
applied
sciences

Article

An Auto-Scaling Framework for Analyzing Big Data
in the Cloud Environment
Rachana Jannapureddy, Quoc-Tuan Vien * , Purav Shah and Ramona Trestian

Faculty of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
rachanareddy70@gmail.com (R.J.); P.Shah@mdx.ac.uk (P.S.); R.Trestian@mdx.ac.uk (R.T.)
* Correspondence: Q.Vien@mdx.ac.uk; Tel.: +44-208-411-4016

Received: 28 March 2019; Accepted: 29 March 2019; Published: 4 April 2019
!"#!$%&'(!
!"#$%&'

Abstract: Processing big data on traditional computing infrastructure is a challenge as the volume of
data is large and thus high computational complexity. Recently, Apache Hadoop has emerged as a
distributed computing infrastructure to deal with big data. Adopting Hadoop to dynamically adjust
its computing resources based on real-time workload is itself a demanding task, thus conventionally
a pre-configuration with adequate resources to compute the peak data load is set up. However,
this may cause a considerable wastage of computing resources when the usage levels are much lower
than the preset load. In consideration of this, this paper investigates an auto-scaling framework on
cloud environment aiming to minimise the cost of resource use by automatically adjusting the virtual
nodes depending on the real-time data load. A cost-effective auto-scaling (CEAS) framework is first
proposed for an Amazon Web Services (AWS) Cloud environment. The proposed CEAS framework
allows us to scale the computing resources of Hadoop cluster so as to either reduce the computing
resource use when the workload is low or scale-up the computing resources to speed up the data
processing and analysis within an adequate time. To validate the effectiveness of the proposed
framework, a case study with real-time sentiment analysis on the universities’ tweets is provided to
analyse the reviews/tweets of the people posted on social media. Such a dynamic scaling method
offers a reference to improving the Twitter data analysis in a more cost-effective and flexible way.

Keywords: big data; cloud computing; Apache Hadoop; Amazon web service; Twitter

1. Introduction

Cloud computing has been deployed worldwide due to its versatility and flexibility for storing
and transferring data, while maintaining secrecy over three basic layers including Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) [1–3]. Cloud computing
manages the shifting computing requirements by offering more flexibility in the services provided
to organisations. Specifically, virtualisation plays a major role in cloud computing; for instance,
distributed computing and delivery of computer services over the Internet [4,5]. There exist a variety
of service providers, such as Microsoft Azure, Google Cloud Platform, Oracle Cloud Infrastructure
and Amazon Web Services (AWS) [6], which have common elements to support instant provisioning,
self-service, auto-scaling and security.

As a typical cloud platform, AWS has provided a large range of services across computing,
database, storage, analytics, networking, developer tools, Internet of Things (IoT), security and
enterprise applications. The AWS also offers a Virtual Private Cloud (VPC), which logically isolates the
AWS space so that one can have a complete control over the virtual environment. Moreover, the use of
the AWS resources has been shown to be cost-effective compared to other cloud platforms providing
the same services [7]; for instance, Amazon Elastic MapReduce (EMR) which can process big data
across a Hadoop cluster of virtual resources on Amazon Elastic Cloud Compute (EC2) instances [8].

Appl. Sci. 2019, 9, 1417; doi:10.3390/app9071417 www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 1417 2 of 16

Specifically, MapReduce is a framework on which we can write applications to help process an
enormous amount of data on a cluster of commodity hardware [9,10], while Apache Hadoop is well
known as an open-source software service that enables a large distribution process across different
clustering systems using simple programming models [11,12].

Recently, a cloud-based infrastructure has been shown to be much more versatile than the
traditional infrastructure from both service and security perspectives, especially when dealing with big
data. However, selecting a cloud infrastructure for auto-scaling and optimising the virtual resources
for such rapid data growth is a challenging task. Determining scaling policies on new virtual machines
as well as setting up a threshold that can automatically configure the computing resources on a Hadoop
cluster have therefore attracted more research interests [12–15].

In this paper, dealing with the scalability of cloud computing, we first propose an auto-scaling
framework via MapReduce cluster by employing Hadoop on the AWS platform. Depending on cluster
load, the proposed framework can scale within itself and the cluster can be monitored and debugged
in real-time mode to find appropriate auto-scaling strategies. Furthermore, in order to validate the
effectiveness of the proposed approach, real-time sentiment analysis is provided to analyse the Twitter
data of various universities. Consequently, the main contributions of this paper can be summarised
as follows:

• A novel cost-effective auto-scaling (CEAS) framework for cloud computing: An infrastructure on AWS is
proposed to perform auto-scaling and efficient sentiment analysis of big data. The clusters can be
created of any size through either user interface or code. In the proposed CEAS framework,
an Amazon EMR cloud computing platform is developed which enables data processing
along with data clustering. The proposed CEAS aims to minimise the cost of resource use
by automatically adjusting the virtual nodes depending on the real-time data load. The EMR
clusters can be monitored and provisioned by using AWS monitoring services, such as cloud
watch or through a dashboard, which allow us to not only visualise and assess the Hadoop cluster
performance in real-time, but also help debug for troubleshooting. Moreover, an open-source tool
called Ganglia is used to generate the reports on the performance of the Hadoop clusters.

• An efficient scaling policy for CEAS framework: Taking into account dynamic workload, a scaling
policy is created for the proposed CEAS framework that can either add or remove the clusters so
as to optimise the virtual instances. New data storage systems are introduced to store the data
while performing the scale-down operations on the dynamic virtual clusters. The resources can
be easily either scaled up during heavy workload or scaled down for saving power consumption
subject to limited available resources. The novelty of the proposed auto-scaling method is that
an absolute amount of resources can be determined and allocated for the AWS to process and
analyse the big data.

• Sentiment Analysis of Twitter data with MapReduce over CEAS framework: MapReduce is exploited
for distributed computation of large data sets over Hadoop clusters of computing resources.
Specifically, the MapReduce technique is applied to the auto-scaling cluster via the proposed CEAS
framework that allows us to perform sentiment analysis on Twitter data of various universities.
The experimental results show that the proposed scaling method in the CEAS framework handles
the workload efficiently by dynamically adjusting the virtual computing resources.

