
A QoS-based Flow Assignment for Traffic
Engineering in Software-Defined Networks

Lakshmi Priya Thiruvasakan, Quoc-Tuan Vien, Jonathan Loo, and Glenford Mapp

Abstract In order to meet a tremendous amount of data storage requirement in next-
generation wireless networks, an increasing number of cloud data centers has been
deployed around the world. The underlying core networks are expected to provide
the ability to store data in a dynamic and scalable computing environment. The
traditional Internet Protocol (IP) has shown to be restricted due to its static architec-
ture, which accordingly motivates the development of Software-Defined Networks
(SDNs). In the SDNs, Traffic Engineering (TE) is simpler and programmable with a
controller without the requirement of reconfiguration for all network devices. How-
ever, the existing TE algorithm of the SDNs rejects a number of requested flows
caused by their undetermined routing paths where only flow bandwidth is consid-
ered in path determination. This paper proposes a Quality-of-Service (QoS) based
Flow Assignment algorithm which enables the computation of end-to-end path for
traffic flows guaranteeing the QoS requirements including bandwidth, end-to-end
delay and packet loss probability. Through the Open Source Hybrid IP/SDNs plat-
form, the proposed algorithm is validated and shown to significantly reduce flow
rejection rate of up to 50% compared to the conventional approach, and therefore
can be used to implement an effective DiffServ mechanism for flow allocation in
the SDNs.

1 Introduction
Software-Defined Network (SDN) has recently emerged to overcome the limitations
of traditional Internet Protocol (IP) networks and Multi-Protocol Label-Switching
(MPLS) systems, by enabling dynamic and scalable computing [1]. In SDN, control
plane is decoupled from data plane and placed in a centralized SDN controller [2, 3].
The network intelligence and state are logically centralized in a single place, allow-
ing network administrators to easily apply network wide policy at the controller.
Cisco defined a new way of Traffic Engineering (TE) called Segment Routing (SR)
[4] to be used with SDN. SR implemented in hybrid MPLS/SDN network can ben-
efit from centralization logic of SDN, where routing paths can be computed at SDN
controller using flow assignment algorithm.

As an SDN emulator, Open Source Hybrid IP/SDN (OSHI) [5], a part of
DREAMER project, was designed and developed by Davoli et al. [6]. OSHI plat-

L. P. Thiruvasakan, Q.-T. Vien, G. Mapp
Middlesex University, London, United Kingdom
e-mail: lakshmipriya.thiru@gmail.com,{q.vien;g.mapp}@mdx.ac.uk

J. Loo
University of West London, London, United Kingdom. e-mail: jonathan.loo@uwl.ac.uk

1

2 L. P. Thiruvasakan, Q.-T. Vien, J. Loo and G. Mapp

form is a whole package which provides tools to build network topology, develop
a flow assignment algorithm namely TE/SR algorithm, and test the algorithm using
emulated network [6]. There is an inherent TE/SR or flow assignment algorithm
within OSHI [7], which computes routing paths based only on bandwidth require-
ment of the flow. In the path computation of traffic flows in real-time systems, the
end-to-end delay and packet loss probability are also important metrics; however,
they have received less interests in the literature. To this extent, this paper aims
at addressing these metrics in the flow assignment. The main contributions of this
paper can be summarized as follows:

1. Development of queuing models for network links and nodes: To enable OSHI
to use queuing models M/M/1 and M/M/1/K to simulate QoS metrics like delay
and packet loss probability.

2. A novel QoS based Flow Assignment (QFA) algorithm: The novelty of the pro-
posed QFA algorithm lies in enhancing the existing OSHI algorithm [7] by con-
sidering delay and packet loss probability in addition to the already supported
bandwidth while computing routing path. The proposed algorithm is shown to
reduce significantly the flow rejection rate compared to the existing algorithm.

2 Related Works
With rapid growth of real time Internet applications, packets are expected to reach
destination on time, and also with a less packet loss. This can be achieved when rout-
ing algorithm considers critical flow parameters like bandwidth, delay and packet
loss probability. Very few research efforts done in the past [8] [9] proposed an SDN
routing algorithm, which considers bandwidth and end-to-end delay metrics.

