over the 

polluted matrix to prevent the migration of contaminated water from it. These do not destroy or remove 

contaminants, but prevent the spreading of contaminants and thus, protect people and wildlife 

(https://www.epa.gov/remedytech/citizens-guideevapotranspiration-covers). ETCs are inexpensive as 

compared to typical prescriptive covers and can save up to $120 000-180 000 ha-1 area. However, the testing, 

modeling, and monitoring of these systems may increase the final cost (Stephenson and Black 2014). 

“Ecolotree cap” of USA represent the first successful example of commercial ETC composed of fast-

growing and deep-rooted trees that cover landfills and contaminated soils (Ecolotree 2013). Combining 

dendroremediation (tree as phytoremediator) with phytostabilization could be an excellent strategy for 

phytomanagement of contaminated soil. It may also increase the tangible value of land by increasing the 

provision of wood, feed products and bioenergy production (Robinson et al. 2009; Conesa et al. 2012). 

Endophytic phytoaugmentation could also be a promising phytotechnology for treating contaminated 

wastewaters. In this technology, the remediating plants are augmented with potential endophytes for the 

balanced plant-microbe interactions and enhanced remediation efficiency. However, the slow action, season 

dependent effectiveness and lack of suitable monitoring methods are the key associated constraints that need 

to be addressed in the future for a successful application (Redfern and Gunsch 2016).  

Combining phytoremediation with electrokinetic remediation (using low-voltage direct electric current 

to remove organic and inorganic pollutants from contaminated medium) could be an excellent strategy to 
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enhance the metals mobility in contaminated soil and facilitate their plant uptake and thus, 

phytoremediation. For instance, Mao et al. (2016) evaluated the feasibility of electrokinetic remediation 

coupled with phytoremediation to remove Pb, As, and Cs from contaminated paddy soil. Results revealed 

that the solubility and bioavailability of Cs and As were significantly increased by the electro-kinetic field 

(EKF) and thereby, lower the pH of contaminated soil. Furthermore, they observed that EKF significantly 

enhanced the bioaccumulation of As and Cs in plant roots and shoots and thus, enhanced phytoremediation 

efficiency. The optimization of electrical parameters such as electrical field intensity, current application 

mode, the distance between the electrodes, and stimulation period and their effect on the mobility and 

bioavailability of HMs are the associated key challenges (Mao et al. 2016). However, the application of 

electrokinetic-phytoremediation for the mixed contaminants (organic and inorganic) is also not reported so 

far (Cameselle et al. 2013). Linking phytomining with conventional mining technologies should also be 

used for the selective recovery of precious metals from contaminated soils to achieve commercial success 

(Robinson et al. 2009; Sheoran et al. 2009; Stephenson and Black 2014). Thus, phytotechnologies may 

provide a way for the sustainable management of HM-contaminated sites.  

15   Innovative Ideas and Suggestions for Successful Phytoremediation Practices 
and Applications at HM-Contaminated Sites  

In this section, the innovative ideas and constructive suggestions for the greater acceptance of 

phytoremediation to be effectively applied for the treatment and management of HM-contaminated sites are 

provided as below (Gerhardt et al. 2016):  

(a) More long-term field studies should be supported by public and private funding agencies and 

published in the refereed journals indicating that whether or not the remediation was sufficient to 

meet regulatory compliance at a contaminated site. It will provide some assurance for site managers 

to choose appropriate remediation options at a given site.  
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(b) Authors should indicate cost data and estimate of any valorization of biomass in published field 

studies that allow cost comparison with conventional remediation methods and provide a certainty 

for site managers to choose appropriate remediation options at a given site.  

(c) The low-cost use, wide-applications, and social benefits of phytoremediation should be publicized 

in social media (via YouTube, Facebook, Twitter, and blogs) in addition to scientific journals to 

educate and engage stakeholders.  

(d) Formal (via conference presentations) and informal (via lunch) meetings with industry persons and 

stakeholders should be made to discuss its potential and deployment in managing contaminated 

sites.  

(e) The terminology relevant to phytoremediation should be standardized and simplified to make its 

commercial image/brand, engage non-remediation practitioners, and develop products, services, 

and technologies.  

(f) The cost of landfilling should be increased as it is a less desirable option for the management of 

contaminated soils. It will inflate the cost and encourage the private sector to explore 

phytoremediation and other options.  

(g) High biomass plants can be used in conjunction with microorganisms (rhizobacteria, 

ectomycorrhiza, and endophytes) to shorten the time frame and cost required for phytoremediation 

and allowing rapid turnover of the land for re-use.  

(h) Decision support tools (numerous models and decision trees) can be employed to assess the 

applicability (costeffectiveness and the likelihood of meeting regulatory criteria) of 

phytoremediation for a given site.  

(i) Avoid overselling phytoremediation technology in terms of deployment at contaminated sites 

because it is not a quick remediation and may not produce satisfactory results at the initial stage. It 

requires optimization of biology and improvement in soil quality and then can be successfully 

deployed at the contaminated site.  
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16 Conclusions  

(a) HM pollution in the environment and associated toxicity in living beings is of serious eco-

environmental concern.  

