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ABSTRACT 

The wild trout of Loch Maree is an understudied population that recently experienced a population 

decline after once having a world status for its sea trout fisheries. Tissues and specimens sampled 

over the last decade exist in archives and have yet to undergo population genetic analysis. This study 

aims firstly to determine the best approach to characterising the genetic structure of the Salmo trutta 

population of Wester Ross with the available archived tissues/specimens. The population structure 

observed will then be analysed so as to examine the effects of the Wester Ross geography and 

topography upon the trout population’s genetic diversity. Nine markers from the Beaufort Trout 

MicroPlex microsatellite panel were used to genotype 192 Salmo trutta samples sampled across 35 

sites within Loch Maree and neighbouring catchments, split into four major resident regions: NW-, 

CW- and SE Loch Maree, and Gairloch, as well as sea trout from the Ewe and Flowerdale systems. 

Results suggest the population genetics of brown trout in Wester Ross are structured at regional and 

river scales, and suggests a genetic bottleneck caused by the population decline is still detectable. 

“Within-population” genetic diversity seems similar between regional populations sampled. 

Differences observed in population allele frequencies suggest the Gairloch and NW Loch Maree 

populations are the most similar regional populations analysed, with significant departures from 

Hardy-Weinberg equilibrium in almost all their loci, suggesting they may be under significant 

environmental pressure. The Wester Ross sea trout seem to be an admixture of the resident trout 

populations, with overlapping coastal ranges. Headwater populations have reduced genetic diversity 

compared downstream which may be influenced by genetic drift in isolation caused by barriers such 

as waterfalls and dams. A positive correlation was also observed between geo-hydrological distance 

and genetic divergence within regional resident trout populations, with a degree of introgression 

between all populations that are hydrologically connected. The analysis also suggest Loch Maree 

was likely colonised initially at the NW point by ancient migrant sea trout rather than a freshwater-

radiation from an inland glacial refuge since the retreat of the last glacial maximum.  
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G L O S S A R Y   O F   A B B R E V I A T I O N S 

Acronym 
/Symbol 

Terminology 
Formula (if 
applicable) Reference 

Definition 
     

G E N E R A L 
     

WR 
Wester Ross 

WRFT (no 
date) 

A western area of the Northwest Highlands of Scotland. 
     

WRFT 

Wester Ross Fisheries Trust 
WRFT (no 
date) Established in 1966 in response to the need for solutions to 

fisheries problems and to improve the management of wild fisheries 
in Wester Ross. 

     

BTMP 
Beaufort Trout MicroPlex 

Keenan et 
al. (2013)  A microsatellite panel made up of 38 loci, tailored and tested for 

use in Salmo trutta population genetic studies. 
     

S T U D Y   S A M P L E   G R O U P S 
     

NWLM 
North West Loch Maree 

This study 
Brown trout sampled in the NW catchment region around Loch 
Maree and neighbouring catchments that drain out to Poolewe. 

     

CWLM 
Central-West Loch Maree 

This study 
Brown trout sampled in the Central West catchment region around 
Loch Maree. 

     

SELM 
South East Loch Maree 

This study 
Brown trout sampled in the SE catchment region around Loch 
Maree. 

     

WCG 
West Coast Gairloch 

This study 
Brown trout sampled in catchments that drain out to Gairloch on the 
West Coast of Scotland. 

     

ECLL 
East Coast Loch Leven 

This study 
Brown trout sampled in Loch Leven on the east Coast of Scotland. 
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EST 
Ewe Sea Trout 

This study 
Sea trout sampled returning up the River Ewe. 

     

FST 
Flowerdale Sea Trout 

This study 
Sea trout sampled around the Flowerdale estuarine outflow. 

     

CST 
Canaird Sea Trout 

This study 
Sea trout sampled in Canaird estuary and its outflowing river. 

     

P O P U L A T I O N   G E N E T I C S 
     

AR 
Allelic Richness Crow and 

Kimura 
(1970) The number of alleles present at a locus or the mean number 

across multiple loci in a population. 
     

 

Heterozygosities 
Crow and 
Kimura 
(1970) 

How likely an individual in a population will carry two different 
alleles at a locus or across loci, based on the allele frequencies of a 
population sample - expressed as a decimal value. 

     

HE 

Expected heterozygosities 
Crow and 
Kimura 
(1970) 

What the level of heterozygosity would be expected to be if the 
number of alleles observed in a population sample were under 
HWE. 

     

HO 

Observed heterozygosities 
Crow and 
Kimura 
(1970) The actual level of heterozygosity observed in a population sample 

based on the samples number of alleles. 
     

Af 
Allele Frequencies Crow and 

Kimura 
(1970) How often a particular allele appears in a population expressed as 

a decimal. 
     

HWE Hardy-Weinberg equilibrium p2 + 2pq + q2 = 1 
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Hardy-Weinberg equilibrium describes an 
equal distribution of all possible allelic 
combinations present in a population, which 
is expected to be present in populations 
that have lasted many generations without 
significant selective forces. The classical 
expression for a biallelic marker under 
HWE is shown. 

Crow and 
Kimura 
(1970) 

     

FST 

F-statistics 

FST = (HT - HS) / HT Wright 
(1965) Fixation indices measure population 

substructure using the heterozygosities of 
the total and subpopulations. 

     

DST 

Nei's D 

DST = -logeI Nei (1972) 

Nei's standard genetic distance (with or 
without sample size bias correction) 
calculates the genetic differentiation 
between any pair of populations. It is 
calculated as shown, where I is the 
normalised identity of the markers between 
two population samples. 

     

GST 

Nei's GST 

GST = DST / HT Nei (1973) 
A method of analysing gene diversity 
(heterozygosity) of a subdivided population, 
within and between subpopulations - 
calculated by dividing DST by the total 
population heterozygosity (HT). 

     

MDE 

Mutation-drift equilibrium 

(Cornuet 
and Luikart, 
1996) 

Mutation-drift equilibrium occurs when a population's size has 
remained stable for a sufficient number of generations, leading to 
an equal probability that a locus shows an heterozygosity excess or 
deficit. 

     

S T A T I S T I C A L 
     

p 

P-value (Heumann 
and 
Schomaker, 
2017) 

Statistical value of probability that describes how likely the 
observational data represents the nature of what has been 
measured. 

     

ps Multiple P-values (Heumann 
and 
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Multiple statistical probability values calculated separately but 
presented together as "greater or lower than" the alpha value or 
significance level. 

Schomaker, 
2017) 

     

SD 
Standard Deviation 

σ = √Σ(x-x̅)2/n 
(Heumann 
and 
Schomaker, 
2017) 

Typical range of deviation from the mean 
for each data point within a dataset. 

     

SE 
Standard Error 

σ x̅ = σ/√n 
(Heumann 
and 
Schomaker, 
2017) Error range of the population sample mean. 

     

r 
Correlation coefficient (Heumann 

and 
Schomaker, 
2017) 

Indicates the type and strength of the relationship observed 
between two variables. 
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I N T R O D U C T I O N 

S A L M O   T R U T T A   ( L . 1 7 5 8 ) 

Salmo trutta is one of the most widespread freshwater species in the northern hemisphere (Leitwein 

et al., 2016). Its native range includes Eurasia and North Africa (Bernatchez, 2007; García-Marín et 

al., 1999), and its adaptability has permitted successful introduction into North and South America, 

South and East Africa, and Australasia (Watson, 1999). The incentive for introduction around the 

world reflects the species’ socioeconomic value due to its worth in commercial fisheries, recreational 

fishing, and other local industries associated with sport fishing.  

 

Figure 1 Mature brown trout (~ 35 cm fork length) from “Elf’s Loch”, July 2014. 

L I F E   S T R A T E G I E S   O F   S A L M O   T R U T T A   –    

B R O W N ,   S E A   &   F E R O X   T R O U T  

S. trutta exhibits considerable phenotypic plasticity with morphs adopting distinct life strategies, often 

occupying the same watercourse (Watson, 1999; Elliot, 1994). Ecologically, there are two major 

morphs: freshwater residents, known as ‘brown trout’, and anadromous ‘sea trout’; once argued to 

be taxonomically separate, research into their genetics and development has demonstrated they are 

one species (Watson, 1999; Hindar et al., 1990).  

Brown trout (Figure 1) spend their entire lives in freshwater, never making a sea-run despite having 

access to the sea (Watson, 1999; Elliot, 1994; Hindar et al., 1990; Campbell, 1977). These freshwater 

residents then enter various niches, becoming predominantly riverine (Salmo trutta m. fario), known 

as river trout, or lacustrine (Salmo trutta m. lacustris), as lake trout. There are also resident headwater 

populations that are ‘landlocked’, where access to the sea is either no-longer present or one-way, 

preventing return (e.g. above impassable waterfalls) (Hindar et al., 1990). 

Instead of staying in freshwater, some individuals smoltify (turn silvery) and migrate to sea where 

they spend most of their time, before returning to freshwater to spawn as sea trout (Figure 2) (Watson, 

1999; Elliot, 1994). Individuals that adopt anadromous lifestyles are usually female (Kinnison et al., 

2001; Jonsson and Jonsson, 1993) and is believed to be triggered by a combination of genetics and 
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the environment (most likely a lack of food or territory) (Watson, 1999). There is a higher risk of 

mortality associated with the marine environment, but the risks are rewarded with richer feeding 

(Sahashi and Morita, 2013; Wysujack et al., 2009), allowing sea trout to grow up to 3kg in weight, 

dwarfing their resident siblings upon return which rarely exceed 300g (Watson, 1999; Elliot, 1994). 

 

Figure 2 Mature sea trout (52 cm fork length, 1.6 kg weight) caught and released in Loch Ewe, June 2014. 

Sea trout have many different names depending on location, gender, life stage, and duration at sea 

(e.g. Finnock are young sea trout that have spent up to a year in coastal waters) (Watson, 1999). As 

sea trout life stages are not the focus of this study, any S. trutta specimens that have adopted 

anadromy in their life history will simply be referred to as ‘sea trout’ from hereon. 

Ferox trout are a third, somewhat enigmatic morph and are thought to be resident lacustrine forms 

of trout that have adopted a piscivorous diet, preying primarily on arctic charr (Salvelinus alpinus 

L.1758) (Watson, 1999; Elliot, 1994). Piscivory seems to trigger once a ‘ferox-destined’ trout has 

reached a threshold length of 30 – 35 cm (Watson, 1999; Campbell, 1979), and is otherwise 

indistinguishable from brown trout prior. The fish-based diet allows ferox trout to become typically 

larger than other sympatric resident trout, resembling sea trout in terms of their size and shape, while 

resembling brown trout in colouration (Figure 3). Ferox also have increased longevity, late-maturation, 

and lower reproductive rates which make them more vulnerable to habitat loss (Quesnelle et al., 

2014). Again, whether ferox trout are a separate species from brown trout has been debated for 

some time (Watson, 1999), though there is some evidence to suggest that ferox may be genetically 

distinct (Duguid et al. 2006; Ferguson and Taggart, 1991; Campbell, 1979). The International Union 

for Conservation of Nature (IUCN) has in fact listed Salmo ferox as a separate species to Salmo 

trutta, however its status is classified as ‘data deficient’ with an ‘unknown’ population trend (Freyhof 

and Kottelat, 2008); however, Scottish authorities do not consider Scottish ferox to be taxonomically 

distinct from S. trutta (Scottish Government, 2017). 
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Figure 3 Mature (male) ferox trout (47.5 cm fork length) caught and released in Loch Kernsary, October 2013. 

Despite their various life strategies, all S. trutta morphs instinctually home in on their natal streams 

to breed and can migrate to and from to do so several times in their lives (Watson, 1999; Jonsson, 

1985; Campbell, 1977). This homing instinct creates a level of reproductive isolation, promoting 

divergence as they genetically drift away from each other over isolated generations, with migrants 

between populations providing some potential for gene flow (Quinn, 2005; Watson, 1999). 

E U R O P E A N   B R O W N   T R O U T 

The evolutionary history that has led to European brown trout is complex (Leitwein et al., 2016). 

Europe was colonised by Salmo trutta after the last glacial period ~ 15 000 years ago (Bernatchez, 

2007; García-Marín, 1999; Hamilton et al., 1989). As the glaciers melted and retreated northwards, 

they carved out many of the highland freshwater courses in Europe (Sisson, 2016; Finnergan et al., 

2013) which allowed at least five major lineages, inferred by mitochondrial DNA (mtDNA), originating 

from the Atlantic, Mediterranean, Adriatic, Danubian and Marmoratus to establish populations across 

the continent (Bernatchez, 2007).  

Since its European radiation, many populations have become geographically isolated at catchment 

and sub-catchment levels, especially where populations are restricted to highland waters (Elliot, 

1994). The typical geography and topography of highland landscapes, coupled with the trout’s 

tendency to ‘home in’ on their natal streams to breed has led to distinct genetic structuring within and 

between catchments, with local subpopulations being genetically differentiated over a relatively small 

geographic range (Stelkens et al., 2012; Ferguson, 1989). 

Due to its cosmopolitan range, the global population of S. trutta is classified as ‘least concern’ by the 

IUCN (Freyhof, 2011); however there are many endemic populations under threat (WTT, 2019), such 

as the wild trout population of Loch Maree (WRFT, no date). 
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L O C H   M A R E E   W I L D   T R O U T 

The wild population being studied is native to Loch Maree catchment, Wester Ross, in the northwest 

Highlands of Scotland (coordinates: 57° 41' 23" N, 5° 27' 27" W, OS grid reference: NG 960 686). 

The catchment area covers Beinn Eighe, Slioch, Fisherfiefld, Glen Docherty, Coulin, Slattadale, and 

Talladale, most of which flow into Loch Maree before draining out to sea through the River Ewe at 

Poolewe (Loch Ewe). At 20 km long, with a maximum width of 4 km, a maximum depth of 38 m and 

a total surface area of 28.6 km2, Loch Maree holds approximately 1 billion tonnes (1 090 000 000 kL) 

of water, making it the fourth largest freshwater loch in Scotland. Loch Maree’s trout population 

includes resident brown trout, anadromous sea trout, and piscivorous ferox trout thought to be rare 

and isolated to a few watercourses where arctic charr also exist (WRFT, no date). Until the late 1980s 

Loch Maree was the most productive sea trout fishery in Scotland, since then the sea trout population 

has collapsed, indicated by a 68 % decline in the five year mean catch, falling from 2 500 in 1982 to 

800 in 2000 (WRFT, no date) and has yet to recover (Walker. 2016; Cunningham, 2014; WRFT, no 

date). This negatively impacted nutrient dynamics within local ecosystems, as well as the local 

communities who depended on industries associated with sport fishing for their livelihoods (WRFT, 

no date). 

P O P U L A T I O N   G E N E T I C S   O F   S A L M O   T R U T T A       

Over recent decades, genomic techniques have advanced considerably, increasing the quantity and 

quality of genomic data that can be obtained from samples (Morin et al., 2004). Single-Nucleotide 

Polymorphism (SNP) marker data sets have become popular due to their flexibility and relatively low-

costs (Shirasawa et al., 2016; Leitwein et al., 2016). SNPs also provide data across broader genome 

coverage, creating a Reduced Representation Library (RRL) of a genome, whilst maintaining 

equivalent statistical power compared to microsatellites or mtDNA markers (Morin et al., 2004). 