One approach to meet delay requirement of a flow is to map traffic flows to a
statically configured output queue of a switch based on their priorities. This allows
managing both bandwidth and delay properties of the flow at each SDN switch.
Kim et al., in 2010 [8] proposed an algorithm for automatic QoS control over Open-
Flow protocol (OF) [10]. The algorithm guarantees flow’s bandwidth by generating
an optimal routing path, where the links in the path have enough capacity to sup-
port new flow. Delay requirement is then satisfied by configuring multiple priority
based output queues to which the flows are mapped. Flow paths generated by SDN
algorithm are placed in flow tables in the OF switch using OF protocol [10]. Any
packet arriving at the switch is matched against the flow table entries to determine
its routing path. A drawback in setting up bandwidth-delay guaranteed tunnel in a
large-scale network is that it requires a highly computational complex algorithm [9].
To reduce complexity of TE algorithms, Tomovic and Radusinovic proposed a sim-
ple QoS provisioning algorithm [9], where control plane classified incoming QoS
requests into finite number of categories based on delay sensitivity level. A QoS
request gets rejected when algorithm fails to calculate shortest routing path. Their
experiment proved that simple algorithm can also perform better and lead to smaller
rejection of QoS requests than complex solutions. This paper aims to develop such
a simple QoS based routing algorithm.

For timely delivery of packets in real-time systems, it is essential for packets
to follow a routing path, where total delay encountered by packet is less than or

A QoS-based Flow Assignment for Traffic Engineering in Software-Defined Networks 3

equal to delay requirement of flow. Implementing delay based flow optimization in
traditional networks involves expensive custom-built hardware and software [11].
On other hand, with SDN the controller is aware of global view of network and
statistics, and thus delay based routing algorithm can be implemented in a cheaper
and efficient way. Recently, Kumar et al., in 2017 [11] designed an algorithm which
considers only high criticality flows in safety-critical systems, whose properties like
delay and bandwidth are known to algorithm designers well ahead of time, before
actual data transmission starts. The algorithm calculates end-to-end delay value by
summing up various delay elements like nodal processing delay, link transmission
delay, link propagation delay and queuing delay.

Most useful research is based on OSHI [6] (see Section 3). Our paper is different
from aforementioned works in two key ways in terms of optimization goals and the
considered use case. Furthermore, most of the papers only considered bandwidth
and/or end-to-end delay, while our research designs a QFA algorithm to identify
routing path that guarantees specified bandwidth, delay and packet loss probability
metrics.

Although there exist a variety of simulation platform for SDN such as MATLAB
and NS3 [12], OSHI is selected as a base for validating proposed algorithm. This
is due to the fact that it can provide a simple and efficient virtual environment to
develop and test flow assignment algorithm using simulated SDN network.

3 OSHI System Model
OSHI encompasses various software components like Network Topology Parser,
Random Demand Generator, Flow Assignment or TE algorithm, SR algorithm etc.
[6]. Network can be graphically designed for small-scale topology and deployed us-
ing Mininet [13] extensions. Alternatively, large-scale topology can also be down-
loaded from Topology Zoo [14]. These graphs are converted to JSON files and fed
to a random demand generator.

Random demand generator [15] uses network topology as input, and generates
a set of flow catalogues. TE algorithm [7] accepts network topology and flow cata-
logue as inputs and computes optimal routing path for each flow in flow catalogue
file. This section describes various phases of existing TE algorithm [7]. TE algo-
rithm is a classical flow assignment problem which computes optimal path between
source and destination, given flow’s expected bandwidth (Megabits per Second or
Mbps). Path computed by TE algorithm is further shortened by SR algorithm. SR
pusher then deploys SR paths into the network SDN nodes via Ryu controller [6].

As mentioned in OSHI Quarterly report [16], TE algorithm implements below 3
phases in sequence.

1. Initialization phase: Network topology and flow catalogue JSON files are read
and converted to in-memory data structures. A network graph is created using
topology files.