The rest of this paper is organised as follows: Section 2 summarises related works on distributed
scaling of Hadoop clusters for cloud computing and big data analysis with MapReduce and Amazon
EMR as motivation for our work. Section 3 presents the proposed CEAS framework with various
functionalities for auto-scaling and sentiment analysis using MapReduce technique. Sentiment analysis
of Twitter data and the performance of CEAS framework is presented in Section 4 to validate the
effectiveness of the proposed approach. Finally, Section 5 concludes this paper with recommendation
for further research.

Appl. Sci. 2019, 9, 1417 3 of 16

2. Related Works

A system is scalable if it can be adapted to handle the increasing load when new hardware is
added [4,16]. The computing scalability of a system is thus defined as the capability of the system
to accommodate such growth of the workflow. Auto-scaling mechanisms are accordingly brought
into concern of industrial cloud suppliers with their open supply cloud platforms, such as Eucalyptus,
Aneka, Flexiscale, GoGrid, Engine, Google App, Windows and Amazon. These cloud platforms
provide several benefits to the cloud computing scalability, cloud security, implementation and
management. However, there exist some drawbacks at most of the third parties where the lack of good
and consistent Internet connectivity causes a fluctuating cost increase in the hardware configuration
every month.

Dealing with a large volume of data, several studies revealed the use of Hadoop for processing
big data. It is vital that such large number of datasets should be adjusted to handle the dynamic
process of workload through the existing computer resources [12,14,15]. A Hadoop cluster with a fixed
size is shown to have problems when processing the streaming data and it is also not cost-effective
for the cloud resources since it does not use fully its resources when the data load on the cluster is
low. In [13], Leverich and Kozyrakis introduced a method to scale down the cluster to improve the
resource use and energy consumption for cost efficiency. In the proposed method, the removal of the
cluster nodes was investigated, but the operation related to the scaling process was hardly considered.
Also, when the workload exceeds, the capacity of computing resources will be degraded. Aiming to
optimise the Hadoop cluster, Maheshwari et al. proposed in [17] a Hadoop cluster reconfiguration
and data replacement to either shut or open the instances by checking the resource use rate. However,
before removing the node, the stored data on one instance has to be transferred to another node,
which may take a long time for extensive data. The scaling issue was also not fully managed when
adding machines would even cause a higher cost given limited physical machines and infrastructure.

Cloud computing has emerged as a solution for scaling instances by using clusters as web
services [1,3,4]. In [18], a customised load balancing and a distributed dynamic algorithm were
proposed for auto-scaling of virtual clusters with a load balancer which can handle the requests
sent from users for the EC2 instances in a dynamic manner. The EC2 virtual instances can be either
increased or decreased as per-the-CPU use and with respect to incoming user requests on the virtual
nodes, whereas the load balancer can distribute the incoming data traffic automatically on the EC2
instances, containers and network IP addresses. Although the proposed load balancer offers automatic
scaling, robust security and high availability for fault-tolerant applications, it does not support Hadoop
for processing large volume of data. In [12], MapReduce was proposed as a solution for big data
analysis with Apache Hadoop over Hadoop Distributed File System (HDFS). Specifically, minimisation
technique was applied for indexing along with shuffling, sorting, mapping and reducing the files.
The MapReduce supports distributed and parallel input/output scheduling which is tolerant to failures
and thus promote the scalability of cloud with large dataset, especially when considering dynamic
processing workload. Integrated with MapReduce, Apache Hadoop has been designed to be able
to scale up from a single system to multiple systems [12], in which MapReduce is employed as a
programming model for processing and distributing java based computing. Basically, MapReduce
contains two major tasks including [9,10]: (i) Map stage: converting a data set into some other data sets
where individual elements are referred as keys or value pairs; and (ii) Reduce stage: Fetch the results
from the Map stage, which are then transformed into smaller sets. Such two-stage process facilitates
the scaling of the data processing over multiple computing nodes on the Hadoop platform.

MapReduce was shown to be of benefit to large-scale data-intensive applications with several
iterative computations, e.g., in [19] where Twister4Azure was developed as a distributed decentralised
iterative MapReduce for Microsoft Azure cloud computing platform. Hadoop was also adopted
in [20] for processing big geospatial data in the cloud. An auto-scaling framework was developed
and evaluated via a prototype system employing digital elevation model interpolation of the collected
geospatial data for GIScience applications. Another Hadoop framework, namely Virtual Hadoop,

Appl. Sci. 2019, 9, 1417 4 of 16

was proposed in [21] using Docker containers to facilitate the auto-scaling mechanism in heterogeneous
computing environment. Such dynamic scaling in Hadoop however has an inherent trade-off between
the computation power with additional nodes and overheads for data redistribution [22].

Deploying and managing Hadoop clusters are however time-consuming and challenging over the
traditional underlying server. Instead, Amazon EMR can facilitate this process by exploiting the elastic
infrastructure of EC2 and Amazon Simple Storage Service (S3). The Amazon EMR offers a manageable
Hadoop framework that distributes the computation of data over multiple Amazon EC2 instances
along with the Amazon S3 cloud-storage services which provides a system interface to decrease the
complexity of the traditional hardware management [7,8]. With the Amazon S3, the impact of the
quality of service experienced by the users depends on the location and the configuration of the
services. Specifically, the cloud storage is aimed to improve the knowledge of cloud-to-user network
experience based on the Amazon S3 and the customer data can be organised using the objects stored
in the buckets which are placed in the cloud region.

To handle a huge amount of unstructured and structured information in real time,
Azure MapReduce was proposed in [23] to cope with big data issues. Azure has several services like
Azure Queues which are used to schedule tasks and Azure blob storage for storing data. Moreover,
it enables the implementation of auto-scaling Hadoop cluster which leads to a higher level of flexibility
and fault tolerance. However, this approach is not as flexible as AWS and is also not cost-effective [9].
Additionally, in the traditional Hadoop cluster with a First-In First-Out (FIFO) scheduler, all task slots
for a job in the cluster blocks other jobs to use the resources until the current scheduled job finishes,
which may cause a bottleneck in processing the data [14], especially when dealing with massive data
(e.g., Twitter) arriving at the same time. As one of the biggest social platforms, Twitter provides a huge
data set which can be streamed for sentiment analysis. An example of Twitter data analysis can be
found in [24] where a prototype was developed for text mining by combining Twitter streams, Python
text processing and Cassandra storage methods. Dealing with the computation of such increased
data over social media, it is required to have an enhanced framework that does not rely on hard disk
storage, but can process data in memory instead [23].