Advances in Next-Generation Sequencing (NGS) technologies have led to more cost-effective 

techniques such as Restriction enzyme Associated DNA sequencing (RADseq), making it possible 

for genome-wide SNP marker sets to now be routinely produced (Shirasawa et al., 2016; Leitwein et 

al., 2016; Morin et al., 2004). This has contributed to the development of conservation management 

strategies for several salmonid populations (Bradbury et al., 2015; Abadía-Cardoso et al., 2011; 

Morin et al., 2004, Meier et al., 2011); however there is currently a limited number of SNP markers 

characterised for S. trutta (SušnikBajec et al., 2015; Pustovrh et al., 2012) and no genetic data 

available for the Loch Maree catchment area (WRFT, no date). 

Population genomic data has been used to characterise the population structure, local adaptations, 

ecology, evolution, and genetic diversity in many salmonid populations (Hecht et al., 2015; 

Hohenlohe et al., 2013; Hansen et al., 2000). The focus of many studies have been to investigate its 

evolutionary history (Finnergan et al., 2013), monitoring the effects of restocking on genetic diversity 

(Berrebi, 2015; Hansen et al., 2000), genetic comparisons of wild and domestic stocks (Aho et al., 

2006), and local phylogeographies (Bernatchez, 2007). Much of this has been done using traditional 

genetic markers such as allozymes (Sanz et al., 2006; Kreig & Guyomard, 1985), microsatellite loci 

(Thaulow et al., 2014; Aho et al., 2006; Hansen et al., 2000; Poteaux et al., 1999), and mitochondrial 
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markers (Sanz et al., 2006; Bernatchez, 2007). Advancements in NGS techniques, such as RADseq, 

are now capable of producing thousands of SNP markers per individual to produce genome-wide 

scale RRLs which contrasts the few genetic markers (often < 20) that are generally used in many 

previous studies which may limit their potential in establishing a baseline to monitor the effects on 

genetic diversity from management policies or environmental changes (Leitwein et al., 2016; Keenan 

et al., 2013) - though there are exceptions (Keenan et al., 2013; Hansen & Mensberg, 2009).  

The “Beaufort trout MicroPlex: a high throughput multiplex platform comprising of 38 informative 

microsatellite loci for use in resident and anadromous (sea trout) brown trout Salmo trutta genetic 

studies” provides 38 microsatellite markers informative for Salmo trutta for population genetic 

research, this offers a cheaper, faster alternative approach to NGS methods, and benefits from 

already being tailored for brown trout population genetic studies (Keenan et al., 2013).  

The choice of approach to any population genetic study is influenced by a number of factors which 

ultimately limits the choice of methods which result in reliable data (Graham et al., 2015; Shiozawa 

et al., 1992). Studies using traditional markers such as microsatellites or mtDNA usually have less 

concerns, while studies using an NGS approach such as single-nucleotide polymorphisms (SNPs) 

often face implications that can result in data loss (Graham et al., 2015). 

The aims of this project are therefore to determine the best approach and to characterise the genetic 

structure of the Salmo trutta population in Loch Maree and neighbouring catchments based on 

available archived tissues/specimens; and to then map the spatial distribution of that structure to the 

Wester Ross geography and topography, to examine its effects upon the trout’s genetic diversity, in 

hopes of informing conservation management of this once world-renowned population of Salmo trutta. 
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C H A P T E R   1 :   S T U D Y   M E T H O D O L O G Y   D E V E L O P M E N T :    

D N A   Q U A L I T Y   A S S E S S M E N T   A N D   O P T I M I S A T I O N    
O F   M I C R O S A T E L L I T E   M A R K E R S 

1 . 1 :   M E T H O D O L O G Y 

S T A N D A R D   L A B   P R O T O C O L S 

D N A   E X T R A C T I O N S 

All manual DNA extractions in this study were conducted using the Qiagen DNeasy® Blood & Tissue 

DNA kit (© 2006 Qiagen) following the protocol: Purification of Total DNA from Animal Tissues Spin 

Column Protocol (Qiagen, 2006). The protocol was altered to use chilled isopropanol instead of 

ethanol during ‘step 3’. If an RNAse treatment was included, 1 µL of RNAse was added to the sample 

for 1 minute at room temperature immediately after cell lysing (addition of AL buffer). When extracting 

DNA from frozen-muscle tissue, a centrifuge step was introduced at this point (during ‘step 3’), 

immediately after cell lysing by AL buffer, before the use of chilled isopropanol (or ethanol).  

Automated DNA extractions at the Natural History Museum were conducted by NHM staff 

(Stephen Russell, Senior Laboratory Manager) on a Qiagen Biosprint 96®. 

M E A S U R I N G   D N A   I N T E G R I T Y ,   Q U A N T I T Y   &   P U R I T Y 

The following assays were used to assess DNA quantity, purity, and integrity. 

   D N A   Q u a n t i t y   - Q u b i t 

DNA quantity was calculated using Qubit 1.0 and 3.0 fluorometers (© 2014 Thermo Fisher Scientific 

Inc.), following the kit guidelines and protocol for ‘dsDNA broad spectrum analysis’. Both machines 

were tested on identical samples to ensure they both had reliable and consistent measurements 

between them. 

D N A   P u r i t y   -   N a n o d r o p  

DNA purity was measured using a Nanodrop 2000c spectrophotometer (© 2009 Thermo Fisher 

Scientific Inc.) following the standard protocol to assess ‘Nucleic Acid 260/230 and 260/280 ratios’ 

(Thermo Fisher Scientific, 2009, pp. 26). Each sample was analysed in 1 µL volumes.  

D N A   I n t e g r i t y   -   A g a r o s e   g e l 

DNA integrity was assessed using 0.8 % and 1.5 % agarose gels, all gels in this project were made 

using the following protocols: 

Gel preparation for every 100 mL of agarose gel required had 0.8 % or 1.5 % w/v (800 mg or 

1500 mg) added to every 100 mL of TAE buffer, which was then microwaved until the solution was 

clear. After letting the solution cool to ~ 60-70°C, 5 µL of SafeView nucleic acid stain (© 2018 NBS 

Biologicals) was added and swirled evenly before casting the gel. 

https://www.qiagen.com/gb/resources/resourcedetail?id=6b09dfb8-6319-464d-996c-79e8c7045a50&lang=en
https://assets.thermofisher.com/TFS-Assets/CAD/manuals/NanoDrop-2000-User-Manual-EN.pdf
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Sample preparation utilised 2 µL of DNA loading dye mixed with 5 µL of each specimen DNA before 

being added to the gel in separate wells. 

If required, 3 µL of 100 bp or 1000 bp DNA ladder (Bioline HyperLadder™) was also added to a well 

per lane in the gel.  

Choice of agarose concentration and DNA ladder size depended on the expected size range of DNA 

fragments. Raw gDNA is relatively larger requiring 0.8 % agarose and the use of a 1000 bp ladder; 

microsatellite amplicons are relatively small, requiring 1.5 % agarose and 100 bp ladder for quality 

assessment. Electrophoresis was run between 90 - 110 V until the bands separated sufficiently 

before being imaged on a UV Trans-illuminator. 

E v a l u a t i n g   a g a r o s e   g e l s 

DNA integrity was assessed with considerations based on the work by Graham et al. (2015), which 

investigated raw DNA integrity from blood and muscle tissue of another salmonid (Lake Whitefish - 

Coregonus clupeaformis M.1818) after varying durations at room temperature. Analysis showed that 

that DNA degradation did not cause significant data loss in muscle tissue until after 96 hours 

(Figure 4, E).  

 
Figure 4 Agarose gel image showing the size distribution of untreated DNA extracted from Lake Whitefish tissue 

at the following time points at room temperature post euthanasia: (A) 0 h blood, (B) 0 h muscle (C) 12 h muscle, 

(D) 48 h muscle and (E) 96 h muscle. Each lane of the gel represents an individual lake whitefish. The size 

standards shown are DNA ladders ranging from 50 to 10 000 bp (Graham et al., 2015). 

Based on the results found by Graham et al. (2015) (Figure 4), any gel lanes that appear as ‘bottom-

up smears’ (D & E) were classified as having ‘low’ integrity (due to > 50 % data loss observed by 

Graham et al. [2015]), ‘top-down smears’ (B, C) as having ‘moderate’ (< 10% data loss), and ‘distinct 

bands’ at the top of the lane (A) as ‘high’ integrity (< 5 % data loss). 
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D N A   Q U A L I T Y   A S S E S S M E N T 

A subsample of S. trutta fin clips (n 96) in the available archive had DNA extracted to assess its raw 

integrity (Figure 8). DNA was also extracted from a specimen of each tissue type and mode of storage 

available to investigate which best maintained DNA integrity. Sample types available differed by 

tissue type: internal muscle, pectoral fin, and adipose fin; and mode of storage: fins were stored 

either dry or in ethanol, internal muscle was frozen within archived specimens with a varying number 

of freeze-thaw cycles (Figure 9). 

E X T R A C T I O N   O F   D N A   F O R   P O P U L A T I O N   G E N E T I C   A N A L Y S I S : 

P L A T E   1   &   2 

Two 96 deep-well plates were prepared for automated DNA extraction at the Natural History Museum 

(NHM). Plate 1 contained frozen-internal muscle tissue (Figure 5). Plate 2 contained dried pectoral 

and ethanol-stored adipose fins. 

P L A T E   1 :   C R Y O – T I S S U E   E X T R A C T I O N 

Frozen specimens had internal muscle tissue extracted in their frozen states under aseptic conditions. 

Before the tissue was extracted, a 96 deep-well plate was placed in a small polystyrene box with 

liquid nitrogen (N2) at a depth of ~ 1 - 2 cm. The plate was placed in the centre of the box directly in 

the nitrogen. A polystyrene board with a cut to fit the plate in its centre was placed around the plate 

floating on the nitrogen which decreased the rate of evaporation, improving visibility (Figure 5). 

 

Figure 5 Cryo-tissue extraction: frozen 96 deep-well plate in liquid nitrogen, pipette tips with extracted frozen 

tissue inside can be seen in the top half of the plate. 

Specimens were removed from the freezer in groups of five by site. A sterile disposable scalpel blade 

was used for each specimen to remove the scales and skin from the site of extraction (to minimise 

field sampling cross contamination), which was dorsal above the gills on either lateral side (Figure 6).  
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Figure 6 Left-lateral view of brown trout (Salmo trutta L.1758) indicating the area of dissection (circled in red). 

The apex of a sterile 1000 μl pipette tip was cut with a sterile pair of scissors to create a wider 

aperture, which was used to bore into the frozen specimen (Figure 7). The pipette tip with the frozen 

tissue extract was then placed in its plate position (Figure 5). Once the specimens had their tissue 

extracted, they were immediately returned to the freezer. 

 
Figure 7 Cryo-tissue extraction using a cut pipette tip: frozen-tissue being extraction (left); frozen-tissue 

extracted in pipette tip (right). 

The pipette tips were carefully inverted in their plate positions and the tissue was prodded free using 

the sterile ends cut off the pipette tips to drop the tissue into the well. The plate was then sealed with 

sticky foil and kept frozen at -80°C before being transported to the NHM on ice packs for automated 

DNA extraction on a Qiagen Biosprint 96® (© 2013–2018 Qiagen). 

P L A T E   2 :   P E C T O R A L   A N D   A D I P O S E   F I N   C L I P S 

Fin clips had the ‘cut-ends’ of the clip removed with a sterile scalpel to minimise any residual 

contamination from field sampling. Residual ethanol was left to evaporate off any fin clips before 

being added to the plate. The plate was sealed and kept frozen at -80°C before being transported to 

the NHM on ice packs for automated DNA extraction  

D N A   Q U A L I T Y   C O M P A R I S O N   P O S T O N E   C R Y O – E X T R A C T I O N 

Additional extractions were required to increase DNA quantity for low yield extractions, this provided 

an opportunity to investigate DNA degradation in frozen-muscle tissue following one cryo-tissue 

extraction, as well as to compare the DNA quality obtained between automated and manual DNA 

extraction methods. 

Muscle tissue of aforementioned samples were cryo-extracted again and their DNA extracted 

manually. During the extraction process, a centrifuge step was added during ‘step 3’ - after the 

addition and AL (lysing) buffer (to suspend the DNA) and before the use of ethanol (or chilled 

isopropanol in this study, which precipitates the DNA) (Qiagen, 2006). This removed solid impurities 

https://www.qiagen.com/gb/resources/resourcedetail?id=6b09dfb8-6319-464d-996c-79e8c7045a50&lang=en
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which were abundant after digestion and lysing to prevent the spin column mesh becoming clogged 

which significantly decreased DNA yield and purity in initial attempts. The successful extractions 

were pooled to bring DNA yield to optimum levels. Comparisons were made with the same 

specimens auto-extracted previously at the NHM (Table 7). 

 R N A S E   T R E A T M E N T 

Some of the samples were not RNAse treated during initial extractions, obscuring agarose gel results. 

To degrade the RNA, 1 µL of RNAse was added to these samples and left at room temperature for 

at least 1 minute. 

D N A   P U R I F I C A T I O N   A N D   C O N C E N T R A T I O N 

Phenol-chloroform extraction was used to purify DNA samples of any lipid and protein contaminants 

such as RNAse. Carried out inside a fume hood, a solution of phenol-chloroform-isoamyl alcohol 

(at 25:24:1 ratio) was made by mixing equal volumes of 100 % phenol with a mixture of chloroform-

isoamyl alcohol (24:1). The mixture was then added to each DNA sample in equal volumes, and was 

then gently shaken by hand for approximately 20 seconds. Each sample was then centrifuged at 

16,000 x g for 5 minutes at room temperature. The upper aqueous phases were carefully removed 

and transferred to sterile tubes without disturbing or pipetting any of the lower organic phases 

containing the contaminant proteins and lipids. For low yield samples where more DNA could no 

longer be obtained, 100 µL nuclease-free water was added to their tubes again, the tubes were 

shaken, and the aqueous layer extracted once more and pooled. 

Ethanol precipitation was undertaken immediately after each phenol-chloroform extraction to purify 

samples further from residual contaminants following the extraction process, as well as to 

standardise DNA concentrations. To do this, 1 µL of glycogen (20 µg/µL) was added to each sample, 

followed by adding 0.5 x sample volume of ammonium acetate-NH4OAc (7.5M), then adding 2.5 x 

‘the sample volume + the added ammonium acetate volume’ of 100 % ethanol. The tubes were 

stored at -80°C for at least 1 hour, the samples were then centrifuged at ≤ 4°C for 30 minutes at 

16,000 x g to pellet the DNA. The supernatant was removed being careful not to disturb the DNA 

pellet adhered to the tube. 150 µL of 70 % ethanol was added to wash the pellet of any remaining 

contaminants. The supernatant was carefully removed and the samples left open in a fume hood to 

dry out before adding AE buffer at varying volumes depending on the initial DNA yield and target 

concentration. 