2. Constrained Shortest Path First (CSPF) phase: Shortest routing path is calculated
for each flow using Dijkstra’s algorithm. Weight of any link ’i’ is calculated as,

4 L. P. Thiruvasakan, Q.-T. Vien, J. Loo and G. Mapp

Wi =
BIGK
Ci−λi

(1)

where Wi is link weight, BIGK is biggest capacity present among all links, Ci
is capacity of link and λi is load of link. Flows for which shortest path cannot
be computed gets rejected in this phase. Only accepted flows continue to next
phase. At end of this phase, average crossing time of network [16] is calculated
as shown below.

T =
1
γ

∑
i=links

λi

(Ci−λi)
(2)

where γ is total load introduced in network.
3. Heuristic reassignment phase: This phase aims at reducing T (average crossing

time) value, calculated in end of previous phase. During this phase, edge weights
Wi are calculated using (3), which is derived by differentiating T with respect to
λi. The derived value is increase of delay on link ’i’ brought on by a very small
amount of traffic on the link.

Wi =
1
γ

Ci

(Ci−λi)2 (3)

Thus, shortest path calculated in this phase reduces overall delay in network com-
pared to previous phase.

4 Problem Definition and Proposed Solutions
Below are the enhancements added to OSHI platform [6] and its TE algorithm [7].
1. Improvise OSHI platform to support M/M/1 and M/M/1/K queuing models.
2. Reduce flow rejection ratio by sorting flows. Existing algorithm [7] has a very

high flow rejection ratio i.e., 1470 flows out of 2198 requested flows gets rejected.
3. Modify TE algorithm design such as to calculate routing paths that guarantee

QoS metrics bandwidth, packet loss and delay.

The new QFA algorithm is an offline and static algorithm which can be scheduled
to run periodically, say during night or off-peak times. The algorithm can be used to
handle predefined traffic flows in an organization or data centres.

4.1 OSHI platform changes to support queuing models
4.1.1 Guaranteed Packet Loss Probability

Modelling each router as M/M/1/K system [17], packet loss probability or blocking
probability is given by formula [17],

PK = (1−ρ)
ρK

1−ρ(K +1)
(4)

where ρ = λ /µ and is system utilization , λ is arrival rate (Packets per Second),
µ is service rate (Packets per Second), K is maximum system capacity which is
total number of packets present in ingress buffers plus one packet which is being
serviced.

A QoS-based Flow Assignment for Traffic Engineering in Software-Defined Networks 5

For the experiments, packet loss probability is considered as 0.0001% [18],
which signifies that maximum packet loss allowed in any node is 1 in 106 packets.
With K and µ known for a node (which will be explained in 4.1.3), λ is calculated
such that PK <0.0001%. This λ value denotes maximum packet arrival rate allowed
in a node to keep packet loss probability less than 0.0001%. When calculating the
shortest path between end points, the algorithm makes sure that the packet arrival
rate at any node is kept within this calculated λ value.
4.1.2 Guaranteed End-to-End Delay

End-to-end delay (TEndtoEnd) of a packet is summation of below components [19]

TEndtoEnd = ∑
links

(Ttrans +Tqueue +Tpropagation)+ ∑
nodes

TnodalProc (5)

where Ttrans is link transmission delay, Tqueue is queuing delay, Tpropagation is link
propagation delay and TnodalProc is nodal processing delay.

When each link in routing path is modelled as M/M/1 system [19] total time
spent by packet waiting in outgoing queue and time for transmission over link ’i’ is
given by [19],

Ttrans +Tqueue =
1

µCi−λi
(6)

where λ i is load of ith link (Packets Per Second), Ci is capacity of ith link (Bits Per
Second) and 1

µ
is average length of data packet (Bits per Packet).

Propagation speed in physical media (’v’) is usually a fraction of speed of light
i.e., 0.59c to 0.77c where c is speed of light in vacuum [20]. Propagation delay of
link ’i’ can be expressed as [19],

Tpropagation =
li
v
+

1
µCi

(7)

where li is length of ith link (Metres) and is assumed 100 metres [11], v is propaga-
tion speed of link, Ci is capacity of ith link (Bits Per Second) and 1

µ
is average length

of data packet (Bits per Packet).
When modelling network node as M/M/1/K system, total time spent by packet in

the system is given by [21],

TnodalProc =
(ρ

1−ρ
)− ((K+1)ρ(K+1)

1−ρ(K+1)
)

(1−PK)λ
(8)

where ρ is system utilization, λ is packet arrival rate (Packets per Second), K is
maximum system capacity and PK is probability of having K packets in the system
as mentioned in (4).