(b) Phytoremediation is an emerging eco-sustainable and clean-green solution for the eco-restoration of 

HMs contaminated sites.  

(c) Ecological roles of metal hyperaccumulation in plants are still unclear and required to clearly 

understand the phytoremediation mechanism.  

(d) Selecting target plants among known metal hyperaccumulators and exploring new plants for successful 

phytoremediation is an ongoing challenge.  

(e) Investigations on synthetic chelators induced toxicity in remediating plants and fate, dynamics and 

decomposition of metal-chelators complexes in the rhizosphere are required. The use of cheaper, eco-

friendly, non-toxic and degradable organic soil amendments are recommended to minimize 

environmental pollution, reduce toxicity to remediating plants and enhance phytoremediation 

efficiency.  

(f) Inoculation of plants with associated microbes (such as PGPRs and endophytes) exhibiting multiple 

traits could be an excellent strategy to enhance metals detoxification in the rhizosphere. A clear-cut 

understanding of plantmicrobe-metal-soil interactions is crucial for microbe-assisted phytoremediation 

of HM-contaminated soils.  

(g) Genetic engineering of metal accumulating plants and associated microbes with required traits could be 

a very useful strategy for the enhanced phytoremediation but, associated risks should also be considered 

before field application.  

(h) Linking energy crops with phytoremediation could be an economic incentive for biofuel/energy 

production and metal recovery with many eco-environmental benefits; however, quality assessment 

(free from toxic metals) of produced biofuels is strictly advised.  
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(i) Exploiting stress tolerant medicinal and aromatic plants for metals phytoremediation could be an 

economically viable approach; however, some are edible plants and thus, their use under strict 

monitoring is recommended for public health protection.  

(j) Search for new and re-evaluating existing methods for the post-treatment of contaminated biomass 

(processing, volume reduction, and safe disposal) is suggested to gain better economic returns.  

(k) Integrating phytoremediation with phytotechnologies or other remediation methods will be helpful in 

the commercial success of phytoremediation.  

(l) Input from different field of science, engineering, and technology is required to support the 

multidisciplinary research in phytoremediation.  

(m) More long-term field trials are required to document time and cost data to provide recommendations 

and convince regulators, decision-makers, and the general public about the low-cost applicability of 

phytoremediation to contaminated sites and for better acceptance in remediation industries.  

Conclusively, phytoremediation is an eco-technological solution for HM pollution control and 

management and thus, promotes sustainable development. However, in future, phytomining (i.e. 

phytoextraction and recovery of precious metals (Au and Ni)) may successfully eliminate or reduce the need 

of conventional mining at large scale and thus, can generate revenue and wide employment opportunities. 

Further, performance evaluation, complete utilization of by-products and overall economic feasibility would 

always be the key criteria for global acceptance of phytoremediation technologies in waste management 

industries.  
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Table Caption:  

 

Table 1 Sources of contamination and toxicity profile of heavy metals  

Table 2 Description of phytoremediation mechanisms and applications  

Table 3 Hyperaccumulator plants (with metal accumulation capacity) employed for phytoremediation  

Table 4 Halophytes and medicinal plants reported in phytoremediation of heavy metal-contaminated soils  

Table 5 Recent studies on microbe-assisted phytoremediation of heavy metal-contaminated soils   

Table 6 Recent studies on transgenic plants for enhanced phytoremediation of heavy metals  

Table 7 Recent studies on genetically engineered bacteria-assisted phytoremediation of heavy metals 

Table 8 Energy crops for sustainable phytoremediation of heavy metal-contaminated soils and bioenergy 
production  

Table 9 Recent field studies on phytoremediation of heavy metal-contaminated sites  

 

Figure caption:  

Fig. 1 Trophic transfer of toxic HMs from soil to plants to humans and organism’s food to humans and their toxicity  

Fig. 2 A pictorial representation of different phytoremediation techniques  

Fig. 3 Relationships among the factors affecting phytoremediation efficiency  
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Table 1 Souces of contamination and toxicity profile of heavy metals. Adapted from Sarwar et al. (2016); Dixit et al. (2015); Jaishankar et al.  (2014); Ali et al. (2013); Yadav (2010) 

Heavy metal Standard limit Sources of 
contamination 

Environmental 
hazrads 

Toxic effects 

 Water 
(mg/l) 

Soil 
(mg/kg) 

  Plants Human/animlas 

Arsenic (As)  0.01  1 - 50  Pesticides  and 
 wood  
preservatives  

Water and soil 
pollution  

Analog of phosphate (P) and hence, compete for 
the uptake of carriers (P/As) in root plasmalemma 
and thus, disrupt phosphate-dependent metabolism  

Analogue of phosphate and hence, affects oxidative 
phosphorylation and ATP synthesis, the sensation of  
“pins and needles” in hands and feet  