Comparisons were made between samples prior and post Phenol-Chloroform-Isoamyl alcohol – 

Ethanol (PCI-E) purification (Table 8). 

C O M P L E T E   D N A   Q U A L I T Y   A S S E S S M E N T 

Over the course of this study 384 specimens had their DNA extracted. Though many were not 

suitable for the study due to low DNA qualities, compiled, they provide information on the raw DNA 

integrity, quantity, and purity observed, and were collated and compared by tissue type and storage 

(Table 5).   
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M I C R O S A T E L L I T E   M A R K E R S :   B T M P – C U S T O M – P A N E L - 4 

Microsatellites markers were chosen to characterise the population genetics of the Loch Maree trout 

using the Beaufort Trout MicroPlex (BTMP) Panel-4 by Keenan et al. (2013) (Table 1). 

BTMP-Panel-4 was modified to ensure no overlapping size ranges within each fluorophore group. 

Table 1 Information on primer sequences, size ranges. Red boxes outline where markers have overlapping 

size ranges and where fluorophore groups have either too many or only one marker in the original panel; and 

subsequently indicate which marker was substituted in, as well as which marker had moved fluorophore 

groups to remove outlined size overlaps in the custom panel. 

  Panel/locus    Forward primer Reverse primer 
Size range 
(bp) 

O
rig

in
al

 B
TM

P-
Pa

ne
l-4

 

SsaD170 NED-GGAGGCAGTTAAGAGAACAAAAG gttTCACCTACCCTTCTCATTCAAG 148–217 

Sasa-UBA NED-GGAGAGCTGCCCAGATGACTT gtttCAATTACCACAAGCCCGCTC 268–523 

Ssa413UoS PET-GTAGACGCCATCGGTATTGTG gtttCGTGATGCCGCTGTAGACTTG 225–282 

Ssa407UoS FAM-TGTGTAGGCAGGTGTGGAC gtttCACTGCTGTTACTTTGGTGATTC 204–320 

SsaD48 FAM-GAGCCTGTTCAGAGAAATGAG gtttCAGAGGTGTTGAGTCAGAGAAG 304–558 

CA054565a VIC-TCTGTGGTTCCCGATCTTTC gtttCAACATTTGCCTAGCCCAGA 101–120 

CA054565b – – 125–163 

mOne101 VIC-TGCTAAATGACTGAAATGTTGAGA gtttGAGAATGAATGGCTGAATGGA 155–194 

CA060177 VIC-CGCTTCCTGGACAAAAATTA gtttGAGCACACCCATTCTCA 234–315 

mOne108 VIC-GTCATACTACTCATTCCACATTA gtttACACAGTCACCTCAGTCTATTC 371–518 
         

Cu
st

om
 B

TM
P-

Pa
ne

l-4
 

SsaD170 NED-GGAGGCAGTTAAGAGAACAAAAG gttTCACCTACCCTTCTCATTCAAG 148–217 

Sasa-UBA NED-GGAGAGCTGCCCAGATGACTT gtttCAATTACCACAAGCCCGCTC 268–523 

mOne101 PET-TGCTAAATGACTGAAATGTTGAGA gtttGAGAATGAATGGCTGAATGGA 155–194 

Ssa413UoS PET-GTAGACGCCATCGGTATTGTG gtttCGTGATGCCGCTGTAGACTTG 225–282 

Ssa407UoS FAM-TGTGTAGGCAGGTGTGGAC gtttCACTGCTGTTACTTTGGTGATTC 204–320 

Str3QUB  FAM-CTGACCGCTGCACACTAA  gtttGGCTCTAATCGACTGGCAGA  115–175  

CA054565a VIC-TCTGTGGTTCCCGATCTTTC gtttCAACATTTGCCTAGCCCAGA 101–120 

CA054565b – – 125–163 

CA060177 VIC-CGCTTCCTGGACAAAAATTA gtttGAGCACACCCATTCTCA 234–315 

mOne108 VIC-GTCATACTACTCATTCCACATTA gtttACACAGTCACCTCAGTCTATTC 371–518 

Information on the original BTMP-Panel-4 primer sequences (Table 1) outline the fluorophore 

labelled forward primers, expected amplicon size range in base pair length (bp). ‘m’ prefixed loci 

names had been modified in Keenan et al., (2013) study from their original sources for use in Salmo 

trutta. Unlabelled primers are prefixed with ‘gttt’ (or ‘pigtailed’) (Brownstein et al., 1996).  

To remove overlapping size ranges with SSa407UoS, SsaD48 was replaced with Str3QUB from 

BTMP-Panel-2 (Keenan et al., 2013). mOne101’s fluorescent dye was changed from VIC to PET as 

there was only one loci using the PET fluorophore while VIC was being used by five loci - including 

CA054565b which overlapped with the expected size-range of mOne101. This ensured no 

overlapping size ranges. The red boxes outline these changes and why they were made, resulting 

in the Custom BTMP-Panel-4 (Table 1). 
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E v a l u a t i o n   a n d   o p t i m i s a t i o n   o f   p r i m e r s 

The Custom BTMP-Panel-4 was tested for compatibility with Wester Ross S. trutta samples. Forward 

primers for the BTMP customised panel were ordered modified with assigned fluorescent labels from 

Thermo Fisher (© 2016 Thermo Fisher Scientific Inc) and the reverse primers from Sigma Aldrich, 

now Merck (© 2018 Merck KGaA). 100 µM stock solutions were prepared and all loci were tested 

against a small subsample from separate catchments (n 3). 

M u l t i p l e x   p r e p a r a t i o n   &   e v a l u a t i o n 

The panel was tested to ensure successful multiplexed amplification, and whether 10 µL reaction 

volumes could amplify successfully. The primer multiplexed stock solution and 10 µL PCR reaction 

volumes were prepared as follows: 

Table 2 Multiplex preparation of BTMP Custom Panel, volumes of primers and solvent used. 

Reagent Volume (µL) 
Volume/primer (100 µM/primer) 10 
Nuclease-free H2O 320 

Total volume (2 µM/primer): 500 

For all 9 forward and reverse primers, 10 µL of each starting at 100 µM molarity were mixed together 

with 320 µL of nuclease-free water, making an end volume of 500 µL, with each primer now at 2 µM 

molarity (Table 2).  

Table 3 PCR multiplex working solution & reaction mix preparation. 

Reagent Volume/specimen (µL) 
PCR Master mix 5 
Primer multiplex (2 µM each) 1 
Nuclease free H2O 3 

Multiplex working solution volume/specimen: 9 
Specimen DNA: 1 

Total PCR reaction volume/specimen: 10 

PCR reaction volumes (10 µL) was prepared by mixing 9 µL of working solution with 1 µL of each 

specimen’s DNA sample (Table 3). PCR conditions consisted of four cycle sets (Table 4). 

Table 4 PCR cyclic conditions for amplification of the BTMP microsatellites (Keenan et al., 2013). 

 1 Temp - 1 Cycle 3 Temp – 5 Cycle 3 Temp – 22 Cycle 1 Temp – 1 Cycle ∞  

Temperature (°C) 95 95 55 72 95 57 72 60 4 

Time (min:seconds) 15:00 00:45 01:30 01:00 00:45 01:30 01:00 30:00 ∞  

Number of cycles 1 5 22 1 ∞  

A M P L I F I C A T I O N   O F   B T M P - C U S T O M - P A N E L – 4 :   R U N S   1 - 4 

All 192 specimens were amplified successfully across 4 separate runs (each run n 48) using the 

multiplexed PCR protocols described in Tables 2, 3 & 4. 
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D N A   I N T E G R I T Y   I N D E X   R A T I N G 

In an attempt to objectively quantify and compare the DNA integrity of sample groups, the DNA 

Integrity Index Rating (IIR) is proposed: each specimen’s integrity is given the following the values 

based on its integrity assessed by agarose gel lane pattern, as mentioned previously: 

Low integrity = 0; Moderate integrity = 0.5, High integrity = 1. The datasets produced can use 

descriptive statistics to allow basic, quantitative descriptions within, as well as comparisons between 

sample groups (Table 6).  
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1 . 2 :   R E S U L T S  

D N A   Q U A L I T Y   A S S E S S M E N T 

The DNA purity (molecular and chemical, defined by 260/230 and 260/280 wavelength (nm) 

absorption ratios) and quantity (or yield, defined by molecular mass), was optimal for many of the 

initial 96 specimens subsampled from the archive with mean purity ratios: 260/230 2.31 ± 2.31 SD, 

260/280 2.06 ± 0.06 SD; and mean yield: 14.21 µg/µL ± 11.88 SD. 

 
Figure 8 Agarose gel images of 96 DNA extractions from S. trutta fin clips. Each lane represents a specimen. 

1 kb ladders were used as size standards. 

Many samples had compromised DNA integrity (defined as the ‘intactness’ of the DNA, which 

decreases by degradation). Of the 96 samples, 49 (51.04 %) maintained moderate DNA integrity, 38 

had low integrity (39.58 %), and only 9 yielded high integrity DNA (9.38 %) (Figure 8). 

 
Figure 9 Agarose results for tissue type and storage DNA quality, which tested frozen muscle that has been 

through at least one freeze-thaw cycle (A), frozen muscle that has never been defrosted (B), pectoral fin stored 

dry (C), and adipose fin stored in ethanol (D). 1 kb ladders were used as size standards. 

DNA extracts from tissue types and modes of storage available in the archive indicated muscle tissue 

that had never been defrosted maintained the highest DNA integrity DNA (B), followed by adipose 
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fins stored in ethanol (D), while muscle tissue with at least one freeze-thaw cycle (A) and ethanol-

stored adipose (C) suffered moderate degradation (Figure 9).  

C O M P L E T E   D N A   Q U A L I T Y   A S S E S S M E N T 

DNA quantity was highly variable between all tissue and storage types and ranged between 
0.68 – 26.53 µg (Table 5).  

Table 5 DNA quality, quantity, purity for all extractions of S. trutta for available tissue types and their storage 
mode. 

Tissue type & storage 
% DNA Integrity (n)   Mean DNA Quantity   Mean DNA Purity 

n High Moderate Low   n Yield (ng) SD   n 260/280 260/230 

Dried-Adipose clips 46 23.91 (11) 56.52 (26) 19.57 (9)  46 19699.37 18187.75  29 2.08 2.24 

Ethanol-Adipose clips 97 31.96 (31) 49.48 (48) 18.56 (18)  97 6548.03 7423.28  70 2.05 2.42 

Frozen-Adipose clips 3 100.00 (3) 0.00 (0) 0.00 (0)  3 679.09 268.09  - - - 

Dried-Pectoral fins 95 6.32 (6) 34.74 (33) 58.95 (56)  100 26531.9 21798.11  38 2.06 2.21 

Ethanol-Pectoral fins 13 0.00 (0) 0.00 (0) 100.00 (13)  13 20594.74 11695.73  13 2.07 1.95 

Frozen-Muscle tissue 98 71.43 (70) 19.38 (19) 9.18 (9)  99 947.31 559.1  - - - 

Defrosted-Muscle tissue 26 0.00 (0) 7.69 (2) 92.31 (24)   26 14425.6 7068.22   26 2.08 2.22 

Man-Whitney tests showed the median yields in dried-adipose fins yielded significantly more than 

the ethanol-stored (p < 0.0001, 95% Confidence Interval 6567-11 869 [ng]) but this was not observed 

for pectoral fins (p 0.7021). Dried-adipose fin-clips also provided significantly less yield than dried-

pectoral fins (p 0.0109, 95% CI 1314-9376). Yield was lowest in all frozen tissues compared to non-

frozen storage methods (ps < 0.005). Yield difference between defrosted-muscle and dried-adipose 

fins was not significant (p 0.4781), but defrosted-muscle was significantly lower than dried-pectoral 

fins (p 0.0024, 95% CI 2496-11 625). Mean purity was consistent between all samples (~ 2) with 

some variability (SD < 0.3) (Table 5). The proportions of DNA integrity observed are illustrated below 

(Figure 10). 

 
Figure 10 Stacked bar chart showing percentages of extractions that yielded DNA of high, moderate, and low 

integrity from S. trutta tissue types and their modes of storage, data derived from Table 5. 
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DNA integrity was highly variable between the samples. Dried- and ethanol-stored adipose fins 

yielded similar proportions of low integrity DNA (19.57 % and 18.56 %), with ethanol-storage 

yielding 8.05 % more high integrity DNA, the remainder of both containing moderate integrity (Figure 

10). Frozen-adipose fins provided very promising results, but with a sample size of three, this result 

is precarious. Dried-pectoral fins yielded 58.95 % low integrity DNA and only 6.32 % of high integrity. 

Ethanol-stored pectoral fins provided only low integrity but this result is also cautionary (n 13) (Table 

5). Frozen-muscle tissue yielded the lowest 9.18 % of low integrity, and the most 71.43 % of high 

integrity DNA. Defrosted-muscle tissue yielded 92.31 % of highly degraded DNA, and only 7.69 % 

DNA of moderate integrity. Frozen adipose consistently provided DNA of high integrity (100%) 

followed by frozen-muscle tissue (71.43%) which also provided the next lowest proportion of low 

integrity DNA (9.18 %). Ethanol-stored pectoral fins provided the most low integrity DNA (100%), 

followed by defrosted-muscle tissue (92.31 %) which also failed to provide any of high integrity 

(Figure 10).  

D N A   I N T E G R I T Y   I N D E X   R A T I N G 

Descriptive statistics of the IIR describe the typical DNA integrity found across all the extractions 

undertaken in this study, separated by tissue and storage type are displayed (Table 6). 

Table 6 Descriptive statistics of Integrity Index Rating of DNA extracted from every S. trutta in this study by 

tissue and storage type. 

Tissue/storage n Mean SD Minimum Q1 Median Q3 Maximum 

Dried-adipose 46 0.52 0.33 0.00 0.50 0.50 0.63 1.00 

Ethanol-adipose 97 0.57 0.35 0.00 0.50 0.50 1.00 1.00 

Frozen-adipose 3 1.00 0.00 1.00 1.00 1.00 1.00 1.00 

Dried-pectoral 95 0.23 0.30 0.00 0.00 0.00 0.50 1.00 

Ethanol-pectoral 13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Frozen-muscle 98 0.81 0.33 0.00 0.50 1.00 1.00 1.00 

Defrosted-muscle 26 0.04 0.14 0.00 0.00 0.00 0.00 0.50 

Abbreviations: n, number of specimens in sample; SD, standard deviation; Q1, first interquartile range; Q3, third interquartile 

range. 

IIR data is likely non-parametric so interpretations should include considerations of the median, mean, 

SD, and interquartile ranges (Table 6). Defrosted-muscle DNA extraction was considered a positive 

control for DNA degradation and had an index of 0.04 ± 0.14 SD, which was significantly less than 

the mean IIR for frozen-muscle tissue (0.81 ± 0.33) (p < 0.0001). No significant difference was seen 

between dried and ethanol-stored adipose fins (p 0.4866) and adipose fins yielded significantly 

greater proportions of high integrity DNA compared to pectoral fins of the same storage mode 

(ps < 0.0001). These results coincide with the results observed earlier (Table 5), including the 

interquartile ranges that reflect Figure 10. 
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E X T R A C T I O N   O F   D N A   F O R   P O P U L A T I O N   G E N E T I C   A N A L Y S I S :   

P L A T E   1   &   2 

The following gel images are of Plate 1 & 2’s DNA auto-extracted at the NHM. 