4.1.3 OSHI Input Parameters to QFA Algorithm

QoS metric values for flows are taken from Colt CPE Solutions Service Level
Agreement [18]. The input data to algorithm are json files like nodes.json and
links.json which are created based on network topology, and flow catalogue.json
which is generated by random demand generator. Section 5 mentions the steps to

6 L. P. Thiruvasakan, Q.-T. Vien, J. Loo and G. Mapp

generate these JSON files. Table 1 shows various input parameters to QFA algo-
rithm along with their values.

Kumar et al., studied end-to-end delay constraints using SDN switches [11] and
they measured average packet processing time in a SDN switch to be in range of 3.2
µs to 4.1 µs [11], assuming average packet size as 1600 bytes [11]. Same values
are considered for our research testing. Above mentioned µs values leads to packet
service rate values ranging from 243902 to 312500 packets/second. Buffer size at
the node can be found using B = RT T × C√

n , where RTT is average round trip delay
of the flow passing through the link, C is capacity of link and n is number of flows
multiplexed on same link. In OSHI experiments, ’n’ was found to be 29 with Colt
Telecom topology. Assuming RTT as 250 milliseconds [23], value of B is 2,785,430
bits. With packet size as 1600 bytes [11], B was found to be around 218 packets.

Table 1: Simulation Parameters and their values

Parameter File where the parameter is defined Range of values
Bandwidth flow catalogue.json 0.0014 to 12.2 Mbps [22]
End-to-End Delay flow catalogue.json 50 to 75 milliseconds [18]
Packet Loss Hardcoded in source code 0.0001% [18]
Link Capacity links.json 60 Mbps [22]
Average Packet Size Hardcoded in source code. 1600 bytes [11]
Packet Service Rate nodes.json 243902 to 312500 pack-

ets/second
Node Buffer Size nodes.json 220 to 230 packets

4.2 Reducing Flow Rejection Ratio
In CSPF phase of existing Flow Assignment algorithm [7], a huge amount of flows
gets rejected when their shortest path cannot be computed. This is mentioned in
section 3. Nearly two-thirds of requested flows i.e., 1470 out of 2198 flows gets re-
jected. When a flow is processed in CSPF phase, a temporary network graph is cre-
ated in such a way that the network links whose residual capacity is not sufficient
enough to support new flow’s bandwidth (or) the links which are overloaded are
pruned from temporary network graph, before invoking Dijkstra API on it. When
Dijkstra API could not compute path between source and destination nodes, such
flows are rejected. This is because links present in potential routing path might have
been overloaded and removed from temporary graph. One way to solve link over-
load issue is to redistribute traffic across multiple links. Traffic redistribution can
be easily achieved by considering first, the flows with smaller bandwidth values
[24]. Hence we sort flows in ascending order as per their bandwidth value during
initialization phase.

4.3 QoSBasedFlowAssignment Flowchart
The proposed QFA algorithm has five phases like Initialization, CSPF, Heuristic Re-
assignment, FlowLatencyCalculation and FlowReallocation. The first three phases
are already present in existing design [7], while the last two phases are newly added
in this work to handle delay logic. As shown in Figure 1, the design of these two
phases are as follows:

A QoS-based Flow Assignment for Traffic Engineering in Software-Defined Networks 7

End the
TE

algorithm

Output of TE
algorithm : List

of
ArrayElements

containing
acceptedFlows

and their
corresponding

routing path

Iterate through all
accepted flows

and calculate end
to end delay

value (Step a)

Is
calculated
Delay <
flow's

estimated
delay

Add the flow
whose delay

values are not
met to a new

list, say
partialRejected

Flows

No

FlowReallocation
Phase

Iterate through
flows in

partialRejected
Flows list

End of
flow
list?