Cadmium  
(Cd)  

0.003  
  

0.01 - 
0.7  

Paints and pigments, 
plastic stabilizers, 
electroplating, 
incineration of 
cadmium containing 
plastics,  
phosphate fertilizers  

Water and soil 
pollution  

Chlorosis, browning of root tips, reduced seed 
germination, growth photosynthesis, water, nitrate, 
and nutrient uptake, and ATPase activity, Fe(II) 
deficiency and ultimately leads to death  

Carcinogenic,  mutagenic,  teratogenic;  endocrine  
disruptor, hypercalciuria, and Itai-Itai disease  
  

Lead (Pb)  0.01  2 - 200  Aerial emission 
from combustion 
of leaded petrol, 
battery 
manufacture,  
herbicides and 
insecticides  

Water and soil 
pollution  

Chlorosis, reduced seed germination, growth, 
biomass, photosynthesis, nutrients and water 
uptake, and transport, alter membrane permeability, 
induce abnormal morphology, oxidative stress 
(ROS generation) in plants and inhibit enzymatic 
activity at the cellular level by reacting with their 
sulfhydryl groups  

Impaired development, reduced intelligence, short-term 
memory loss, insomnia, anorexia, encephalopathy, 
disabilities in learning and coordination problems, the risk of 
cardiovascular disease, foot drop/wrist drop (palsy) and 
nephropathy  

Chromium  
(Cr)  

0.05  1 - 1,000  Tanneries, steel 
industries, fly ash, 
dyes, and pigments  

Water and soil 
pollution  

Chlorosis, membrane damage, nutrient 
imbalance, wilting of tops, and root injury, 
reduced seed germination, growth and 
development,  
photosynthesis, and enzymatic activity  

Highly toxic proven carcinogen as identified by IARC, 
WHO, ATSDR, and USEPA; hair loss, pulmonary fibrosis 
(lung scarring), lung cancer and damage to the kidney, 
circulatory and nerve tissues  

Mercury  
(Hg)  
  
  
    

0.001  0.01 - 
0.3  

Release from Au-Ag 
mining and coal 
combustion, surgical 
instruments, medical 
waste  

Water and soil 
pollution  

Interfere with mitochondrial activity and induces 
oxidative stress by triggering ROS generation and 
thus, disrupt membrane lipids and cellular 
metabolism  

Possible human carcinogen (methyl-Hg) as established by 
USEPA, anxiety, Minamata, autoimmune diseases, 
depression, difficulty with balance, drowsiness, fatigue, hair 
loss, insomnia, irritability, memory loss, recurrent infections, 
restlessness, vision disturbances, tremors, temper outbursts, 
ulcers and damage to brain, kidney and lungs, neurasthenia 
(neurotic disorder) and parageusia (metallic taste)  

Copper (Cu)  2.00  2 - 100  Pesticides and 
fertilizers  

Water and soil 
pollution  

Chlorosis, reduced growth, induces stress (ROS 
generation) and thus, disturb metabolic pathways 
and damage to macromolecules, exert cytotoxic 
effects, and ultimately injury to plants  

Wilson’s disease, brain and kidney damage, liver cirrhosis, 
chronic anemia, stomach and intestine irritation, and even 
death  

Nickel (Ni)  0.02  5 - 500  Industrial effluents, 
kitchen appliances, 
surgical instruments, 
steel alloys, 
automobile batteries  

Water and soil 
pollution  

Reduced seed germination, chlorosis, necrosis, 
nutrient imbalance, ion imbalance particularly K+, 
alteration in cell membrane functions, lipid 
composition and H-ATPase activity of the plasma 
membrane  

Hematotoxic, immunotoxic, neurotoxic, genotoxic, 
reproductive toxic, pulmonary toxic, nephrotoxic, and 
hepatotoxic, allergic dermatitis (itching), cancer of the lungs, 
nose, sinuses, throat, and stomach, hair loss and defects in 
infants, cardiovascular and musculoskeletal system  

Standard limit of heavy metals in drinking water according to WHO drinking water standard (1993) for standard setting and drinking water safety. Access online at: 
https://www.lenntech.com/applications/drinking/standards/who-s-drinking-water-standards.htm 
§Common range of heavy metals in soil according to Lindsay (1979). Access online at: http://www.occeweb.com/og/metals-limits.pdf 
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*Abbreviations: IARC: International Agency for Research on Cancer; WHO: World Health Organisation; ATSDR: Agency for Toxic Substances and Disease Registry; USEPA: United States Environmental Protection 
Agency; ROS: Reactive Oxygen Species; LDL: Low-Density Lipoprotein; HDL: High-Density Lipoprotein 
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Fig. 1 Trophic transfer of toxic HMs from soil to plants to humans and organism’s food to humans and their toxicity  
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Fig. 2 A pictorial representation of different phytoremediation techniques  

  

   



 

 

  

 

 

 

Fig. 3 Relationships among the factors affecting phytoremediation efficiency  
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