 
Figure 11 Agarose gel image of plate 1 - 96 DNA extractions from S. trutta frozen muscle tissue mostly, and a 

few fin clips. Each lane represents an individual trout. 

DNA integrity for 76.04 % (n 73) of plate 1 extractions were optimal (Figure 11). Mean IIR across the 

plate was 0.83 ± 0.32 SD; mean yield was 1.02 µg/µL ± 0.60 SD. 

 
Figure 12 Agarose gel image of plate 2 - 96 DNA extractions from S. trutta dry-stored pectoral and ethanol-

stored adipose fin clips. Each lane represents an individual. 

DNA integrity for 50 % (n 48) of plate 2 extractions were low, and 25 % (n 24) of both moderate and 

high (Figure 12). Mean IIR was 0.38 ± 0.42 SD; mean yield was 24.36 µg/µL ± 23.77 SD and was 

significantly lower than the DNA IIR of plate 1 (p < 0.0001). 
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D N A   Q U A L I T Y   C O M P A R I S O N   P O S T O N E   C R Y O – E X T R A C T I O N 

DNA quality and quantity of the manual DNA extractions of frozen muscle tissue post 1 cryo-

extraction are compared with that of the same specimens prior to the last cryo-extraction (Table 7).  

Table 7 DNA quality and quantity measurements for additional extractions - Comparison between automated 

(Qiagen Biosprint 96®) and manual extraction (Qiagen DNeasy® Blood & Tissue) post 1 cryo-extraction. 

  Automated     Manual   

Sample ID Yield (ng) Quality IIR  Yield (ng) Quality IIR 

LFD5 987.45 High 1  455.04 High 1 

RTA5 684.97 Moderate 0.5  476.71 Moderate 0.5 

LMG2 665.28 High 1  773.93 High 1 

LMG3 488.65 High 1  744.98 High 1 

LMG5 566.95 High 1  399.51 Moderate 0.5 

LMG6* - - -  891.66 Moderate - 

LMG6* - - -  648.48 High - 

LFM34 506.05 High -  - - - 

LFM35 658.30 High 1  582.86 Moderate 0.5 

LFM36 774.30 High 1  972.72 High 1 

LFM37** 930.90 High 1  3956.50 High 1 

LAP8 951.84 High 1  492.15 Moderate 0.5 

LAP19 723.55 Moderate 0.5  638.83 Moderate 0.5 

LAP29 997.60 High 1  660.06 High 1 

LAP30 961.35 Moderate 0.5  824.11 Moderate 0.5 

RCA1 458.20 High 1   611.81 High 1 

Mean: 739.67  0.88   655.20**  0.77 

SD: 189.34  0.21  164.48**  0.26 

*LMG6 had twice as much tissue cryo-extracted and therefore was extracted in two separate tubes, as the specimen had not 

been extracted before and was used to replace another specimen for the same site. 

**Mean and SD values calculated with the removal of sample LFM37 which heavily skewed the averages. 

Results from the additional extractions show that DNA integrity was maintained at the same IIR post 

one cryo-extraction for all extractions except LMG5, LFM35, and LAP8 which deteriorated from high 

to moderate integrity. The mean IIR of the DNA extracted subsequently fell from 0.88 ± 0.21 SD (for 

the automated), to 0.77 ± 0.26 SD after one cryo-extraction cycle (for the manual), an insignificant 

decrease of 0.12 (p 0.2565, n 13) (Table 7).  
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D N A   P U R I F I C A T I O N   A N D   C O N C E N T R A T I O N 

Phenol-Chloroform and ethanol purification successfully removed contaminant proteins following 

RNAse treatments, increasing the mean IIR from 0.56 ± 0.27 SD to 0.63 ± 0.36 SD (n 32) (Table 8).  

Table 8 DNA yield post phenol-chloroform isoamyl alcohol and ethanol precipitation. 

  Sample ID PRE-PCI-E POST-PCI-E Loss % PRE-PCI-E POST-PCI-E PRE- POST- 

# Label ID Yield (ng) Yield (ng) Yield (ng) 260/280 260/230 260/280 260/230 IIR IIR 

1 REW 43 29336.00 13578.00 53.72 2.1 2.3 1.8 2.2 1 1 

2 REW 44 23160.00 4138.50 82.13 2.1 2.2 1.8 2.0 1 1 

3 REW 45 84148.00 21948.00 73.92 2.1 2.3 1.8 2.0 1 0.5 

4 LMA 2 6851.50 1506.60 78.01 2.1 2.1 1.6 1.1 1 1 

5 GRU 1 3270.00 1460.10 55.35 2.0 2.4 1.7 1.2 0.5 0.5 

6 GRU 2 2550.00 1274.10 50.04 2.0 2.5 1.5 1.1 0.5 0.5 

7 GRU 3 5312.00 1506.60 71.64 2.0 2.4 1.6 1.1 0.5 0.5 

8 GRU 4 6851.00 1720.50 74.89 2.1 2.5 1.7 1.1 0.5 0.5 

9 GRU 5 8143.00 1043.40 87.19 2.0 2.5 1.5 1.2 0.5 1 

10 STD 1 11424.00 3966.80 65.28 2.0 2.3 1.6 1.1 0.5 1 

11 STD 2 10200.00 3064.40 69.96 2.0 2.6 1.5 1.1 0.5 1 

12 STD 3 20400.00 - 100.00 2.0 2.6 1.5 1.6 0.5 0 

13 McF 1 3184.00 - 100.00 2.0 2.7 1.5 1.0 0.5 0.5 

14 McF 2 6749.00 676.80 89.97 2.1 2.5 1.6 1.0 0.5 1 

15 McF 3 5152.00 755.76 85.33 2.0 2.6 1.6 1.4 0.5 0 

16 McF 4 4432.00 500.08 88.72 2.0 2.7 1.5 0.9 0.5 0 
17 McF 5 1416.00 355.32 74.91 2.0 2.9 1.5 1.5 0 0 

18 LNF 1 1102.40 1193.80 0.00 2.0 2.8 1.6 2.7 0.5 1 

19 LNF 2 4256.00 1156.20 72.83 2.0 2.5 1.5 1.4 0.5 0.5 

20 LNF 3 2960.00 742.60 74.91 2.0 2.5 1.5 1.7 0.5 0.5 

21 LNF 4 5040.00 396.68 92.13 2.0 2.5 1.6 1.8 0.5 1 

22 LNF 5 1872.00 708.76 62.14 2.0 2.7 1.5 1.9 0.5 0.5 

23 TAG 1 1728.00 738.84 57.24 2.0 2.8 1.6 1.4 0.5 0.5 

24 TAG 2 11594.00 7238.00 37.57 2.0 2.5 1.7 1.7 0.5 1 

25 KER 1 3136.00 1090.40 65.23 2.1 2.5 1.6 1.8 0.5 0.5 

26 KER 2 2816.00 849.76 69.82 2.1 2.5 1.6 1.6 0.5 1 

27 KER 3 3344.00 919.32 72.51 2.1 2.5 1.5 1.8 0 0.5 

28 KER 4 4512.00 321.48 92.88 2.0 2.5 1.5 2.4 0.5 0 

29 KER 5 6562.00 2801.20 57.31 2.0 2.5 1.9 2.5 0 0.5 

30 COU 1 1251.84 1193.80 4.64 2.2 2.1 1.6 1.7 1 1 

31 COU 2 5760.00 6956.00 0.00 2.2 2.1 1.9 2.4 1 1 

32 COU 3 2419.20 4361.60 0.00 2.1 2.2 1.9 2.3 1 0.5 

  Mean: 9091.62 2938.78 64.38 2.1 2.5 1.6 1.6 0.56 0.63 
    SD: 15034.75 4507.75 28.02 0.1 0.2 0.1 0.5 0.27 0.36 

DNA yield prior and post PCI-E purification indicated substantial losses of DNA had occurred. Mean 

loss of DNA yield was 64.38 % ± 28.02 SD after PCI-E purification (Table 8). Purity was also a 

consistent issue across all samples after PCI-E with mean 260/280 and 260/230 ratios of 1.61 ± 0.13 

and 0.49 SD respectively. This made many samples unsuitable for a RADseq approach and so a 

microsatellite marker approach using the BTMP (Keenan et al., 2013) was adopted to carry out the 

study from hereon.  
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B T M P - C U S T O M - P A N E L – 4   O P T I M I S A T I O N   &   M U L T I P L E X I N G 

Fluorescent labelled primers successfully amplified target regions individually across three 

representative samples (Figure 13) and when multiplexed at 20 and 10 µL reaction volumes 

(Figures 15 & 16). Which allowed all samples to be amplified following the 10 µL multiplexed 

protocols outlined in Tables 3-5 (Figure 16).  

 
Figure 13 Agarose gel (1.5%) image of labelled BTMP test 2. 100bp ladder was used as size standards. 

All modified primers amplified successfully in all except RCA2 for loci Ca054565a (Figure 13). 

 

Figure 14 Agarose gel (1.5%) image of labelled BTMP multiplex test 1 with reaction volumes 20 µL and 10 µL 

for RCA2 and LMA2 . 100 bp ladder was used as size standards. 

Gel results showed that both reaction volumes amplified successfully, with the 10 µL reaction volume 

also giving a stronger signal (due to doubled starting concentration). Identical banding patterns for 

RCA2 and LMA2 was observed between both reaction volumes (Figure 14). 
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Figure 15 Agarose gel (1.5%) image of labelled BTMP multiplex test 2 with 10 µL reaction volumes. 100 bp 

ladder was used as size standards. 

Multiplexed 10 µL reaction volumes amplified successfully in a representative sample (n 16) 

(Figure 15). 

B T M P - C U S T O M - P A N E L - 4   P C R   R U N S   1 – 4 

All 192 samples of trout DNA were successfully amplified across four separate runs (n 48) (Figure 16). 

Despite low fluorescence in a few samples, their bands are visible (e.g. LLm16). Gel images of all 

runs can be found in Appendix 1. 

 

Figure 16 Agarose gel (1.5%) image of BTMP-custom-panel-4 amplification run 3 using 10 µL reaction volumes. 

100bp ladder was used as size standards. 
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1 . 3 :   D I S C U S S I O N 

D N A   Q U A L I T Y   A S S E S S M E N T 

The trout tissue archive contained samples of varying storage age and previous research use. 

Consequently, it was necessary to undertake an analysis of DNA integrity, quantity, and purity. These 

parameters influence choice of methodology when conducting population genetic studies, and 

requirements for successful NGS methods are very strict (Muhammad et al., 2016; Bonin et al., 2004; 

Ross et al., 1990; Crow and Kimura, 1970). Results from the initial 96 fin-clips subsampled from the 

archive indicated the specimens had suffered varied levels of DNA degradation (Figure 8), with 39.58 % 

creating a ‘bottom-up smear pattern’ indicating DNA of ‘low integrity’ (e.g. RTA group). ‘Top-down 

smears’ are visible across 51.04 % lanes, indicating DNA of ‘moderate integrity’, which may still be 

sufficient for NGS analysis and are certainly more than adequate for extracting information on 

traditional markers such as microsatellites (Graham et al., 2015). ‘Distinct bands at the top of the 

lanes’ indicating high integrity DNA was observed in only 9.38 % of the samples (e.g. REW 43-44). 

These extractions were not RNAse treated before the gel, meaning some lanes showing moderate 

degradation may in fact be high quality obscured by fluorescing RNA which smears the lane. Taken 

together, these results suggest the archived fin-clips are not optimal for genotyping by NGS. When 

DNA integrity was investigated for each sample type (Figure 9), frozen muscle tissue that had never 

been defrosted, and ethanol-stored adipose fins yielded high integrity DNA, with frozen muscle 

showing slightly less degradation. Muscle that been through a freeze-thaw cycle and dried-pectoral 

fins provided DNA of, at best moderate, to low integrity. This suggested frozen-muscle tissue should 

be prioritised for extracting high integrity DNA. 

C O M P L E T E   D N A   Q U A L I T Y   A S S E S S M E N T 

When raw quality data for all extractions in this study were pooled, mean DNA yield was variable 

between tissue types and was consistently highest in dried-storage for fin clips compared to other 

storage modes of the same fin-type (Table 5). Pectoral fins yielded the greatest quantities of DNA 

out of all tissue types, but the high proportions of low integrity DNA made pectoral fins suboptimal 

tissues for an NGS approach (Figure 10). However this was not the case with adipose-fins, therefore, 

if dry storage is all that is available, adipose fins are the recommended tissue type for sampling and 

archiving, as the large proportion of samples with moderate DNA integrity may still be suitable for 

NGS techniques (Graham et al., 2015). Frozen-storage was optimal over dried- and ethanol-storage 

for maintaining high DNA integrity in muscle and adipose fin tissue (Figure 10), but suffered from 

significantly lower DNA yields (Table 5) – this reduction in yield was observed in another study (Ross 

et al., 1990), suggesting as much tissue as sustainably possible should be sampled if freezing is the 

storage method of choice. High levels of DNA degradation made dried-pectoral fins and defrosted-

muscle suboptimal for population genetic studies archiving and should be avoided (Figure 10). Mean 

purity ratios were optimal across all groups and did not show any clear trends (Table 5).  
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D N A   I N T E G R I T Y   I N D E X   R A T I N G 

The mean IIR (proposed in this study) provides an index value where reaching 1 indicates all DNA 

samples have high integrity, as seen in the frozen-adipose tissue; 0 indicates all to be highly 

degraded as in ethanol-stored pectoral fins. Around 0.5 indicates possibilities: either most samples 

are of moderate integrity, or the sample has similar proportions of high and low integrity DNA, or a 

combination of the two, as seen in the dried and ethanol-stored adipose fins (Figure 10).  Dried-

pectoral fins and frozen-muscle tissue show contrasting percentages with both having either mostly 

high or low quality with a small amount of the opposite, and an intermediate amount of moderate 

quality DNA - the mean index of each reflects this contrasting difference at 0.23 and 0.81. IIR 

descriptive statistics show their interquartile ranges also reflect the stacked bar chart (Figure 10), 

and also allows the use of standard deviations to get an idea of typical sample variability, furthermore, 

the statistical results also reinforce earlier observations (Table 5 & Figure 10). Based on this 

reasoning, rather than describing multiple percentages when comparing groups of extractions, DNA 

Integrity Index Rating or IIR will be used to describe and compare DNA integrity of sample groups 

from hereon. Frozen-adipose and ethanol-stored pectoral fins showed extreme results but were not 

statistically analysed due to insufficient sample sizes.  