Despite the amount of research done to date in the cloud-based applications and services, little of
this research is beneficial in terms of dealing with elasticity. To this extent, this paper develops a new
cloud platform with cluster configuration and scaling policies to deal with auto-scaling and data analysis.
Moreover, we introduce some new ideas to strengthen the network provisioning, availability, security
and scalability towards providing an efficient, reliable and manageable resource for cloud computing.

3. Proposed Cost-Effective Auto-Scaling (CEAS) Framework

The primary objective of the scaling method is to improvise the scalability for cloud computing.
In this section, the conventional auto-scaling framework for cloud computing in Hadoop system is
presented outlining key components that enable the scalability of virtual resources on the cloud.

To process a large volume of data efficiently in real time, it is crucial to improvise auto-scaling
and sentiment analysis of the big data on the cloud. This section initially presents our proposed CEAS
framework for collecting and aggregating data on the AWS platform. The configuration used for
setting up the EMR clusters for efficient data processing is then discussed in detail along with our
proposed solution for implementing the CEAS framework for sentiment analysis of Twitter data based
on cost effectiveness, high throughput and high reliability on the cloud environment.

Figure 1 illustrates the proposed CEAS framework which consists of the following six components:

(i) Cloud computing platform: The cloud computing offers scalability of virtual resources on either public
or private clouds (e.g., Amazon EC2, Amazon EMR, Microsoft Azure, OpenStack and Eucalyptus).

(ii) Covering HDFS-enabled Hadoop cluster: Covering HDFS of Hadoop cluster on the EMR cloud has
provisioned computing resources to be able to manage, store and process a large volume of data.

(iii) Cluster monitor (or cloud watch): Monitoring clusters plays a vital role in auto-scaling framework,
which allows us to capture the information about all the resources on the cluster by using

Appl. Sci. 2019, 9, 1417 5 of 16

Application Programming Interface (API) of Hadoop, such as CPU use, the performance of map
and reduce tasks, and the status of the jobs.

(iv) Auto-scaler: The auto-scaler provisions the virtual resources on the cloud platform using cloud’s
API (e.g., Amazon EMR API) which is dependent on the information gathered by the cloud watch.
When the data on the cluster increases, more nodes are added to the Hadoop cluster, while the
idle nodes are shut down when the data load is less.

(v) Ganglia: Ganglia is a front-end open-source monitoring system which is scalable and distributed
to monitor the clusters or grids. This monitoring system offers a complete solution for archiving,
monitoring and visualisation of the system performance.

(vi) Sentiment analysis: The sentiment analysis is performed on the auto-scaling cluster by taking the
data from multiple universities via Twitter app.

Figure 1. Cost-Effective Auto-scaling (CEAS) framework.

In the CEAS framework, the above-mentioned Hadoop’s auto-scaling framework is adopted
on the AWS cloud to automatically scale the Hadoop clusters so as to allocate the Amazon Machine
Images (AMIs) (The AMIs provide the information required to launch EC2 instances, which includes
the volume of instances and permissions that control these instances.) based on the dynamic
processing workload.

Amazon AWS allows for multiple scaling groups within a scaling plan that is based on
optimisation for availability, cost or balance of both. However, the scaling plan would be enabled
for all scalable targets, instead of individual targets.” Thus, based on the scaling options available
in AWS, in the scope of this work, an auto-scaling framework is defined as effective if it meets the
following requirements:

(R1) A cloud environment should be cost-effective, while still being able to perform auto-scaling and
sentiment analysis. The framework also supports deployment, configuration and management
of Hadoop clusters.

(R2) A cloud platform should be able to monitor all tasks in an efficient way for all workload in real
time. Moreover, when the task is completed, it would be able to shut down the cluster. Also, it
should provide elasticity for the cloud computing by either expanding or shrinking the virtual
cluster to handle the data.

(R3) An efficient sentiment analysis should be performed via the auto-scaling cluster with low cost
and short scaling time.

Appl. Sci. 2019, 9, 1417 6 of 16

In Figure 1, the enhanced functions for the proposed CEAS framework to fulfil the above three
requirements will be described in the following subsections.

3.1. Amazon EMR Cloud Computing Platform

In the proposed CEAS framework, AWS cloud is selected to facilitate the Hadoop applications for
processing big data on a cloud environment. Specifically, Amazon EMR is exploited for scaling Hadoop
clusters due to its benefits over other cloud environments, e.g., in [25], which can be summarised
as follows:

(i) Cost saving: The cost of EMR relies on the number of EC2 instances, the instance type and the
region where the cluster is launched. On-demand pricing provides a lesser rate per hour, but the
cost can be brought down by purchasing Reserved or Spot instances.

(ii) Service integration: The EMR can work together with other AWS services (e.g., Amazon EC2
instance, Amazon Virtual Private Cloud, Amazon S3, Amazon Cloud Watch) to offer networking,
security and storage for the Hadoop cluster.

(iii) Compatibility: The EMR allows us to configure other applications like Hadoop, Hive and Spark
on EC2 instances.

(iv) Scalability: The EMR provides the flexibility to increase or decrease the cluster size by checking
the data on the Hadoop cluster.

(v) Reliability: The EMR watches over the EC2 instances running in the cluster, and thus can replace
or terminate the nodes automatically if there is a failure.

(vi) Security: The EMR provides the security for the Hadoop clusters and data by using EC2 key pairs.

In the AWS cloud under investigation, the EMR offers a manageable Hadoop framework that
distributes the data computation over multiple virtual Amazon EC2 instances and loads the data
processing applications into Amazon S3. In this EMR architecture, the data can be stored in the
Amazon S3 with respect to its size, compression and/or partitioning. Prior to processing the data, it is
only required to be copied to HDFS once and does not need to be copied multiple times from Amazon
S3 to Amazon EMR cluster due to the fact that the data processing task performs iterative work on a
single data set. Thus, considerable reduction in processing times are achieved.