Calculate the link weights
based on various delay
components and invoke

Dijkstra API to calculate the
shortest path to destination

(Step b)

Create a temporary graph
which is a copy of original

network graph. Prune links
from temporary graph whose
available capacity(bit rate in

Mbps) is lesser than the flow's
bit rate. Also prune the links

whose source and destination
node cannot support the

flow's traffic rate and node's
traffic rates are already at
maximum allowed value.

Is delay of
computed

path < flow's
estimated

delay

Consider the
new shortest
path for the

flow and add
it to accepted
list of flows

Reject
the flow
and add

it to
rejected

list

No

Yes

FlowLatencyCalculation
Phase

Is
partialRejectedFl

ows empty or
FlowReAllocatio
nPh-ase run 3

times?

Yes

No

Yes

End of
flow
list?

Yes

No

Yes

No

Inputs to TE
algorithm:

nodes.json,
links.json

flow_catalogue.json

Heuristic Reassignment
Phase

CSPF Phase

Initialization Phase

Fig. 1: FlowLatencyCalculation and FlowReallocation Phase

8 L. P. Thiruvasakan, Q.-T. Vien, J. Loo and G. Mapp

• FlowLatencyCalculation Phase: In this phase, end-to-end delay value is calcu-
lated for of all accepted flows as per formulae mentioned in section 4.1.2 (De-
fined as ’Step a’ in Figure 1). Flows whose calculated delay is greater than ex-
pected delay are added to a list called ’partialRejectedFlows’.

• FlowReallocation Phase: Flows added to ’partialRejectedFlows’ list are pro-
cessed again to recompute their routing path with minimal delay value. Delay
value of links itself is used as link weights to calculate shortest path. Delay com-
ponents like Ttrans, Tqueue, Tpropagation and TnodalProc are calculated using formu-
lae mentioned in Section 4.1.2. Summation of these delay values is used as link
weights in network graph (Defined as ’Step b’ in Figure 1). It is guaranteed that if
shortest path computed at this stage does not meet delay requirement of flow, no
optimal path exists for this flow and so it can be rejected. This phase is repeated
for each flow in ’partialRejectedFlows’ list.
Once all flows of ’partialRejectedFlows’ list are processed, execution returns to
FlowLatencyCalculation phase. This is because, due to new routing paths and
new loads added on the network links in FlowReallocation phase, its probable
that end-to-end delay of few of already accepted flows might have crossed their
limit. FlowLatencyCalculation and FlowReallocation phases runs in a loop until
the list ’partialRejectedFlows’ is empty which means all acceptedFlows meet
their Delay requirements (or) for hard-set rule of 3 times, which was found to be
sufficient enough to optimize all flows in experiment.

5 Simulation Results
This section compares QFA algorithm against existing OSHI algorithm [7] in vari-
ous aspects like Global Network Crossing Time, Number of rejected flows and link
loads which were measured from the algorithm’s output. Both the algorithm were
evaluated in OSHI platform using Colt Telecom topology (large-scale) [14]. Main
steps to test the QFA algorithm are [15]

1. Download Colt Telecom topology from Topology Zoo [14].
2. Topology Parser transforms network topology to JSON files (nodes.json, links.json).
3. Random Demand Generator generates set of flow catalogues (flow catalogue.json)

using topology files.
4. Execute QFA algorithm from eclipse using nodes.json, links.json and flow catalogue.json

as input. Output is array elements containing accepted flows and their routing
path.

5.1 Flow Rejection Ratio
Figure 2 shows number of rejected flows measured with existing algorithm [7] and
proposed algorithm for same number of requested flows. As seen, existing algorithm
[7] rejects 1470 flows among 2198 flows that were requested, whereas QFA algo-
rithm rejects 880 flows for same number of requested flows. Sorting logic added has
reduced flow rejection ratio to around half its size. Section 4.2 explains in detail the
reason behind this reduction. Assuming algorithm is scheduled for nightly periodic
runs, with a single run the proposed design enables 1318 (2198 minus 880) traffic

A QoS-based Flow Assignment for Traffic Engineering in Software-Defined Networks 9

flows at a time, when existing algorithm [7] enables only 728 (2198 minus 1470)
flows in network.