E X T R A C T I O N   O F   D N A   F O R   P O P U L A T I O N   G E N E T I C   A N A L Y S I S 

The gel results from plate 1 and 2 indicated frozen muscle tissue consistently provided higher quality 

DNA than fin clips (Figures 12 & 13). Mean IIR was 0.82 ± 0.34 SD for the frozen-muscle tissue on 

Plate 1, and was significantly greater than the DNA IIR obtained from the adipose and pectoral fins 

on Plate 2 (IIR 0.38 ± 0.42 SD), reinforcing frozen-muscle as the tissue and storage of choice for 

acquiring high integrity DNA. Mean yield for Plate 1-frozen muscle was below optimal limits 

(1.02 µg/µL ± 0.60 SD) and required additional extractions. Plate 2-fin clips provided high yields 

except for one or two small adipose-clips (mean yield: 24.36 µg/µL ± 23.77 SD), coinciding with 

earlier results. 

D N A   Q U A L I T Y   C O M P A R I S O N   P O S T   O N E   C R Y O – E X T R A C T I O N 

The cryo-extraction method may have minimised degradation for all but three samples where DNA 

integrity decreased from high to moderate. A controlled test is needed to further validate this 

hypothesis; if true, removing and returning the fish to the freezer one at a time would minimise 

degradation further. Sufficient yield was extracted in all additional manual extractions and is 

comparable to the automated extractions (Table 7). DNA was pooled so quantity and quality for most 

samples were then optimal for NGS. 

D N A   P U R I F I C A T I O N   A N D   C O N C E N T R A T I O N 

RNAse treatment was successful for the required extractions, increasing mean IIR from 

0.56 ± 0.27 SD to 0.63 ± 0.36 SD (n 32) (Table 8).  Subsequent purification by PCI-E extraction 

resulted in intolerable losses of DNA yield (mean recovery 41.64 % ± 37.79 SD), which made 

multiple samples, some highly informative and irreplaceable, suboptimal for a RADseq approach 
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which was initially intended for this study. Tests were conducted, measuring DNA yield at each step 

in the PCI-E protocols (results not shown), but the results could not show where the loss occurs as 

the loss was minimal during tests. When purifying the study’s actual samples, the unexpected losses 

occurred. 

The yield loss coupled with low integrity in many samples made a microsatellite approach more 

appealing, as it is more robust with samples of lower quality, as well as allowing the inclusion of the 

highly informative, irreplaceable samples that were no longer suitable for NGS and would have been 

excluded otherwise. Ultimately, the BTMP microsatellite marker array became the project approach 

hereon.  

M I C R O S A T E L L I T E   M A R K E R S :   B T M P – C U S T O M – P A N E L - 4 

The panel of microsatellite markers used in this study initially developed by Keenan et al., (2013) – 

The Beaufort Trout MicroPlex, comprised of 38 loci over 4 panels. BTMP-Panel-4, comprised of nine 

loci, had two overlapping bp size ranges for the microsatellite amplicons on fluorophore groups FAM 

and VIC (Table 1), which could result in erroneous allele scoring for peaks within the overlap in their 

traces. SsaD48, labelled with the FAM fluorescent dye, has an overlapping size range with 

SSa407UoS; mOne101 overlaps with CA054565b which is co-amplified (from CA054565a) using the 

same VIC label. This led to the reconfiguration for the Custom BTMP-Panel-4 (Table 1) which 

removed overlapping allele size ranges which would have occurred between 304-320 bp on the FAM 

fluorophore group, as alleles 304, 312, and 320 did appear on SSa407Uos (Locus 2), and could have 

been obscured by potential alleles in SsaD48. Relabelling mOne101 with the PET fluorophore was 

also successful at reducing overlapping size-ranges that was present from the co-amplification of 

CA054565b (which was not scored due to noise-filled erratic traces). 

S U G G E S T I O N S   F O R   F U T U R E   S A M P L I N G 

Based on results, freezing whole trout specimens for population genetic studies could be prioritised 

where and when it is sustainably possible. Despite the results, adipose-fins are not recommended to 

be taken from catch-and-release specimens as recent literature has shown that it is a sensory organ 

that affects swimming efficiency in brown trout (Buckland-Nicks, 2016; Buckland-Nicks et al., 2011), 

however, results suggest it does maintain DNA integrity better than pectoral-fins and could be used 

when extracting tissue from frozen specimens - though yield is expected be the relatively low due to 

freezing conditions (Ross et al., 1990) coupled with the relatively small mass of adipose fins. 

Pectoral-fins should be further tested with alternative storage modes (such as frozen, or perhaps 

ethanol-frozen) to examine the extent of their usefulness for population genetic studies, particularly 

with regards to NGS techniques. Progress has been made in DNA extraction techniques from fish 

scales which may provide another, non-invasive alternative (Kumar et al., 2007), and could be tested 

for their efficacy on salmonid scales. 
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C H A P T E R   2 :   P O P U L A T I O N   G E N E T I C   A N A L Y S E S   O F    

W E S T E R   R O S S   B R O W N   T R O U T   ( S A L M O   T R U T T A ) 

2 . 1 :   M E T H O D O L O G Y 

S A M P L I N G 

Sampling within Wester Ross included 35 different sites, all but one were within 15 km of Loch Maree, 

with Loch Canaird (which is just over 30 km north-east) as the exception. The sample contained 192 

Scottish trout, of which 187 were sampled from Wester Ross. Of these, 36 brown trout were from 

sites around North-West Loch Maree that outflow directly into Poolewe estuary, or the River Ewe 

which then flows directly into Poolewe. Central-West Loch Maree had 32 brown trout sampled from 

its tributaries, while 26 trout were sampled from rivers in South-East Loch Maree – both of which 

drain directly into their respective cardinal points of Loch Maree before outflowing to Poolewe via the 

River Ewe. Another 35 originate nearby on the West-Coast, coming from sites which drain out to 

Gairloch estuary. The last 5 brown trout came from Loch Leven (~ 200 km away) which is next to the 

East-Coast in Kinross, ~ 27 km north of Edinburgh. These groupings constitute the regional 

populations of brown trout sampled, and are considered to represent reproductive groups caught in 

their natal watercourses. The last 58 specimens are sea trout, sampled outside their natal streams; 

35 were caught heading up the River Ewe, 12 in Flowerdale bay and its outflow, 3 in Poolewe, and 

6 from Canaird estuary and its outflow, and another 2 caught in Loch Maree (one sea and one lake 

trout) (Table 9 & Figure 17). Specimens were sampled using a combination of electrofishing, seine 

netting, sweep netting, fyke netting, and fly fishing techniques.  
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Figure 17 Hand traced line-drawing of Wester Ross study area showing Loch Maree and neighbouring 

catchments that were sampled. Red icons represent sample sites that drain into NW Loch Maree and Poolewe. 

Green represents sites that drain into CW Loch Maree. Yellow mark sites draining into SE Loch Maree. Blue 

sites drain into Gairloch on the West Coast. Purple marks where sea trout were caught in Flowerdale estuary. 

Grey shows were sea trout were sampled within Poolewe, the Ewe river, and Loch Maree. In the satellite map: 

Pink marks estuarine Loch Canaird and its outflow. Orange marks Loch Leven on the east coast of Scotland. 

Significant barriers to fish movement are indicated as: Black chevrons for impassable waterfalls. Black and white 

trapezia for dams. (Source map: Ordnance Survey acquired from Digimap, Edina). 
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Table 9 Summary of sites sampled in Loch Maree, its neighbouring catchments, and Loch Leven, site labels, number of specimens genotyped (n), morphs present, sampling dates (with n 

sampled in which year if samples were obtained across multiple years, the tissue types used to extract specimen DNA, and sample site GPS coordinates. 

# Sample sites Label n Morphs 
Sampling dates 

Tissue type used 
GPS Coordinates 

M Years (n sampled if across multiple years) Latitude Longitude 
(1) NORTH-WEST LOCH MAREE  (36)           
 Boor catchment             
1      Loch Boor LBR 5 Brown 7 2012 (1) 2013 (2) 2014 (2)   Frozen muscle 57° 45' 11.40" N 5° 37' 56.22" W 

 Tournaig catchment  7           
2      Loch nan Dailthean LND 5 Brown - 2010     Dried pectoral fins 57° 47' 20.10" N 5° 34' 17.85" W 
3      Nursery lochan NUR 2 Brown 7 2016     Frozen muscle 57° 47' 13.55" N 5° 30' 54.50" W 

 Loch Maree catchment  82           
      Ewe system  24           
4      Burn Allt an Leth-chreige ALC 5 Brown 7 2014     Frozen muscle 57° 44' 44.53" N 5° 35' 56.90" W 
5      Loch Laraig LL 5 Brown 7 2012     Frozen muscle 57° 43' 58.17" N 5° 37' 20.45" W 
6      Loch Laraig "micro" LLm 4 Brown 7 2012     Frozen muscle 57° 43' 59.30" N 5° 37' 7.03" W 
7      Kernsary mainstream KER 5 Ferox 10 2013     Ethanol adipose fins 57° 45' 13.33" N 5° 32' 37.29" W 
8      McFarlane burn McF 5 Ferox 10 2013     Ethanol adipose fins 57° 45' 5.93" N 5° 32' 31.39" W 

(2) CENTRAL-WEST LOCH MAREE  (32)           
9      Loch an Aird-sheilg LAS 5 Brown 9 2009     Ethanol adipose fins 57° 43' 9.14" N 5° 35' 14.18" W 
10      Loch Doire na h-Airighe LDA 5 Brown 7 2012 (4) 2014 (1)    Frozen muscle 57° 42' 17.23" N 5° 34' 29.50" W 
11      Elf's Loch ELF 5 Brown 7 2012 (1) 2014 (4)    Frozen muscle 57° 42' 7.77" N 5° 34' 3.11" W 
12      Slattadale burn STD 3 Brown 10 2013     Ethanol adipose fins 57° 41' 26.22" N 5° 32' 37.62" W 
13      River Talladale (above WF)  RTA(a) 5 Brown 7 2015     Frozen muscle 57° 38' 32.51" N 5° 29' 34.82" W 
14      River Talladale (below WF) RTA(b) 4 Brown 7 2015     Dried pectoral fins 57° 40' 15.40" N 5° 29' 25.86" W 
15      Loch na Fideil burn LNF 5 Brown 10 2013     Ethanol adipose fins 57° 40' 28.65" N 5° 29' 8.59" W 
       Loch na h-Oidhche outflow LNO 4 Brown 7 2015         Dried pectoral fins 57° 38' 25.29" N 5° 32' 47.16" W 
       Loch na h-Oidhche LOI 1 Brown 7 2015         Dried pectoral fins 57° 38' 21.31" N 5°32'34.68" W 
(3) SOUTH-EAST LOCH MAREE  (26)           
16      River Grudie GRU 5 Brown 10 2013     Ethanol adipose fins 57° 39' 4.53" N 5° 24' 30.88" W 
17      Loch Coulin COU 5 Brown 11 2009 (2) 2011 (3)    Ethanol adipose fins 57° 32' 37.10" N 5° 18' 58.89" W 
18      Taagan burn TAG 2 Brown 10 2013     Ethanol adipose fins 57° 37' 17.01" N 5° 19' 34.02" W 
19      Loch Meallan Ghobhar LMG 5 Brown 7 2015     Frozen muscle 57° 37' 51.87" N 5° 18' 1.84" W 
20      Lochan Fada LFD 5 Brown 7 2014 (2) 2016 (3)    DPF (2), FM (3) 57° 40' 23.41" N 5° 17' 00.72" W 
21      Loch an Sgeireach LSG 4 Brown 7 2014     Frozen muscle 57° 40' 23.37" N 5° 16' 1.67" W 
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# Sample sites Label n Morphs 
Sampling dates 

Tissue type used 
GPS Coordinates 

M Years (n sampled if across multiple years) Latitude Longitude 
(4) WEST-COAST, GAIRLOCH  (35)           
 Sands catchment             
22      Sands River SR 5 Brown 7 2012     Frozen muscle 57° 44' 57.74" N 5° 45' 40.27" W 
 Smithstown catchment             
23      Loch a' Gharbh-Doire LGD 5 Brown 7 2015     DAF (1), DPF (4) 57° 44' 52.34" N 5° 42' 2.64" W 
 Flowerdale catchment  20           
24      Loch na Feithe Mugaig LFM 5 Brown 7 2016     Frozen muscle 57° 42' 40.98" N 5° 35' 41.57" W 
25      Burn Allt a' Ghlinne AAG 5 Brown 7 2015     Dried pectoral fins 57° 42' 28.61" N 5° 36' 12.46" W 
26      Cassius' Lochan CAS 5 Brown 7 2010 (3) 2012 (2)    Dried adipose fins 57° 42' 36.59" N 5° 37' 9.39" W 
27      Loch Airigh a' Phuil LAP 5 Brown 7 2012 (1) 2014 (4)    Frozen muscle 57° 43' 10.51" N 5° 37' 28.11" W 
 Kerrysdale catchment  5           
28      Loch na h-Oidhche outflow LNO 4 Brown 7 2015     Dried pectoral fins 57° 38' 25.29" N 5° 32' 47.16" W 
29      Loch na h-Oidhche LOI 1 Brown 7 2015     Dried pectoral fins 57° 38' 21.31" N 5° 32' 34.68" W 
(5) EAST-COAST, LOCH LEVEN  (5)           
 Leven catchment             
30      Loch Leven LEV 5 Brown 8 2011     Ethanol adipose fins 56° 11' 57.53" N 3° 22' 47.39" W 
(6) NON-RESIDENT GROUPS   (58)           
      Canaird estuary sea trout  6           
31      River Canaird (estuary outflow) RCA 2 Sea (finnock) 7 2014     Frozen muscle 57° 57' 18.81" N 5° 10' 40.75" W 
32      Loch Canaird (estuary) CES 4 Sea (3)/brown (1) 7 2011 (2) 2013 (1) 2014 (1)   Ethanol adipose fins 57° 56' 39.51" N 5° 10' 59.33" W 
        Flowerdale estuary sea trout             

33      Flowerdale estuary FES 12 Sea 7 2014 (3) 2015 (2) 2016 (7)   DAF (4), EAF (3), FM (5)  57° 42' 43.56" N 5° 40' 43.34" W 
      River Ewe sea trout             
34      Poolewe (estuary) PEW 3 Sea (finnock) 7 2014     Ethanol adipose fins 57° 46' 7.42" N 5° 36' 13.27" W 
35      River Ewe (estuary outflow) REW 35 Sea (finnock) 7 2006 (2) 2012 (1) 2014 (10) 2015 (21) 2016 (2) DPF (1), EAF (10), DAF (24) 57° 45' 44.15" N  5° 36' 02.23" W 
36      Loch Maree LMA 2 Lake/sea-hybrid? 7 2016 2017       DAF (1), EPF (1) 57° 41' 23" N 5° 27' 27" W 

Abbreviations: n, number of specimens, parenthesised and bold counts measure subsequent totals; M, month of the year/s sampled; within “Tissue type used” column: DAF, dried adipose fins; DPF, dried pectoral 

fins; EAF, ethanol adipose fins; EPF, ethanol pectoral fins; FM, frozen muscle. 

A summary of site information sampled in this study (Table 9), which includes Loch Maree, its neighbouring catchments, and Loch Leven. The information displays sample 

site labels, the number of specimens genotyped (n) – also grouped by in bold by catchment (in italic) and region (in parenthesis), the trout morphs present, sampling dates 
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(with n sampled in which year if samples were obtained across multiple years, the tissue types used 

to extract specimen DNA, and sample site GPS coordinates. Regional and sea trout cohorts have 

been colour matched with the same groups in Figures 17, 28 & 29. 