In particular, this architecture is shown to be beneficial for scaling when the Amazon S3’s scale
allows the EMR nodes to run as many as needed to pull the data in parallel and the HDFS nodes can
scale up when the data size increases. This implies that the requirement for additional storage of the
HDFS nodes can be eliminated by exploring the storage capacity of the Amazon S3. Additionally, it is
safe to shutdown the Amazon EMR cluster once the data processing job is done, while multiple jobs
can be triggered on the same data set in the cluster without overburdening the nodes in the HDFS.

3.2. Data Processing and Clustering with Amazon EMR

The Amazon EMR enables the processing of large data and the workflow of the data processing
can benefit from virtual Hadoop clusters [15,25]. When the Amazon EMR cluster is provisioned, it is
crucial to choose the optimal number of instances and their sizes since certain workloads may be
disk-I/O or memory intensive when the others are CPU intensive.

In the proposed CEAS framework, for comparison between the fixed cluster and auto-scaling
cluster, four kinds of Hadoop cluster are considered in the AWS cloud environment with the
following settings:

(i) Three-slave cluster: 3 slaves with 3 large instances;
(ii) Seven-slave cluster: 7 slaves with 7 medium instances;
(iii) Fourteen-slave cluster: 14 slaves with 14 medium instances;
(iv) Auto-scaling cluster: a different number of slaves which varies from 3 to 15 slaves with the

corresponding instances.

Appl. Sci. 2019, 9, 1417 7 of 16

Intuitively, the fourteen-slave cluster should provide the best performance when processing the
big data. However, such employment of all available slaves may be not necessary when the Hadoop
only uses the memory as per the requirement of data processing. Also, considering the scenario when
memory is not sufficient enough to perform the sorting on large data sets, if certain part of the data is
written to disk which is expensive and may slow down the job, then using the instances with high
memory is preferred to achieve a better performance. With the Amazon EMR, various instance sizes
can be implemented by either switching among various instance profiles or terminating the current
cluster and starting a new cluster with different instance size.

The demands for both CPU and memory-intensive jobs can be further met by mixing various
types of Amazon EC2 instances and by adding or removing the cluster nodes. When provisioning the
cluster, depending on the size of the instance, the Amazon EMR can set up various optional settings
for the Hadoop configuration, such as the size of the Java memory used per daemon, and the number
of mappers and reducers configured per instance.

To quickly process the data on Hadoop cluster, the required data nodes need to be added to the
cluster based on the data size. Hadoop can process the data by splitting the input files into blocks for
parallel processing. Moreover, Hadoop can create more data blocks and tasks to analyse the massive
data. The opted Amazon EMR cloud can therefore have only one cluster but with several nodes that
can analyse and process the map reducing jobs in parallel. For instance, if a dataset needs 30 mappers
to process the input data file consisting of 30 splits realised by Hadoop, then an ideal Amazon EMR
cluster would be capable to manage all mappers running in parallel by employing ten small instances
each of which can execute three map tasks concurrently.

Although parallel data processing is shown to be advantageous, the usage of all mappers is
actually not necessary when there is no time constraint and the excessive cost for setting EMR Hadoop
cluster is also a major concern. Instead, we can reduce the number of mappers for latency-tolerant
jobs. However, the data stream on the HDFS system is distributed across the slave nodes, and thus the
scale-down operation on the clusters may switch off a node causing the data loss [11,12,25]. In Hadoop,
decommissioning was developed to avoid such data loss by transferring the data from an instance
to other machines prior to removing that instance. The time consumption for such decommissioning
depends on the data size, but this is not tolerable to perform an adequate scaling. Hence, auto-scaling
has been proposed to timely collect the streaming data load. By using the Covering HDFS in Hadoop,
the cluster can scale down the instances without suffering any data loss [13].

A typical Hadoop cluster consists of [20]: (i) Core slaves: to provide both computational power and
storage services, and (ii) Compute/task slaves: to offer only computational power services. By employing
slaves with different tasks, the Hadoop clusters can be automatically provisioned with the required
data nodes in the AWS cloud.

3.3. Monitoring and Provisioning Amazon EMR Clusters for Auto-Scaling

To monitor Amazon EMR clusters, as illustrated in Figure 1, a cloud watch or a cluster monitor
is required in an auto-scaling framework, and thus should also be employed on AWS platform of
the proposed CEAS framework to continuously track and monitor all resource information including
the status of the jobs and map reducing tasks. In this subsection, elastic Amazon EMR cluster is
first described along with the requirement of monitoring and provisioning services, applications and
resource use. The rules and implementation of auto-scaling are then presented for the proposed CEAS
framework.

3.3.1. Elastic Amazon EMR Cluster

As discussed in the previous subsection, an Amazon EMR cluster which is made of Amazon EC2
instances has sufficient instances to process the streaming data. Each EC2 instance in the cluster is
classified as a node and the cluster can monitor the requirements as the data size increases. The cluster

Appl. Sci. 2019, 9, 1417 8 of 16

also coordinates the resizing of the cluster to suit everyday data request needs [15,25]. There are
basically three types of nodes available within the Amazon EMR cluster, including:

1. Master node: executes NameNode and JobTracker, coordinates data distribution and tasks among
other nodes, while monitoring the cluster health.

2. Core/Slave nodes: executes DataNodes and TaskTracker, runs the tasks and stores data in the HDFS.
3. Task nodes: are optional nodes added to handle the TaskTracker when a high load is required for

data processing.

On AWS cloud, CloudWatch offers a periodic monitoring service for applications and resource
use at every 5 min. The EMR CloudWatch metrics can be used to automate the task by adding the
required data nodes to the cluster. The Amazon EMR uses a variety of CloudWatch metrics like the
number of mappers and/or reducers (active/inactive), the status of the cluster (idle/active), and HDFS
use to resize the cluster.

Using Amazon Simple Notification Service (SNS) along with CloudWatch metrics, a notification
service can be enabled for resource use within an EMR cluster. For instance, the EMR cluster with a
large number of jobs during peak hours needs to be resized rather than increasing the queuing time of
the jobs. Such process can be monitored using CloudWatch metrics and auto-scaling action could be
performed. By using the Amazon EMR, the processing time can be controlled and further improved by
adding the required capacity. Moreover, the CloudWatch can trigger an alarm when CPU use increases.
This alarm can be associated with an auto-scaling policy via SNS notifications, i.e., a scaling event is
logged when the scaling is triggered.