0	
200	
400	
600	
800	
1000	
1200	
1400	
1600	

21
4	

62
6	

86
0	

95
8	

11
44
	

15
44
	

17
14
	

18
28
	

19
56
	

20
86
	

21
16
	

21
98
	

Re
je
ct
ed

Fl
ow

s	

RequestedFlows	

RejectedFlows(Exis:ng	 FlowAssignment	 Algorithm	 [6])	

RejectedFlows(Proposed	 QoSBasedFlowAssignment	
Algorithm)	

Fig. 2: Number of Rejected Flows in Existing Vs Proposed Solution (Colt Telecom)

5.2 Global Network Crossing Time
The proposed design sorts the flows in ascending order as per their bandwidth dur-
ing Initialization phase. Sorting logic along with delay based optimization, allows
algorithm to calculate routing paths with minimal delay value. This leads to re-
duction in overall network crossing time. Graph in Figure 3 shows global network
crossing time value measured by old and new algorithm for various number of re-
quested flows. Global network crossing time which is referred as ’T’ is weighted
average of delays seen on the links and is measured using (2). It can be clearly seen

0.251	

57.31	
70.26	

62.22	

89.07	

144.22	 148.78	

172.58	

0.259	
1.04	 1.124	 1.093	 0.9916	 0.8826	 1.0071	 0.8686	

0	
20	
40	
60	
80	
100	
120	
140	
160	
180	
200	

214	 626	 1544	 1714	 1956	 2086	 2116	 2198	

G
lo
ba

lN
et
w
or
kC
ro
ss
in
gT
im

e	
(s
ec
on

ds
)	

RequestedFlows	

GlobalNetworkCrossingTime(ExisBng	 FlowAssignment	 Algorithm	 [6])	

GlobalNetworkCrossingTime(Proposed	 QoSBasedFlowAssignment	
Algorithm)	

Fig. 3: Global Network Crossing Time in Existing Vs Proposed Solution (Colt Telecom)

in Figure 3 that there is a drastic drop in T value measured with proposed solution
than existing algorithm [7]. For instance, value of T measured with existing algo-
rithm is 172.58 seconds and with QFA algorithm is 0.8686 seconds, when number
of requested flows is 2198. This reduction is due to reason that the traffic gets evenly
distributed across links with new design compared to existing one [7], which is ex-
plained in detail in following section.

Impact of link load on its delay value:

As mentioned in (6), when each network link is considered as M/M/1 system with
packet service rate following an exponential distribution, transmission delay en-
countered in link can be generalized and given by,

10 L. P. Thiruvasakan, Q.-T. Vien, J. Loo and G. Mapp

Ttrans =
1

LinkCapacity−LinkLoad
(9)

From (9), it is obvious that with link capacity being a constant value, transmission
delay value increases with increase in link load value and even approaches infinity
when link load is same as link capacity. This rapid increase of delay value as load
approaches capacity of link [25] is illustrated in Figure 4. In Figure 4 increase in

0	

2	

4	

6	

8	

10	

12	

14	

91
.6
66
66
66
7	 95
	

98
.3
33
33
33
3	

98
.6
66
66
66
7	 99
	

99
.3
33
33
33
3	

99
.6
66
66
66
7	

99
.8
5	

99
.8
83
33
33
3	

99
.9
16
66
66
7	

99
.9
5	

99
.9
83
33
33
3	

99
.9
86
66
66
7	

99
.9
9	

99
.9
93
33
33
3	

99
.9
96
66
66
7	

Li
nk

Tr
an

sm
is
si
on

De
la
y	
(S
ec
on

ds
)	

%	 of	 Link	 Load	

Fig. 4: Effect of Link load % on its Transmission Delay value (Assuming Link capacity 60 Mbps)

transmission delay value with respect to link load is very less until the link is loaded
to 99.6% of its capacity. When link is overloaded and crosses 99.95% which can
be referred as alarming limit, there is a rapid rise in delay value even for a small
amount of increase in link load. The existing algorithm [7] overloads few links in
this alarming limit i.e., beyond 99.95%, thereby resulting in a huge global network
crossing time value as shown in Figure 3. On other hand, QFA algorithm prevents
links getting loaded more than alarming limit. This is illustrated in Figure 5. When