Sample sites were selected based on locality, hydro-connectivity and the presence of specific trout 

morphs. McFarlane burn and the Kernsary mainstream represent known Ferox habitats (Hughes et 

al., 2016). Neighbouring catchments were selected to investigate any levels of introgression between 

catchments. Loch Leven trout was once used to stock Loch Maree (WRFT, no date) and was added 

as an ‘outgroup’, and to investigate possible prevailing genetic contributions. Tissue type and mode 

of storage was also considered when selecting specimens per site, prioritising frozen-muscle tissue 

and ethanol-stored fin clips where available. 

M I C R O S A T E L L I T E   A L L E L E   S C O R I N G 

All microsatellite amplicons were sent to the Natural History Museum, London, for analysis on an 

Applied Biosystems Capillary Array 3130 Series System (© 2004 Applied Biosystems). The raw data 

was calibrated and alleles scored using Genenious 8.0.5 (© 2005 - 2014 Biomatters Ltd.) and its 

associated microsatellite plugin, following its tutorial (Biomatters, 2018) and guided by the BTMP 

allele scorin g notes (Keenan et al., 2013) resulting in the alleles table found in Appendix 3; 

additional details pertinent to allele scoring are provided in Appendix 2. 

F – S T A T I S T I C S 

Intra-population statistics such as allelic richness (AR), expected (HE) and observed heterozygosities 

(HO), and inter-population stats such as GST and DST was calculated using POPTREEW - a web-

based software package for calculating population statistics, genetic distances, and to construct 

population dichotomous trees (Takezaki, Nei, and Tamura, 2014, 2010). Allele frequencies were 

calculated using Arlequin v3.5.2.2 (© 2015 L. Excoffier). 

U N I Q U E   A N D   S H A R E D   A L L E L E S 

Unique alleles found within and shared between populations were identified using Venny 2.1 

(Oliveros, 2007-2015).  

D E P A R T U R E S   F R O M   H A R D Y – W E I N B E R G   E Q U I L I B R I U M 

Significant departures from Hardy-Weinberg equilibrium were tested for using Arlequin v3.5.2.2 (© 

2015 L. Excoffier). 

I N T E R – P O P U L A T I O N    G E N E T I C   D I V E R G E N C E   B Y   D I S T A N C E 

Mantel tests were performed between inter-population pairwise genetic distance, and geo-

hydrological distances between populations using GenAlEx v6.5 (Peakall and Smouse, 2012, 2006) 

(a plugin for Excel © 2010 Microsoft). Observed DST is reported for comparisons between samples 

of similar sizes, while corrected results are cautiously reported for biased comparisons. 
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H E A D W A T E R   P O P U L A T I O N S   &   B A R R I E R S   T O   M O V E M E N T 

In order to assess whether physical barriers had a significant effect on the population structure of the 

wild trout around Loch Maree, sample sites above and below barriers had their genetic diversity 

(allelic richness and expected heterozygosities) statistically compared. Sample sizes were balanced 

by random selection of specimens from larger samples to match group size of available data from 

smaller samples (Figures 22-26). 

 M U T A T I O N – D R I F T   E Q U I L I B R I U M 

Mutation-drift equilibrium was statistically tested for using software Bottleneck v1.2.02 (Cornuet and 

Luikart, 1999). 

P O P U L A T I O N   T R E E 

Neighbour joining trees were constructed from DST values using POPTREEW (Takezaki, Nei, and 

Tamura, 2014, 2010). 

S T A T I S T I C S 

Statistical analyses (e.g. correlational, differential analysis) of data was performed using Minitab® 

17.2.1 (© 2013, 2015 Minitab Inc.). Pearson’s correlation, one-way ANOVA, 2-sample t-tests were 

used to analyse parametric data, and Spearman’s rank correlation and Mann-Whitney tests were 

used to analyse non-parametric data. All data sets were tested for normality and equal variances 

before any tests for difference or association were conducted. 

All statistical tests on all platforms were conducted with a significance α 0.05. Precise P-values are 

presented for possible interpretations (Greenland et al., 2016); unless describing multiple p, then ps; 

or if p 0.0000, then p < 0.0001. 95% Confidence Interval (CI) ranges are also presented with 

significant results for differences. Test statistics will also be presented for significant results 

(e.g. f stats). 

B o n f e r r o n i   C o r r e c t i o n s 

Bonferroni correction was not initially applied to the study’s statistical analysis. The routine use of 

bonferroni corrections has been criticised and it was deemed not necessary as this study’s data 

analysis was exploratory, not confirmative; it was not imperative to avoid type 1 errors; and there 

was no single test of a universal null hypothesis that all tests are not significant (Armstrong, 2014). 

Nonetheless the corrections were made and explored post-hoc. 

G E O G R A P H I C   A N A L Y S I S 

Geographic information such as geo-hydrological distances and the presence of hydrological barriers, 

were gathered using Google Earth Pro v7.3.1.4507 (© 2018 Google Inc.) and Ordnance Survey Maps, 

provided by Digimap, Edina (© The University of Edinburgh) (© Crown Copyright and Database Right 

2018. Ordnance Survey Digimap Licence).  
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A N A L Y T I C A L   S C O P E   A N D   S A M P L E   P O O L I N G   S T R A T E G Y 

Regional groups were defined by the location of their natal river outflows to either the sea, or into 

cardinal regions of Loch Maree (for North-West, Central-West, and South-East Loch Maree). All sites 

which outflow in close proximity were considered a region with < 10 km of hydrological distance 

between the two furthest outflows in all regional groups (Figure 17). All sample sites within each 

region where then pooled into the defined regional sample groups. 

P R I N C I P L E   C O M P O N E N T   A N A L Y S I S   ( P O S T – H O C ) 

A Principle Component Analysis (PCA) was conducted post hoc using the software R v3.4.1 (© 2017 

The R Foundation for Statistical Computing) to investigate individual sample relationships in relation 

to their geographic origin, as well as the discriminatory power of the microsatellite markers. 

 

To do so, the “hierfstat” package (Goudet, 2004) was downloaded and installed from secure CRAN 

mirror: UK (London 1) [https]. Once the hierfstat package was loaded onto a workspace, the following 

commands were used in the following order to execute the analysis: 

1. test<-read.fstat("File name", na.s = c("0", "00", "000", "0000", "00000",  "000000", "NA")) 

2. x<-indpca(test) 

3. plot(x) 

The distribution of individuals of each sample group population were plotted (Figures 28 & 29). 
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2 . 2 :   R E S U L T S 

A L L E L E   S C O R I N G 

Out of the 3 456 scoring attempts 3 432 (99.3 %) were scored successfully. Twelve specimens were 

homozygotes for a null allele at one locus, nine of these were found at Locus 5 (mOne108), one on 

Locus 6 (SSaD170) and two on Locus 7 (Sasa-UBA); no other ambiguous traces were found 

(Table 10). 

Table 10 Number of alleles found in and outside of expected size ranges, and number null alleles found across 

the trout 192 specimens genotyped. 

# Locus n genotyped AR  Null A n outside range A outside Expected SR (bp) Expanded SR (bp) 
1 Str3QUB  192 9 0 4 1 115–175  115-185 

2 Ssa407UoS 192 38 0 - - 204–320 - 

3 CA054565a 192 7 0 2 1 101–120 101-121 

4 CA060177 192 16 0 5 4 234–315 234-340 

5 mOne108 183 36 9 - - 371–518 - 

6 SsaD170 191 25 1 45 9 148–217 123-258 

7 Sasa-UBA 190 29 2 - - 268–523 - 

8 mOne101 192 7 0 - - 155–194 - 

9 Ssa413UoS 192 12 0 2 2 225–282 220-282 
 Total: 1716 179 12 58 17   
 Mean: 190.67 19.89 1.33 11.60 3.40   

Abbreviations: n, number of specimens successfully genotyped; AR found, number of different alleles found; Null A, number 

of alleles that failed to amplify; n outside range; number of specimens with an allele outside the expected size range; A 

outside range, number of alleles found outside expected size range; Expected SR (bp), the size range observed by Keenan 

et al. (2015) in base-pair length; Expanded SR (bp), the expanded size ranges made in this study. 

A few samples with weak signals could still be scored when their traces were viewed at maximum 

scale/resolution (e.g. LLm16, Figure 16). The expected size range was expanded for five out of nine 

loci to allow scoring of novel alleles, determined if a locus in question would otherwise be null and if 

there was at least a second allele beyond the same range. Alleles outside the expected size range 

were most common on Locus 6 - SsaD170 with 11.7% (45/384) found outside; at the other four loci 

< 2 % were found outside expected ranges (Table 10). 
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I N T R A – P O P U L A T I O N   G E N E T I C   D I V E R S I T Y 

Allelic richness was similar between Loch Maree cardinal populations (NWLM, CWLM, and  SELM) 

with an average mean allelic richness of 10.0 ± 0.4 SD, and is similar to Gairloch resident trout 

(10.7 ± 1.8 SE) (Table 11).  

Table 11 Mean allelic richness, multi-locus HE & HO, and mean error, for regional populations of S. trutta in 

Wester Ross & Loch Leven, and at varying coalesced geographic ranges. 

Population n 
AR   HE   HO 

Mean SE   Mean SE   Mean SE 
NW Loch Maree 36 10.0 2.3  0.650 0.106  0.641 0.104 

CW Loch Maree 32 10.4 2.4  0.622 0.105  0.612 0.104 

SE Loch Maree 26 9.6 2.3  0.642 0.098  0.629 0.096 

W Coast Gairloch 35 10.7 1.8  0.710 0.079  0.699 0.078 

Ewe ST* 40 15.0 2.8  0.770 0.069  0.761 0.069 

Flowerdale ST 12 6.7 1.2  0.672 0.095  0.644 0.091 

Canaird ST** 6 5.2 1.1  0.655 0.116  0.600 0.107 

E Coast Leven 5 4.7 0.6  0.734 0.094  0.658 0.084 

Loch Maree residents* 94 14.1 3.5  0.669 0.103  0.666 0.103 
Wester Ross residents** 129 16.6 3.7  0.696 0.098  0.693 0.097 
Wester Ross sea trout*** 58 16.0 3.2  0.752 0.076  0.745 0.075 
All of Wester Ross**** 187 19.4 4.2  0.717 0.090  0.715 0.090 
All residents***** 134 17.1 3.7  0.701 0.097  0.698 0.097 
All specimens 192 19.8 4.1   0.720 0.090   0.718 0.090 

Abbreviations: AR, allelic richness; heterozygosities: HE, expected; HO, observed; n, sample size; SE, standard error. 

*Ewe ST (EST) combines River Ewe (REW) & Poolewe (PEW) sea trout, and the two lake trout caught in Loch Maree (LMA). 

** Canaird ST (CST) include the sea trout caught in Loch Canaird estuary (CES) and its outflowing river (RCA). 
*Loch Maree residents are all the resident trout caught in NW, CW, and SE Loch Maree (NWLM, CWLM, SELM). 

**Wester Ross residents describe all the residents sampled in Wester Ross (all of Loch Maree and Gairloch), 

***WR sea trout group the sea trout from Flowerdale (FES), Ewe (REW, PEW, and LMA) and Canaird (CES, RCA). 

****All of Wester Ross collate all of its resident and sea trout. 

*****All residents coalesce Wester Ross and Leven residents. 

Means and SE were calculated across all nine loci for each population (Tables 12-14). 

No significant difference was observed between the Loch Maree cardinal populations (One-way 

ANOVA, p 0.965, f 0.04), or with Gairloch resident populations (p 0.985, f 0.05). The highest richness 

seen at regional level was in the Ewe sea trout at 15.0 ± 2.8 SE, and was still greater than the Loch 

Maree regional populations when coalesced despite differences in sample sizes (14.1 ± 3.5 SE) 

(Table 11). This was also observed at higher ranges; Wester Ross sea trout AR was 16.0 ± 3.2 SE 

(n 58), which was greater than the WR residents when sample bias was removed (13.0 ± 2.9 SE) 

(n 58). Though this difference was not found statistically significant (p 0.486), suggesting genetic 

diversity at the allelic level is similar between WR residents and sea trout. When all the WR trout 

(resident and anadromous) are grouped as one population (n 187) the combined richness reaches 

19.4 ± 4.2 SE, suggesting the presence of, on average, three alleles per loci between the resident 

and anadromous populations that are also not shared – suggesting the sample range and/or sample 

size may have been insufficient in locating the origins of these sea trout alleles. Despite the small 

sample, when Leven trout (n 5) was grouped with all specimens (n 192), allelic richness reaches 

19.8 ± 4.1 SE, brought by the addition of a Leven-unique allele at loci 5, 8, and 9 (Table 12). 
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Mean AR across all loci across all populations was 9.0 ± 1.8 SE and ranged between 2.5 ± 0.7 SE 

(Locus 3 – Ca054565a) and 15.6 ± 2.2 SE (Locus 2 - Ssa407UoS) tied with 15.6 ± 2.6 SE (Locus 5 

- mOne108). At population level it ranged between 4.7 ± 0.6 SE (Loch Leven) and 15.0 ± 2.8 SE 

(Ewe sea trout). Mean AR at locus level across all specimens in the study was 19.8 ± 4.1 SE, and 

ranged between 7 (Locus 3 CA054565a tied with Locus 8 mOne101) and 36 (Locus 5 mOne108) 

(Table 12).  

Normality tests showed that allelic richness was normally distributed (or Gaussian distributed) across 

all nine loci in all but one population – the Gairloch residents, suggesting brown trout around Gairloch 

may have influences on their allele distribution (Appendix 6.9).  

Table 12 Locus allelic richness (AR) for populations of S. trutta of Wester Ross & Loch Leven, and at varying 

geographic ranges. 

Population n 
Locus 1 Locus 2 Locus 3 Locus 4 Locus 5 Locus 6 Locus 7 Locus 8 Locus 9 
Str3QUB  Ssa407UoS CA054565a CA060177 mOne108 SsaD170 Sasa-UBA mOne101 Ssa413UoS 

NW Loch Maree 36 4 18 1 7 19 16 15 4 6 

CW Loch Maree 32 6 24 3 8 18 15 12 4 4 

SE Loch Maree 26 4 17 1 8 20 14 14 4 4 

W Coast Gairloch 35 5 15 5 12 16 16 16 5 6 

Ewe ST* 40 9 23 6 14 28 22 20 5 8 
Flowerdale ST 12 4 10 2 5 11 10 10 5 3 

Canaird ST** 6 3 11 1 5 8 9 4 4 2 

E Coast Loch Leven 5 3 7 1 4 5 5 6 6 5 

Mean: 4.8 15.6 2.5 7.9 15.6 13.4 12.1 4.6 4.8 
SE: 0.7 2.2 0.7 1.2 2.6 1.9 1.9 0.3 0.7 

LM residents* 94 7 31 3 9 27 19 20 5 6 
WR residents** 129 8 34 6 13 30 21 24 5 8 
WR sea trout*** 58 9 26 6 14 31 24 20 6 8 
All of WR**** 187 9 38 7 15 35 25 29 6 11 
All residents***** 134 8 34 6 13 31 22 25 6 9 
All specimens 192 9 38 7 15 36 25 29 7 12 

*Footnotes match Table 11. 