3.3.2. Rules for Auto-Scaling

For an instance group, when a scaling activity is triggered by a scale-out, Amazon EC2 instances
are added to the instance group based on the scaling rules, whereas the termination and removal
of instances can be done by setting up a scale-in rule. With simple scaling policies available with
Amazon AWS, the threshold values for the CloudWatch alarms that trigger the scaling process as well
as define how the Auto Scaling group should be scaled when a threshold is in breach for a specified
number of evaluation periods. In our framework, we have chosen the metric PercentChangeInCapacity,
where we specify the minimum number of instances to scale (using the MinAdjustmentMagnitude
parameter, Add instances in increments). The autoscaling policy is based on the two common metrics
of CloudWatch—YarmMemoryAvailablePercentage and ContainerPendingRatio provided within the AWS.

The scaling behaviour for each rule in a scaling policy is identified by the following parameters:

• Scale-out and scale-in rules: apply to the maximum and minimum instances, respectively.
• Unique rule name: should be configured in the scaling policy.
• Resizing of EC2 instances: must be determined by the scaling adjustment.
• CloudWatch: monitors for an alarm threshold condition and compares the performance metric

against a threshold value.
• Evaluation period: is the duration when CloudWatch metric is evaluated and in triggered condition

before prompting the auto-scaling activity.
• Cooldown period: is the time passed by the instance between the period when the auto-scaling

activity is triggered by the scaling rule and the beginning of the next scaling activity.
• Performance metrics: are variables that need to be monitored, such as CPU usage, traffic, etc.
• Cloud watch alarm: is an object that controls a single metric over a given period. An example of

a threshold value to create an alarm is shown in Figure 2. The scaling of resources can be thus
triggered within the EMR.

• Alarm: is used to give warning when the value of the EMR metric breaches a defined range and
maintains the change for a specified duration.

Appl. Sci. 2019, 9, 1417 9 of 16

Figure 2. Alarm threshold setting based on CPU usage.

Within each Hadoop cluster, by enabling the Ganglia web interface, the performance of the
entire Hadoop cluster can be evaluated and displayed by visual reports. Also, the performance of
each individual instance can be inspected. Here, Ganglia is referred to as an open-source tool for
high-performance monitoring of grids and clusters. It consists of gmond, gmetad and a front-end
web. Gmond is a multi-threaded daemon that runs over all nodes and information is reported back to
gmetad which helps in collecting the metrics and also generating the report. In the CEAS framework,
the Ganglia is initially used for graphing and data logging. The data is visualized by the front-end web
bundled with Ganglia which offers a complete solution for archiving, monitoring and visualisation of
the system metrics without any special coding.

3.3.3. Auto-Scaling EMR Clusters

This subsection details how the proposed CEAS framework saves processing time for the jobs
based on real-time workloads in the AWS.

To process jobs or to interact with the software deployed over the EMR cluster, a secure connection
must be established to the master node, then the interfaces and tools can be accessed. First, the input
data is processed by using the MapReduce utility on the Hadoop cluster. The data is then stored in
an HDFS file system or Amazon S3. Finally, the stored data is passed for processing in a sequential
manner and the processed output is written to a specific HDFS or S3 location.

To successfully run the allocated jobs, Amazon EMR cluster follows the following two steps:

• Step 1 (STARTING): The applications deployed on a Hadoop cluster is provisioned by using EMR.
The cluster state is at STARTING point.

• Step 2 (BOOTSTRAPPING): Additional applications, if required, can be installed on the cluster.
This is known as BOOTSTRAPPING process.

• Step 3 (RUNNING): The cluster runs all the steps sequentially after the above two steps have
completed. The cluster state is thus called RUNNING.

Upon completion, the cluster goes to a wait or shutdown state. In case of a cluster failure,
it terminates all the EC2 nodes and deletes the data saved on the slave nodes.

4. Performance Evaluation of the Proposed Framework

The effectiveness of the proposed approach is validated through extensive simulations and a
case study using real-time sentiment analysis on Twitter data of several institutions. The performance
evaluation is done in terms of scalability and capacity of the Hadoop cluster and the average time

Appl. Sci. 2019, 9, 1417 10 of 16

taken for all the real-time workloads to complete on the computing resources. A comparison is
provided between the designed static and auto-scaling cluster of the relaying Hadoop schemes, such as
MapReduce and Ganglia. The four Hadoop cluster setups as previously described are considered:
(1) three-slave cluster, (2) seven-slave cluster, (3) fourteen-slave cluster, and (4) auto-scaling cluster.
The time consumed by each map reducing jobs on the created Hadoop clusters are recorder over
one-hour and three-hour time frames.

4.1. Test Case of the Proposed CEAS Framework

This subsection presents a test case of the proposed CEAS framework for sentiment analysis on
Twitter data using MapReduce utility in Hadoop clusters.

Opinion mining is a well-known service to orchestrate what users post on different social media
platforms. Many users share their views on different aspects of life every day. Efficient techniques
should be developed to collect a significant amount of social media data and extract meaningful
information from them [26]. To investigate the CEAS framework, Twitter data is taken as it has the
ability for users to tweet about events, situations, feelings, opinions in real time. A massive amount of
Twitter data is accumulated from various Twitter sources by using Twitter API for sentiment analysis
of Big Data [23,27].

This work aims to provide an automatic scaling system which predicts the sentiment of the
tweets of the people posted on social media. Hadoop clusters are employed to process the data and
MapReduce programming is used to analyze the sentiment statistics on the Twitter dataset due to
its capability in performing distributed and parallel processing on large data sets [10,14]. The data
from different universities in the United Kingdom is collected by following a Twitter API link to
perform sentiment analysis. It is worth noticing that the analysis of the universities’ Twitter data in the
proposed CEAS framework has benefits over those based on the previous data sets in the sense that
the tweets are now analysed in real-time.

4.2. Cluster Setup Performance

Figures 3 and 4 illustrate the time consumed by various cluster setups over a one hour and
three hour time periods, respectively, for processing 20 GB of data. The time consumed represents the
aggregated time consumption of each workload. It can be noticed in Figure 4 that the seven-slave cluster
setup on the AWS cloud takes much longer to process the data, when compared to the fourteen-slave
cluster or the auto-scaling cluster setups. However, this situation happens for the heavy data loads,
and this is demonstrated by the increased time consumed starting at minute 91 and decreasing by
minute 156 as seen in the graph. While the data load on the cluster is exceeded, the processing
jobs of input data queue in a job tracker waiting to be assigned when the old jobs are completed.
More precisely, submitted jobs in a job queue wait a long period of time when there is an increase in
the data load.