1	 0	 0	 2	 5	
0	

20	
40	
60	
80	

100	
120	
140	

0	
to
	 5
	

10
	 to

	 1
5	

20
	 to

	 2
5	

30
	 to

	 3
5	

40
	 to

	 4
5	

50
	 to

	 5
5	

60
	 to

	 6
5	

70
	 to

	 7
5	

80
	 to

	 8
5	

90
	 to

	 9
5	

99
.6
	 to

	 9
9.
7	

99
.8
	 to

	 9
9.
9	

99
.9
5	
to
	 9
9.
96
	

99
.9
7	
to
	 9
9.
98
	

99
.9
9	
to
	 1
00
	

N
um

be
r	 o

f	 L
in
ks
	

%	 of	 Link	 Load	

RequestedFlows	 =	 2198	

NumberofLinks(Proposed	
QoSBasedFlowAssignment	 Algorithm)	
NumberofLinks(ExisLng	 FlowAssignment	
Algorithm	 [6])	

Fig. 5: Number of links and their load % (Colt Telecom, requested flows = 2198)

number of requested flows is 2198, proposed design does not load any links beyond
99.95% (alarming limit), whereas existing algorithm loads 8 links beyond this point
(Figure 5). Although 8 is very minimal number compared to total number of 354
links, these 8 links have a very higher delay values, which is more predominant than
other link’s delay values (as in Figure 4). These critical 8 links are reason for global
networking crossing time being very high with existing FlowAssignment algorithm
[7], as shown in Figure 3.

A QoS-based Flow Assignment for Traffic Engineering in Software-Defined Networks 11

Above mentioned fact was proved to be right by extending our testing to monitor
link load % values for different number of requested flows. Results shown in Figure
6 confirms the existing design [7] overloads links beyond alarming limit (99.95%),
which is avoided with proposed solution. QFA algorithm prevents link overload
issue by redistributing traffic across links. Flows with smaller bandwidths are found
to be best suited for fair distribution of traffic across links [24] and thus sorting
flows in ascending order of their bandwidth value (proposed design) helped with
this redistribution. Furthermore, delay based routing optimization also contributed
to reduction in global network crossing time.

0	 4	 0	 5	 3	
0	

20	
40	
60	
80	

100	
120	
140	

0	
to
	 5
	

10
	 to

	 1
5	

20
	 to

	 2
5	

30
	 to

	 3
5	

40
	 to

	 4
5	

50
	 to

	 5
5	

60
	 to

	 6
5	

70
	 to

	 7
5	

80
	 to

	 8
5	

90
	 to

	 9
5	

99
.6
	 to

	 9
9.
7	

99
.8
	 to

	 9
9.
9	

99
.9
5	
to
	 9
9.
96

	

99
.9
7	
to
	 9
9.
98

	

99
.9
9	
to
	 1
00

	

N
um

be
r	 o

f	 L
in
ks
	

%	 of	 Link	 Load	

RequestedFlows	 =	 1502	

NumberofLinks(Exis>ng	 FlowAssignment	
Algorithm	 [6])	

NumberofLinks(Proposed	
QoSBasedFlowAssignment	 Algorithm)	

Fig. 6: Number of links and their load % (Colt Telecom, requested flows = 1502)

6 Conclusion
In this paper, a new QoS based flow optimization algorithm for TE in SDN was
designed and implemented using OSHI platform. The experiment provides promis-
ing results and proves new algorithm’s efficiency compared to the existing algo-
rithm. Our study used M/M/1 and M/M/1/K queuing systems to model SDN net-
work, whereas real traffic flows can be more bursty than traffic represented by these
queuing models. Various other queuing distributions can be validated in future to
match more closer to the real time traffic and algorithm can be further tested in a
small-scale network using real SDN switches.

References
1. D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig,

“Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103,
no. 1, pp. 14–76, Jan. 2015.

2. M. A. Hassan, Q.-T. Vien, and M. Aiash, “Software defined networking for wireless sensor
networks: A survey,” Advances in Wireless Communications and Networks, vol. 3, no. 2, pp.
10–22, May 2017.

3. R. C. Ramirez, Q.-T. Vien, R. Trestian, L. Mostarda, and P. Shah, “Multi-path routing for
mission critical applications in software-defined networks,” in Proc. EAI INISCOM 2018, Da
Nang, Vietnam, Aug. 2018.