Mean HE ranged from 0.622 ± 0.105 SE (CW Loch Maree) to 0.770 ± 0.069 SE (Ewe sea trout) and 

showed no significant difference between resident populations of Loch Maree (p 0.981, f 0.02), or 

with the Gairloch residents (p 0.929, f 0.15), indicating the level of intra-population genetic diversity 

is similar between the Wester Ross brown trout populations (Table 13). The same is true when the 

Ewe and Flowerdale sea trout are also compared together with the resident trout (p 0.885, f 0.34). 

Mean HE across all nine loci within all regional populations is 0.682 ± 0.095 SE, with a range between 

0.100 ± 0.050 SE (Locus 3 – CA054565a) and 0.924 ± 0.009 SE (Locus 5 – mOne108) (Table 13). 
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Table 13 Locus expected heterozygosities (HE) for populations of S. trutta of Wester Ross & Loch Leven, and 

at varying geographic ranges. 

Population n 
Locus 1 Locus 2 Locus 3 Locus 4 Locus 5 Locus 6 Locus 7 Locus 8 Locus 9 

Str3QUB  Ssa407UoS CA054565a CA060177 mOne108 SsaD170 Sasa-UBA mOne101 Ssa413UoS 

NW Loch Maree 36 0.597 0.910 0.000 0.793 0.945 0.879 0.842 0.320 0.563 

CW Loch Maree 32 0.490 0.952 0.092 0.774 0.915 0.835 0.837 0.205 0.496 

SE Loch Maree 26 0.544 0.874 0.000 0.574 0.936 0.914 0.826 0.575 0.533 

W Coast Gairloch 35 0.633 0.863 0.238 0.864 0.913 0.907 0.875 0.475 0.619 

Ewe ST* 40 0.694 0.949 0.388 0.865 0.959 0.945 0.922 0.534 0.675 

Flowerdale ST 12 0.562 0.906 0.083 0.627 0.888 0.924 0.906 0.736 0.420 

Canaird ST** 6 0.591 0.985 0.000 0.727 0.939 0.939 0.773 0.773 0.167 
E Coast Loch Leven 5 0.711 0.911 0.000 0.778 0.893 0.822 0.889 0.778 0.822 

Mean: 0.603 0.919 0.100 0.750 0.924 0.896 0.859 0.550 0.537 
SE: 0.026 0.015 0.050 0.037 0.009 0.016 0.017 0.075 0.068 

LM residents* 94 0.568 0.938 0.032 0.770 0.947 0.914 0.878 0.389 0.587 
WR residents** 129 0.612 0.938 0.091 0.815 0.954 0.917 0.901 0.412 0.625 
WR sea trout*** 58 0.658 0.953 0.299 0.823 0.956 0.943 0.929 0.610 0.595 
All of WR**** 187 0.632 0.945 0.157 0.814 0.955 0.926 0.919 0.480 0.626 
All residents***** 134 0.618 0.939 0.088 0.815 0.954 0.921 0.902 0.440 0.633 
All specimens 192 0.636 0.945 0.154 0.814 0.954 0.928 0.919 0.497 0.632 

*Footnotes match Table 11. 

Mean HO across all nine loci across within regional resident populations was 0.645 ± 0.018 SE, 

ranging from 0.612 ± 0.104 SE (CW Loch Maree) to 0.699 ± 0.078 SE (Gairloch) (Table 14).  

Table 14 Loci observed heterozygosities (HO) for populations of S. trutta of Wester Ross & Loch Leven, and at 

varying geographic ranges. 

Population n 
Locus 1 Locus 2 Locus 3 Locus 4 Locus 5 Locus 6 Locus 7 Locus 8 Locus 9 
Str3QUB  Ssa407UoS CA054565a CA060177 mOne108 SsaD170 Sasa-UBA mOne101 Ssa413UoS 

NW Loch Maree 36 0.589 0.898 0.000 0.782 0.932 0.867 0.830 0.316 0.555 

CW Loch Maree 32 0.482 0.938 0.090 0.762 0.901 0.822 0.823 0.202 0.488 

SE Loch Maree 26 0.533 0.857 0.000 0.563 0.918 0.896 0.810 0.564 0.523 

W Coast Gairloch 35 0.624 0.850 0.234 0.852 0.897 0.894 0.863 0.468 0.610 

Ewe ST* 40 0.685 0.937 0.383 0.854 0.947 0.933 0.911 0.528 0.667 

Flowerdale ST 12 0.538 0.868 0.080 0.601 0.851 0.885 0.868 0.705 0.403 

Canaird ST** 6 0.542 0.903 0.000 0.667 0.861 0.861 0.708 0.708 0.153 

E Coast Loch Leven 5 0.640 0.820 0.000 0.700 0.781 0.740 0.800 0.700 0.740 

Mean: 0.579 0.884 0.098 0.723 0.886 0.862 0.827 0.524 0.517 
SE: 0.024 0.015 0.050 0.038 0.019 0.021 0.021 0.067 0.064 

LM residents* 94 0.565 0.933 0.032 0.766 0.942 0.909 0.873 0.387 0.583 
WR residents** 129 0.610 0.934 0.090 0.812 0.950 0.914 0.898 0.410 0.622 
WR sea trout*** 58 0.652 0.945 0.296 0.816 0.948 0.934 0.920 0.605 0.590 
All of WR**** 187 0.630 0.943 0.157 0.812 0.952 0.924 0.916 0.479 0.624 
All residents***** 134 0.616 0.935 0.088 0.812 0.950 0.917 0.898 0.438 0.631 
All specimens 192 0.634 0.943 0.154 0.812 0.952 0.925 0.917 0.496 0.630 

*Footnotes match Table 11. 

Differences between HE and HO are negligible and is consistently similar at all population ranges 

(max difference estimated within WR residents was 2.02% or 0.013 for SE Loch Maree), with larger 

differences attributed to smaller sample sizes (e.g. Loch Leven and Canaird ST). The differences 

also decreased to < 1.0 % when populations were grouped at higher ranges (Table 11). 
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U N I Q U E / S H A R E D   A L L E L E S   A N D   A L L E L I C   F R E Q U E N C I E S 

The proportions of unique alleles within and shared between the WR brown trout populations are 

illustrated (Figure 18). 

 

Figure 18 The proportions of alleles uniquely found and shared between the Wester Ross resident populations. 

Allele frequencies for the 45 alleles shared between all populations are presented below (Table 15). 

Frequencies are calculated out of 384 possible positions per locus in 192 specimens. Full list of allele 

frequencies found unique and shared between resident populations are displayed in Appendix 4. 

Table 15 Alleles and their frequencies found shared between the WR resident populations of brown trout. 

Frequencies ≥ 0.1 are shaded the same colour every 0.1 increment higher, frequencies < 0.1 are not shaded. 

A(Locus) NWLM CWLM SELM WCG  A(Locus) NWLM CWLM SELM WCG 
132(1) 0.319 0.031 0.038 0.443  471(5) 0.069 0.063 0.019 0.043 
160(1) 0.542 0.688 0.635 0.414  174(6) 0.042 0.016 0.096 0.057 
172(1) 0.125 0.203 0.231 0.071  178(6) 0.125 0.031 0.019 0.029 
242(2) 0.097 0.047 0.077 0.086  182(6) 0.056 0.266 0.038 0.043 
246(2) 0.028 0.094 0.115 0.071  186(6) 0.278 0.125 0.038 0.186 
254(2) 0.014 0.016 0.038 0.014  190(6) 0.097 0.031 0.154 0.071 
262(2) 0.042 0.063 0.115 0.057  194(6) 0.056 0.281 0.077 0.100 
270(2) 0.083 0.031 0.019 0.071  198(6) 0.042 0.016 0.019 0.043 
274(2) 0.194 0.016 0.019 0.029  202(6) 0.042 0.016 0.058 0.143 
278(2) 0.111 0.016 0.019 0.014  206(6) 0.028 0.031 0.173 0.029 
113(3) 1.000 0.953 1.000 0.871  210(6) 0.014 0.016 0.096 0.014 
262(4) 0.292 0.391 0.154 0.143  292(7) 0.014 0.016 0.038 0.014 
266(4) 0.125 0.078 0.058 0.171  296(7) 0.333 0.328 0.096 0.100 
270(4) 0.306 0.188 0.635 0.129  306(7) 0.069 0.094 0.038 0.029 
274(4) 0.125 0.016 0.077 0.243  307(7) 0.028 0.156 0.038 0.014 
278(4) 0.028 0.188 0.019 0.086  309(7) 0.028 0.078 0.385 0.071 
286(4) 0.056 0.016 0.019 0.029  169(8) 0.069 0.016 0.038 0.071 
423(5) 0.069 0.016 0.077 0.043  177(8) 0.083 0.063 0.058 0.057 
427(5) 0.042 0.094 0.019 0.014  181(8) 0.819 0.891 0.558 0.714 
431(5) 0.056 0.016 0.019 0.014  230(9) 0.319 0.656 0.654 0.200 
443(5) 0.111 0.063 0.077 0.100  233(9) 0.583 0.281 0.173 0.571 
463(5) 0.042 0.016 0.038 0.014  260(9) 0.014 0.047 0.135 0.143 
467(5) 0.014 0.031 0.077 0.014       
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D E P A R T U R E S   F R O M   H A R D Y – W E I N B E R G   E Q U I L I B R I U M 

Significant deviations from Hardy-Weinberg equilibrium were observed in 39 out of 68 tests over all 

nine loci for all eight populations, minus a monomorphic Locus 3 (CA054565a) in four populations 

(Table 16). 

Table 16 Proportions of loci genotyped under Hardy-Weinberg equilibrium in resident and anadromous 

populations of S. trutta in Wester Ross (and Loch Leven, east coast) residents. 

Population n HWE HWE % 
NW Loch Maree 36      2/8* 25.00% 

CW Loch Maree 32      5/9 55.60% 

SE Loch Maree 26      4/8* 50.00% 

Gairloch 35      1/9 11.10% 

Ewe sea trout** 40      5/9 55.60% 

Flowerdale sea trout 12      7/9 77.80% 

Canaird sea trout*** 6      7/8* 87.50% 

Loch Leven 5      8/8* 100.00% 

*Locus 3 is monomorphic and is discounted. 
**Ewe sea trout (EST) collate River Ewe (REW) & Poolewe (PEW) sea trout, and the lake trout caught in Loch Maree (LMA). 

*** Canaird sea trout (CST) include the sea trout caught in Loch Canaird estuary (CES) and its outflowing river (RCA). 

The number of loci under HWE and their proportions vary between resident and anadromous 

populations. P-values for each test are tabulated in Appendix 5.1. 

P O P U L A T I O N   D I F F E R E N T I A T I O N 

Mean GST values (based on HO across all nine loci and populations) for WR trout at varying 

geographic ranges was analysed to assess how levels of genetic differentiation changed with 

increasing range and the inclusion of anadromous populations (Table 17). This shows the highest 

amount of differentiation was observed between the WR sea trout (total GST 0.285 ± 0.007 SE) and 

was almost equal to the level of differentiation seen within the Loch Maree resident populations 

(0.284 ± 0.006 SE) (p 0.001). 

Table 17 Mean GST values across 9 microsatellite loci at various geographic and population ranges. 

Populations n pop’ n k GST SE 
Loch Maree residents* 3 94 9 0.284 0.006 
Wester Ross residents** 4 129 9 0.246 0.006 
Wester Ross sea trout*** 3 58 9 0.285 0.007 
All of Wester Ross**** 7 187 9 0.190 0.011 
All residents***** 5 134 9 0.242 0.012 
All specimens 8 192 9 0.192 0.013 

Abbreviations: n pop’, number of subpopulations; n, number of specimens, k, number of loci; SE, standard error. 

*Loch Maree residents are all the resident trout caught in NW, CW, and SE Loch Maree (NWLM, CWLM, SELM). 

**Wester Ross residents are all the residents sampled in Wester Ross (all of Loch Maree and Gairloch). 

***WR sea trout group the sea trout from Flowerdale (FES), Ewe (REW, PEW, and LMA) and Canaird (CES, RCA). 

****All of Wester Ross collate all of its resident and sea trout. 

*****All residents include Wester Ross and Leven residents. 
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When Gairloch was grouped with LM residents (in WR residents), total GST decreased significantly 

to 0.246 ± 0.006 SE (p 0.002), which suggests the Gairloch residents share genetic similarities with 

LM populations. When the WR residents and sea trout were analysed together (all of Wester Ross), 

the total GST found within Wester Ross decreased further to 0.190 ± 0.011 SE (p 0.0047), which 

makes sense if a significant proportion of the sea trout originated from the same resident populations. 

Wester Ross sea trout were also significantly more differentiated within than the WR resident trout 

(p 0.0023), reinforcing earlier suggestions that the sea trout are a more genetically diverse group 

than the resident trout in Wester Ross. When Loch Leven resident trout (n 5) are included with other 

residents (all residents), GST significantly decreases from 0.246 ± 0.006 SE (WR residents) to 

0.242 ± 0.012 SE (All residents) (p 0.0134), however when Leven trout were included with all of 

Wester Ross (0.190 ± 0.011 SE), no significant difference was found (p 0.8253) (0.192 ± 0.013 SE 

for all specimens) suggesting Loch Leven may have a closer resemblance to the residents of Wester 

Ross, and not so much the sea trout. 

I N T E R - P O P U L A T I O N   G E N E T I C   D I V E R G E N C E   B Y   D I S T A N C E 

Mantel tests showed a significant positive correlation between population pairwise genetic distances 

(measured in DST) and between population geo-hydro distances (km) for WR resident population 

ranges (Table 18).  

Table 18 Mantel tests between inter-population geo-hydro distances (km) and population pairwise genetic 

distances (DST – corrected and observed). 

Populations included n matrix n DST p r 
Loch Maree* & Gairloch 4 6 Observed 0.101 0.867 
Loch Maree, Gairloch, & Canaird** 5 10 Observed 0.014 0.732 

Loch Maree, Gairloch, & Loch Leven 5 10 Corrected 0.008 0.804 

Loch Maree, Gairloch, Canaird, & Loch Leven 6 15 Corrected 0.002 0.713 

Loch Maree, Gairloch, EST, & FST 6 15 Observed 0.135 0.324 
Loch Maree, Gairloch, Canaird, EST, & FST 7 21 Corrected 0.238 0.208 
Loch Maree, Gairloch, Loch Leven, EST, & FST 7 21 Corrected 0.019 0.772 

Loch Maree, Gairloch, Canaird, Loch Leven, EST, & FST 8 28 Corrected 0.017 0.705 

Abbreviations: n, number of populations included; matrix n, number of cells in matrices compared. 

All mantel tests were run with 9999 permutations. 

*Loch Maree includes the three NW, Central-W, and SE populations (NWLM, CWLM, SELM). 