The fixed cluster setups of three, seven and fourteen slave nodes therefore restrict capacity to
process the map reducing jobs on the streaming data load on the Hadoop cluster. Moreover, the results
show that the time consumption of each workload for the auto-scaling cluster is almost the same as
the fourteen-slave cluster setup. However, it can be noticed in Figure 4 that the auto-scaling cluster
presents some fluctuations starting at 1.5 h. This is not the case for the fourteen-slaves cluster setup.
The sharper fluctuations indicate the scaling-up of the resources on the cluster in order to finish the
jobs on time. The scale-up performance involves adding task/slave nodes on the cluster to make sure
that the jobs complete on time.

Appl. Sci. 2019, 9, 1417 11 of 16

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	 60	

Ti
m
e	
Co

ns
um

ed
(M

in
ut
e)
	

 Time consumption for each work load last hour

Three-Slave	Cluster	

Auto-Scaling	Cluster	

1-Hour	timeline(Minute)	

Figure 3. Time consumption for each workload last hour.

0	
1000	
2000	
3000	
4000	
5000	
6000	
7000	
8000	
9000	
10000	
11000	
12000	

0	 6	 12	 18	 24	 30	 36	 42	 48	 54	 60	 66	 72	 78	 84	 90	 96	102	108	114	120	126	132	138	144	150	156	162	168	174	180	

	TIME CONSUMPTION FOR EACH DATA LOAD FOR LAST 3 HOURS

Seven-Slave	Cluster	
Fourteen-Slave	Cluster	
Auto-Scaling	Cluster	

3-Hour	Timeline(Minute)	

Ti
m
e	
Co

ns
um

ed
(S
ec
on

d)
	

Figure 4. Time consumption for each workload last three hours.

4.3. Resources Utilisation and Data Locality

During the peak workload, fixed and auto-scaling clusters do not have idle slaves. When the
workload falls back, the fixed clusters have more idle slave nodes than auto-scaling cluster. To process
and efficiently analyse big data, the MapReduce jobs can be carried out on both the Hadoop fixed
and auto-scaling clusters. Figure 5 illustrates the aggregated time consumed to accomplish all the
workloads. In the auto-scaling cluster, there are always a minimum of 2 and a maximum of 14 machines
available depending upon the workload. The results show that for the same MapReduce job when
running on the auto-scaling cluster compared to the fixed fourteen-slaves cluster, takes 9.6 h and
9.72 h to finish respectively. This accordingly demonstrates that the auto-scaling cluster processes and
finishes the jobs in an efficient manner and thus saving not only 12 min, but also number of instances.

Appl. Sci. 2019, 9, 1417 12 of 16

30.46	

9.72	 9.6	

0	

5	

10	

15	

20	

25	

30	

35	

Seven-SlaveCluster	 Fourteen-Slave	Cluster	 Auto-Scaling	Cluster	

Time	for	finishing	all	workloads	
	 Ti
m
e	
Co

su
m
ed

(H
ou

r)
	

Figure 5. Time consumption for all workload.

4.4. Amazon On-Demand EC2 Instances Pricing

Table 1 indicates the Amazon EC2 instances pricing. These charges are only applicable for the used
EC2 instances. Moreover, the main use of on-demand EC2 instances frees the purchasing, complexities
of planning and hardware maintenance and it transforms the large fixed costs into smaller costs.
Based on the pricing given in Table 1, the charges calculated for the auto-scale cluster, which scaled up
to 12 machines and scaled down to 2 machines, summed up to $27 to complete the jobs for the heavy
workload. Moreover, the charges applied to the fixed fourteen-slaves cluster was $33 to complete the
jobs with a heavy workload. Whereas, the cost of the used resources is higher than the resources used
in the Auto-scaling cluster. Thus, the auto-scaling cluster saves more instances and time when the
created cluster is supposed to run for two months with constant data loads, which is equivalent to
saving the amount of $419/month and $838/2months when compared to the fixed clusters.

Table 1. Amazon EC2 instances pricing.

EC2 Instances CPU Cores Memory (GB) Unix/Linux Usage

t2.medium 2 4 $0.05 per Hour
c3.xlarge 4 7.5 $0.239 per Hour

4.5. Data Locality in HDFS Cluster

Within the HDFS cluster, the core nodes work as input or output channels for the created clusters,
and it also provides data storage. The tasks performed by the task tracker play a vital role on the
core nodes taking advantages of the data storage. Core slaves on the physical cluster have more
capacity and storage to perform the scalability. Moreover, core instances cannot be terminated even
they are idle. As per the above results, the scaling cluster used the private cloud as AWS and scaled
based on the Covering HDFS methods, whereas the fixed clusters use the traditional infrastructure.
As displayed in Figures 3 and 4, the proposed Covering HDFS in the AWS does not cause any issues
without any performance degradation. The auto-scaling methods are more flexible in balancing the
cost and cluster’s performance. In some cases, applications use a small amount of core nodes to
avoid the cost of the resources when the data is low. To achieve the best performance, the data nodes
can be added when the data is high. The fourteen-slave cluster setup on the traditional Hadoop
infrastructure performs well with the big data but it wastes more resources when it has less data to
process. The seven-slave cluster in Figure 4 displays the best resource use rate when compared to
the fourteen-slave cluster. Also it can be noticed that the performance is degraded in the seven-slave
cluster in case of heavy data load.

Appl. Sci. 2019, 9, 1417 13 of 16

Overall, the auto-scaling cluster showed the best performance vs. cost trade-off and better resource
use by dynamically adjusting the virtual computing resources on the Hadoop cluster.

4.6. Sentiment Analysis of Big Data

This subsection presents a use-case scenario of real-time sentiment analysis on Twitter data of
several universities collected using Twitter app. The main idea is to analyse thousands of tweets
coming at every second within a very short amount of time. The framework should be dependent on
the imported data volume. This is important because the volume of tweets is growing at a noticeable
rate and the cluster size needs to scale up based on the data size.