12 L. P. Thiruvasakan, Q.-T. Vien, J. Loo and G. Mapp

4. Cisco. Introduction to segment routing. [Online]. Available: https://www.cisco.com/
c/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-3s/
segrt-xe-3s-book/intro-seg-routing.pdf

5. L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano. OSHI homepage. [Online].
Available: http://netgroup.uniroma2.it/twiki/bin/view/Oshi

6. L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano. (2015, Dec.) Traffic engi-
neering with segment routing: Sdn-based architectural design and open source implemen-
tation. Extended version of poster paper accepted for EWSDN 2015. [Online]. Available:
https://arxiv.org/abs/1506.05941v4

7. P. L. Ventre. (2015, Jun.) Existing Flow assignment algorithm in OSHI. [On-
line]. Available: https://github.com/netgroup/SDN-TE-SR-tools/
blob/master/java-te-sr/src/it/unipr/netsec/sdn/algorithm/
FlowAssignmentAlgorithm.java

8. W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and P. Yalagandula, “Auto-
mated and scalable qos control for network convergence,” in Proc. Internet Network Manage-
ment Workshop / Workshop on Research on Enterprise Networking (INM/WREN), Apr. 2010.

9. S. Tomovic and I. Radusinovic, “Fast and efficient bandwidth-delay constrained routing algo-
rithm for sdn networks,” in NetSoft Conference and Workshops (NetSoft), 2016 IEEE, Seoul,
South Korea, Jun. 2016, pp. 303–311.

10. Open Networking Foundation. (2013, Oct.) Openflow switch specification. [Online]. Avail-
able: https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/
wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf

11. R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam, S. Mohan, and R. B. Bobba,
“Dependable end-to-end delay constraints for real-time systems using sdns,” in 15th Interna-
tional Workshop on Real-Time Networks, Dubrovnik, Croatia, Jun. 2017.

12. A. S. Hamood. (2016) Simulator.ppt. [Online]. Available: https://www.
researchgate.net/publication/301887282_most_Simulator_used_in_
Software_Defined_Networking_SDN_and_Cognitive_Radio_Network_
CRN

13. Mininet. [Online]. Available: http://mininet.org/
14. The University of ADELAIDE. Topology zoo. [Online]. Available: http://www.

topology-zoo.org/dataset.html
15. L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano. (2015) ”OSHI github”. [On-

line]. Available: https://github.com/netgroup/SDN-TE-SR-tools
16. P. L. Ventre and S. Salsano. (2014) OSHI Quaterly Reports QR.2. [Online]. Available: http:

//netgroup.uniroma2.it/twiki/pub/Oshi/WebHome/qr2_2_ventre.pdf
17. L. Kleinrock, Queueing Systems Volume 1: Theory. Wiley-Interscience, 1975.
18. Service Level Agreement, COLT Telecommunications, 2001. [Online]. Available: https:

//www.rtr.at/uploads/media/24875_SLA_CPE.pdf
19. L. Kleinrock, Queueing Systems, Volume 2: Computer Applications. Wiley-Interscience,

1976.
20. P.Coiner. (2011, Jan.) Calculating the propogation delay of coaxial cable. GPS Source. [On-

line]. Available: https://cdn.shopify.com/s/files/1/0986/4308/files/
Cable-Delay-FAQ.pdf

21. G. R. Dattatreya, Performance Analysis of Queuing and Computer Networks. CRC Press,
2008.

22. L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano. (2016, Apr.) OSHI virtual
image OSHI VM7b. [Online]. Available: http://netgroup.uniroma2.it/twiki/
bin/view/Oshi

23. G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,” in SIGCOMM ’04 Pro-
ceedings of the 2004 conference on Applications, technologies, architectures, and protocols
for computer communications, Portland, Oregon, USA, Sep. 2004, pp. 281–292.

24. S. Köhler and A. Binzenhöfer, Providing Quality of Service in Heterogeneous Environments.
Berlin, Germany: Elsevier, 2003, vol. 5, pp. 21–30.

25. S. Weinstein, The multimedia internet. Springer, 2005.