In this real-time study, the Twitter data was collected for sentiment analysis in the form of
a live stream, from eight UK Universities, including: Brunel University, Imperial College London,
Kingston University, Queen Mary University of London, Liverpool University, Bedfordshire University,
Middlesex University and Cambridge University. To analyse the streaming data at a high data rate,
the data is processed using the proposed CEAS framework with auto-scaling cluster on Hadoop and
MapReduce is employed to perform the sentiment analysis on the universities’ Twitter data.

Over 200 million twitter messages collected from the above mentioned universities are used to
identify and classify the feedback given to the universities. Twitter’s timeline APIs are exploited to
retrieve the universities’ data. Here, the tweets contain the information about that specific Tweet and
the name of the user who tweeted on the social web. Specifically, the raw json tweet mainly contains
the following fields: (1) Identification of the Tweet by Tweet ID, (2) user names associated with Tweets,
and (3) the text of the tweet and its timestamp.

The Tweets are classified into: positives, negatives and neutral tweets. As a means to perceive and
differentiate user opinions, the sentiments should be detected in the post. Examples are given below
for positive and negative tweets with a notice that they may reflect completely different opinions:

• Example 1: “text”:“@georgierdarling Hi @georgierdarling I would be happy to help! I am a voice
coach and senior lecturer in voice at Brunel Uni

• Example 2: “text”:“RT @Shan_kelly96: It is extremely disappointing to see that Brunel university
have members of staff working as the voice of the students and collected tweets from Rest API by
using the Twitter4j library.

There exist many challenges in the sentiment analysis. For instance, in the above examples, the
user is expressing his own interest towards his role in the first example. However, an opinion word
which is considered to be positive in one state may be seen as negative in a different situation. This is
due to the fact that people may not always express the same views. This indeed can be noticed in the
second example in which the user’s opinion is different and tweeted against the first one. In general,
both information can be used even if these are contradicting each other.

The sentiment analysis of Twitter data is realised as follows: in the preprocessing phase, the tweets
are available as raw text data. The punctuation and other symbols can be removed from the tweets as it
might affect the accuracy of the overall evaluation process. The tweets are labeled based on University
names. This data is then processed using the proposed CEAS approach with auto-scaling cluster
configuration of the Hadoop framework as follows: At first, Mapper takes tweets from the universities
json and calculates the weights on each tweet by using the weights dictionary and categorises the
university names and weights into the output as a key-value pair. Then, Reducer takes the outputs
from the Mapper and aggregates all the tweets for each Mapper’s outputs.

Figure 6 shows the aggregate results obtained from the Universities’ tweets data. These results
can be used to study the user’s opinion about the Universities and also to compare these opinions
between different Universities which ultimately helps the user in making a good University selection.
The aggregated results of the tasks are performed on the auto-scaling Hadoop cluster for the sentiment
analysis. To keep track of the jobs, the auto-scale Hadoop framework has three types of counters
including:

Appl. Sci. 2019, 9, 1417 14 of 16

• File System Counters - tracks the bytes read and written by the file system;
• Job Counters - keeps track of the jobs and maintains the job level statistics;
• Map Reduce Task Counters - collects information about tasks over the execution.

81.11	

74.16	

54.99	

76.33	

78.93	

70.11	

75.81	

78.57	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	

Cambridge	University	

Middlesex	University	

Bedfordshire	University	

Queen	Mary	University	of	London	

Kingston	University	

Imperial	College	London	

Brunel	University	

Liverpool	University	

Opinion	Count	

Figure 6. Aggregate results from different Universities.

These results demonstrate the scalability of the auto-scaling Hadoop cluster on the AWS cloud.
The sentiment analysis performed on the Universities’ Twitter data using MapReduce proves the
suitability of the proposed CEAS framework with auto-scaling cluster for big data analytics.

5. Conclusions

This paper has proposed a CEAS framework to automatically scale the cloud computing resources
with the aim of improving the cluster’s performance and efficiency. The proposed framework with
auto-scaling policies and cloud watch metrics allow us to identify the amount of slave nodes to be
removed or added. Specifically, the HDFS mechanism on the AWS over computing and core nodes has
shown to not only avoid data loss but also save resources. The scalability, efficiency and affordability of
the scaling cluster have been demonstrated in the AWS cloud. Moreover, through experiments we have
assessed the scaling cluster in terms of resource use rate and scalability by testing the real-time data
loads during three-hour and one-hour time frame periods along with the employment of MapReduce
applications for sentiment analysis of Universities’ twitter data. The employment of the proposed
method on Hadoop cluster has facilitated the analysis of user’s opinions about different Universities,
which accordingly demonstrates the efficiency of the auto-scaling Hadoop cluster on the AWS cloud
and its suitability for big data analytics.

Author Contributions: R.J. devised the research problem, performed the simulation and collected data; Q.-T.V., P.S.
and R.T. summarised and analysed the data; Rachana Jannapureddy and Q.-T.V. prepared the draft; P.S. and R.T.
proofread and finalised the paper. All authors have read and approved the final manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2019, 9, 1417 15 of 16

Abbreviations

AMI Amazon Machine Image
API Application Program Interface
AWS Amazon Web Services
CEAS Cost-Effective Auto-Scaling
CPU Central Processing Unit
EC2 Elastic Cloud Compute
EMR Elastic MapReduce
FIFO First In First Out
GB Gigabyte
HDFS Hadoop Distributed File System
IaaS Infrastructure as a Service
IP Internet Protocol
IoT Internet of Things
I/O Input/Output
JSON JavaScript Object Notation
PaaS Platform as a Service
SaaS Software as a Service
S3 Simple Storage Service
SNS Simple Notification Service
VPC Virtual Private Cloud

References

1. Serrano, N.; Gallardo, G.; Hernantes, J. Infrastructure as a Service and Cloud Technologies. IEEE Softw.
2015, 32, 30–36. [CrossRef]

2. Curran, K.; Carlin, S. Cloud Computing Security. Int. J. Ambient Comput. Intell. 2011, 3, 14–19.
3. Bouayad, A.; Blilat, A.; Mejhed, N.E.H.; Ghazi, M.E. Cloud computing: Security challenges. In Proceedings

of the 2012 Colloquium in Information Science and Technology, Fez, Morocco, 22–24 October 2012; pp. 26–31.
4. Rittinghouse, J.; Ransome, J. Cloud Computing: Implementation, Management, and Security, 1st ed.; CRC Press,

Inc.: Boca Raton, FL, USA, 2009.
5. Hwang, K.; Dongarra, J.; Fox, G.C. Distributed and Cloud Computing: From Parallel Processing to the Internet of

Things, 1st ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2011.
6. Bermudez, I.; Traverso, S.; Munafò, M.; Mellia, M. A Distributed Architecture for the Monitoring of Clouds

and CDNs: Applications to Amazon AWS. IEEE Trans. Netw. Serv. Manag. 2014, 11, 516–529. [CrossRef]
7. Tamrakar, K.; Yazidi, A.; Haugerud, H. Cost Efficient Batch Processing in Amazon Cloud with Deadline

Awareness. In Proceedings of the 2017 IEEE 31st International Conference on Advanced Information
Networking and Applications (AINA), Taipei, Taiwan, 27–29 March 2017; pp. 963–971.

8. Ekwe-Ekwe, N.; Barker, A. Location, Location, Location: Exploring Amazon EC2 Spot Instance Pricing
Across Geographical Regions. In Proceedings of the 2018 18th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), Washington, DC, USA, 1–4 May 2018; pp. 370–373.

9. Iordache, A.; Morin, C.; Parlavantzas, N.; Feller, E.; Riteau, P. Resilin: Elastic MapReduce over Multiple
Clouds. In Proceedings of the 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, Delft, The Netherlands, 13–16 May 2013; pp. 261–268.

10. Chalvantzis, N.; Konstantinou, I.; Kozyris, N. BBQ: Elastic MapReduce over Cloud Platforms. In Proceedings
of the 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
Madrid, Spain, 14–17 May 2017; pp. 766–771.

11. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The Hadoop Distributed File System. In Proceedings of
the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), Lake Tahoe, NV, USA,
6–7 May 2010; pp. 1–10.

12. Manikandan, S.G.; Ravi, S. Big Data Analysis Using Apache Hadoop. In Proceedings of the 2014 International
Conference on IT Convergence and Security (ICITCS), Beijing, China, 28–30 October 2014; pp. 1–4.

Appl. Sci. 2019, 9, 1417 16 of 16

13. Leverich, J.; Kozyrakis, C. On the Energy (in)Efficiency of Hadoop Clusters. SIGOPS Oper. Syst. Rev.
2010, 44, 61–65. [CrossRef]

14. Lakshmi, A.S.; BalRaju, M.; Chandra, N.S. Towards optimization of Hadoop Map Reduce jobs on cloud.
In Proceedings of the 2016 International Conference on Computing, Analytics and Security Trends (CAST),
Pune, India, 19–21 December 2016; pp. 255–260.

15. Soualhia, M.; Khomh, F.; Tahar, S. A Dynamic and Failure-aware Task Scheduling Framework for Hadoop.
IEEE Trans. Cloud Comput. 2018. [CrossRef]

16. Trestian, R.; Shah, P.; Nguyen, H.X.; Vien, Q.-T.; Gemikonakli, O.; Barn, B. Towards connecting people,
locations and real-world events in a cellular network. Telemat. Inform. 2017, 34, 244–271. [CrossRef]

17. Maheshwari, N.; Nanduri, R.; Varma, V. Dynamic energy efficient data placement and cluster reconfiguration
algorithm for MapReduce framework. Future Gener. Comput. Syst. 2012, 28, 119–127. [CrossRef]

18. Shah, V.; Trivedi, H. A distributed dynamic and customized load balancing algorithm for virtual instances.
In Proceedings of the 2015 5th Nirma University International Conference on Engineering (NUiCONE),
Ahmedabad, India, 26–28 November 2015; pp. 1–6.

19. Gunarathne, T.; Zhang, B.; Wu, T.L.; Qiu, J. Scalable Parallel Computing on Clouds Using Twister4Azure
Iterative MapReduce. Future Gener. Comput. Syst. 2013, 29, 1035–1048. [CrossRef]

20. Li, Z.; Yang, C.; Liu, K.; Hu, F.; Jin, B. Automatic Scaling Hadoop in the Cloud for Efficient Process of Big
Geospatial Data. ISPRS Int. J. Geo-Inf. 2016, 5, 173. [CrossRef]

21. Chen, Y.W.; Hung, S.H.; Tu, C.H.; Yeh, C.W. Virtual Hadoop: MapReduce over Docker Containers with an
Auto-Scaling Mechanism for Heterogeneous Environments. In Proceedings of the International Conference
on Research in Adaptive and Convergent Systems, Odense, Denmark, 11–14 October 2016; pp. 201–206.

22. Fu, Q.; Timkovich, N.; Riteau, P.; Keahey, K. A Step Towards Hadoop Dynamic Scaling. In Proceedings of
the 2018 IEEE 20th International Conference on High Performance Computing and Communications and
IEEE 16th International Conference on Smart City and IEEE 4th International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; pp. 67–74.

23. Yadranjiaghdam, B.; Yasrobi, S.; Tabrizi, N. Developing a Real-Time Data Analytics Framework for Twitter
Streaming Data. In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress),
Honolulu, HI, USA, 25–30 June 2017; pp. 329–336.

24. Heine, G.P.; Woltron, T.; Wohrer, A. Towards a Scalable Data-Intensive Text Processing Architecture
with Python and Cassandra. In Proceedings of the Seventh International Conference on Data Analytics,
Athens, Greece, 18–22 November 2018; pp. 15–18.

25. Hwang, K.; Bai, X.; Shi, Y.; Li, M.; Chen, W.; Wu, Y. Cloud Performance Modeling with Benchmark Evaluation
of Elastic Scaling Strategies. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 130–143. [CrossRef]

26. Trupthi, M.; Pabboju, S.; Narasimha, G. Sentiment Analysis on Twitter Using Streaming API.
In Proceedings of the 2017 IEEE 7th International Advance Computing Conference (IACC), Hyderabad,
India, 5–7 January 2017; pp. 915–919.

27. Sehgal, D.; Agarwal, A.K. Sentiment analysis of big data applications using Twitter Data with the help of
Hadoop framework. In Proceedings of the 2016 International Conference System Modeling Advancement in
Research Trends (SMART), Moradabad, India, 25–27 November 2016; pp. 251–255.

c� 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