**Canaird includes the sea trout and brown trout caught in river Canaird (RCA) and its estuary Loch Canaird (CES). 

Relationships were significant between all resident trout population ranges (Ps < 0.05), with 

significance rising with increasing n (increasing matrix n or data points exponentially), and a 

consistent trend (mean r 0.779 ± 0.070 SD), except for when the range covered only Loch Maree 

and Gairloch populations (p 0.101, r 0.867, n population 4) (Table 18). 
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Table 19 Inter-population pairwise DST (corrected) values between regional populations of S. trutta in Wester 

Ross, based on a custom BTMP panel comprising 9 microsatellite loci. 

Populations n NWLM CWLM SELM WCG ECLL FST EST CST 
NW Loch Maree 36 - 0.095 0.192 0.070 0.263 0.162 0.058 0.210 

CW Loch Maree 32  - 0.141 0.212 0.379 0.132 0.045 0.133 

SE Loch Maree 26   - 0.307 0.321 0.073 0.086 0.108 

W Coast Gairloch 35    - 0.352 0.268 0.150 0.312 

E Coast Loch Leven 5     - 0.253 0.309 0.228 

Flowerdale ST 12      - 0.073 0.026 

Ewe ST* 40       - 0.097 

Canaird ST** 6        - 

*Ewe ST (EST) include the River Ewe (REW) & Poolewe (PEW) sea trout, and the two lake trout caught in Loch Maree (LMA). 

** Canaird ST (CST) contains the finnock caught in Loch Canaird estuary (CES) and its outflowing river (RCA). 

A relatively low pairwise DST was observed between the Gairloch and NW Loch Maree residents for 

the distance between them (DST 0.070) (Table 19); however as data points increase this relationship 

has little effect on the overall trend (Figure 19). 

Table 20 Geo-hydrological distances (km) between regional populations of S. trutta in Wester Ross. 

Populations n NWLM CWLM SELM WCG ECLL FST EST CST 
NW Loch Maree 36 - 27.9 67.5 75.0 882.8 75.0 5.0 120.8 

CW Loch Maree 32  - 60.4 102.9 910.7 102.9 22.9 143.7 

SE Loch Maree 26   - 170.5 978.2 170.5 67.5 188.3 

W Coast Gairloch 35    - 957.8 5.9 75.0 195.8 

E Coast Loch Leven 5     - 957.8 882.8 762.0 

Flowerdale ST 12      - 43.5 195.8 

Ewe ST* 40       - 120.8 

Canaird ST** 6        - 
*Footnotes match Table 19. Measurements were made using Google Earth (© 2018 Google Inc.). 

 

 

Figure 19 Scatterplot between geo-hydro distances and pairwise DST (observed) between the Loch Maree, 

Gairloch and Canaird residents, (n = 5; NWLM, CWLM, SELM, WCG, CST), p 0.014, r 0.732, at 9999 

permutations. 
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When the sea trout populations are included in the tests with the WR residents, the results showed 

no significance or trend (ps > 0.135, rs < 0.325, e.g. Figure 20). 

 

Figure 20 Mantel plot between geo-hydro distances and pairwise DST (observed) between the WR resident trout, 

and sea trout populations (n = 6; NWLM, CWLM, SELM, WCG, EST, FST), p 0.135, r 0.324, at 9999 

permutations. 

The trend is observed again when Loch Leven is added to the matrices (Figure 21). 

 

Figure 21 Mantel scatterplot between geo-hydro distances and pairwise DST (corrected) between all populations 

sampled (n = 8; NWLM, CWLM, SELM, WCG, CST, EST, FST, ECLL), p 0.017, r 0.705, at 9999 permutations. 
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H E A D W A T E R   P O P U L A T I O N S   &   B A R R I E R S   T O   M O V E M E N T 

When populations at sample sites above barriers (LAS, RTA(a), LMG, LFM, CAS, LAP, and LNO & 

LOI) were compared with sites downstream (Figures 22-26), a significant difference was observed 

between above and below barriers allelic richness and heterozygosity, with downstream populations 

having a greater genetic diversity than populations isolated above barriers (ps 0.001).  

 

 
Figure 22 Line-map and flow diagram of Loch an Aird-sheilg (LAS) headwater population and downstream post-

barrier comparison with sea trout caught in the River Ewe (REW), indicating the presence of barriers of distances 

between. 

A highly negative correlation was observed between genetic diversity (AR and HE) and distance to 

sea (ps < 0.002, rs -0.753).  

 

Figure 23 Line-map and flow diagram of River Talladale headwater population (RTA[a]) and downstream 

post-barrier comparison with another resident population (RTA[b]), as well as sea trout caught in the River Ewe 

(REW), indicating the presence of barriers of distances between. 
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The strongest relationships were observed between the groups when separated by life history 

(ps < 0.001, rs 0.862), and whether they were above or below barriers (ps < 0.001, rs 0.876), 

suggesting that populations with access to and life history at sea, are significantly more likely to have 

greater levels of allelic richness. Statistical tests are displayed in Appendices 6.15-6.18. 

 

Figure 24 Line-map and flow diagram of Loch Meallan Ghobhar (LMG) headwater population and downstream 

post barrier comparison with sea trout caught in the River Ewe (REW), indicating the presence of barriers of 

distances between. 

Further analysis was undertaken to assess if these differences were really based on the presence of 

barriers to movement, and not correlations due to distance from sea or life history. Populations with 

no barriers to prevent access to the sea (GRU, COU, LFD, SR, LGD, RTA(b), and LEV) were 

compared with the same randomly generated anadromous cohorts of equal size (n 5). Results 

showed no significant difference between genetic diversity and distance to sea (ps > 0.249), and with 

life history (ps > 0.160).  
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Figure 25 Line-map and flow diagram of Loch na Feithe Mugaig (LFM), its outflow river (AAG) and Loch Airigh 

a’ Phuil (LAP) headwater population and downstream post barrier comparison with sea trout caught in 

Flowerdale bay (FES), as well as “Cassius lochan” (CAS), a small isolated lochan, indicating the presence of 

barriers of distances between. 

Tests for difference between resident and anadromous genetic diversity in this group showed no 

significant difference (ps > 0.18). Suggesting that populations not affected by barriers (to the sea) do 

not have significant influences on their genetic diversity as a result of distance to sea or their life 

history.  



MScRes – The Population structure of wild Scottish brown trout (Salmo trutta L.1758) Vu H. Dang 
of Loch Maree, Wester Ross: Spatial genetic structure after population decline M00262288 

56 

 

Figure 26 Line-map and flow diagram of Loch na h-Oidhche (LNO & LOI) headwater population and 

downstream post barrier comparison with sea trout caught in Flowerdale bay (FES) and the River Ewe (REW), 

indicating the presence of barriers of distances between. 

When both populations with and without barriers were analysed as a whole data set, distance to sea 

showed no significant effect on trout populations’ AR and HE (ps > 0.212). Significant correlations were 

observed between site genetic diversity, and life history (ps < 0.001, rs > 0.794), and whether they 

were above or below barriers (ps < 0.001, rs > 0.859), with downstream populations being significantly 

more diverse genetically than the headwater populations (ps 0.0001).  
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M U T A T I O N – D R I F T   E Q U I L I B R I U M 

A mode shift analysis could not detect this in the allele frequencies distribution at regional level, 

showing an L-shaped distribution typical of equilibrium, however results from sign tests and 

standardised differences tests contradicts this and suggest the resident populations of brown trout 

sampled in this study are statistically likely to be in mutation-drift disequilibrium (ps < 0.0002) 

(Appendix 6) (although the standardised differences results are less reliable than the sign test as 

only 8 polymorphic loci could be analysed, while 20 is recommended, nonetheless, these results do 

coincide), suggesting that the population may have experienced a detectable genetic bottleneck 

event. Sign tests suggest all resident populations are in MDE except NW Loch Maree, though the 

standardised differences test suggests it is. Furthermore, the mode shift analysis contradicts both 

sign and standardised differences test, suggesting the study’s sample size and marker size were 

insufficient to produce reliable results. Therefore, these results are highly cautionary and require 

confirmation. 

P O P U L A T I O N   S T R U C T U R E 

A Neighbour-Joining (NJ) population tree was constructed using population pairwise DST values 

(Figure 27). 

 

Figure 27 NJ tree illustrating the Wester Ross brown trout population genetic structure, based on DST (corrected) 

values generated using nine microsatellite loci. 

Results suggest the population structure at regional level is split between two main branches within 

Loch Maree and Gairloch, with NW Loch Maree and Gairloch sharing a branch – though the bootstrap 

value is not significant. The other branch shows a relationship between the CW- and SE Loch Maree 

resident populations, perhaps suggesting the two populations are more similar to each other, but that 

they are also diverging. The population genetics of Wester Ross brown trout might be structured 

regionally in this way, though these results would preferably carry more statistical weight. As it is, 

this is a tentative result, which indicates the study’s sample sizes were not optimal for discerning the 

true population structure. If the tree holds true however, the population structure observed at regional 

level suggest Loch Maree was initially colonised at the NW point from the sea at Poolewe, suggesting 

a sea-to-freshwater colonisation by ancient migrant sea trout is more likely than a freshwater-

radiation from an inland glacial refuge since the retreat of the last glacial maximum. 
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P R I N C I P L E   C O M P O N E N T   A N A L Y S I S   ( P O S T – H O C ) 

The PCA results conducted at sample site and regional range revealed several outlier specimens 

that were identified as SR20 & 21 (33), REW 44 & 45 (30) and LMA 3 (20) (Figure 28).  

 

Figure 28 Initial PCA results plot showing five outliers outside the main cluster, these individuals 
have been identified as SR20 & 21 (33), REW 44 & 45 (30) and LMA 3 (20). 

These specimens were subsequently removed to get a better understanding of the relationships 

among the other samples in the main cluster (Figures 29 & 30). 

 

Figure 29 PCA two-axis plot of Wester Ross brown trout and sea trout at individual sample site range. 

At sample site range, individuals sampled at the same sites were clustered together with varying 

degrees of compactness, as well as overlap with other sample site clusters (Figure 29). 
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Figure 30 PCA two-axis plot of Wester Ross brown trout and sea trout in their regional groups. 

At regional range, major clusters are clearly defined with two regions (SE Loch Maree-Group 3-

Yellow and Gairloch-Group 4-Blue) having fragmented clusters. Considerable overlap between 

clusters is also visible in the centre of the plot (Figure 30). 
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B O N F E R R O N I   C O R R E C T I O N S   ( P O S T – H O C ) 

The post-hoc bonferroni corrections made to the family-wise statistical P-values generated in this 

study are as follows: 

 Man-Whitney tests (n 17): α = 0.05/17 = 0.0029 

Only one significant result would become null = Wester Ross Gst and Wester Ross resident 

Gst would have no significant difference in their median Gst (Appendices 7.2, 7.4, 7.6, 7.8, 

7.14 & 7.17). 

 

 Two sample t-tests (n 2): α = 0.05/2 = 0.025 

No significant results changed – both tests already null and well above alpha 

(Appendices 7.10 & 7.17). 

 

 Spearman’s ranked correlation (n 14): α = 0.05/14 = 0.0036 

No significant results changed – all tests still below corrected alpha value or are already well 

above alpha (Appendix 7.18). 

 

 Analysis of Variance (n  5): α = 0.05/5 = 0.01 

No significant results changed – all tests already null and well above alpha (Appendices 7.10 

& 7.12). 

As only one significant result which was not essential in any conclusions became null, these results 

will not be discussed further. 
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2 . 3 :   D I S C U S S I O N 

Population genetic diversity determines a population’s ability to adapt to environmental changes, and 

thus is of increasing concern due to climate-change (Lovejoy, 2005). The need to understand a 

population’s genetic structure has become a priority for many in conservation management, 

particularly for S. trutta due to its socioeconomic value across its range (Keenan et al., 2013). 

I N T R A – P O P U L A T I O N   G E N E T I C   D I V E R I S T Y 

Genetic diversity contributes to evolutionary potential, and can also be used to study evolutionary 

history, as well as to outline contemporary clades within populations (Hughes et al., 2008; Caballero 

and García-Dorado, 2013). There are various measures to estimate different aspects of a 

population’s genetics, collectively known as F-statistics (where F stands for fixation 

indices)(Wright,1921) - heterozygosities and other measures based on allelic richness are 

fundamental interests, but these measures differ in their mathematics, interpretations, and what they 

represent (Caballero and García-Dorado, 2013; Crow and Kimura, 1970).  

Allelic richness (AR - the number of alleles present at any locus or the mean number across multiple 

loci) is the most basic measure of genetic diversity, and is the raw material for selection, making it 

fundamental to a populations adaptability to environmental changes (Greenbaum et al., 2014). 

Genetic diversity at the allelic level is similar between Wester Ross resident populations (NWLM, 

CWLM, SELM, & WCG) (Table 12). The sea trout cohort caught in the River Ewe heading upstream 

carried roughly 50 % (or 5) more alleles per loci than the resident populations in Wester Ross. When 

the WR residents are analysed as one population the combined allelic richness is still lower than that 

of the Ewe sea trout, despite the difference in sample size. These results indicate the Ewe sea trout 

of Loch Maree are more genetically diverse than their resident counter parts, which might suggest 

the sea trout are possibly admixtures originating from multiple resident populations, bringing together 

different alleles and increasing the cohort’s diversity to higher than that of any of their resident 

counterparts. This seems plausible since the difference between Loch Maree’s populations’ mean 

AR (10.0 ± 0.4 SD) and combined AR within Loch Maree as a whole population (14.1 ± 3.5 SE)  

indicates alleles (on average 4 a locus) which are not being shared between the population samples. 

This suggests a degree of genetic distinction exists between freshwater populations found within 

Loch Maree catchment (Table 12) and contributes to their anadromous cohorts having a higher allelic 

diversity, since they then join sea trout from other resident populations. There is evidence to suggest 

allelic richness correlates positively with ‘evolvability’ - even when measured with neutral markers 

(Wagner, 2008), and negatively with inbreeding depression, and therefore has evolutionary 

consequences (Greenbaum et al., 2014). This emphasises the importance for conservation and 

management to maintain genetic diversity at the allelic level, particularly for populations with low 

effective sizes that are more at risk of allelic loss.  

Comparisons with results of other studies is somewhat hindered by the study’s sample range and 

sample sizes. Many studies with comparable data (i.e. microsatellite markers, similar number of loci, 

same species) have larger samples per site (often n > 30, here this study’s mean n 5 per site) often 

spreading over a single catchment, if not, a river and its tributaries (Griffiths et al., 2009; Carlsson et 
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al., 1999), making WR regional groupings mean AR tentatively comparable with other studies’ results. 

Mean AR at sample site level in this study was 3.3 with a mean n 5, and k 9 loci, which is similar to a 

study of Norwegian trout from the Nordre Finnvikelv, at 3.63 AR, though the study had a mean sample 

size around n 62 ± 7 SD and k 6 (Carlsson et al., 1999). A study on the River Dart, south-east UK 

found a mean AR per site of 5.52, with a mean n per site around 60 ± 30 SD over k 9 (Griffiths et al., 

2009). These data suggest a similar level of allelic diversity between the three populations (at site 

level) if differences are considered between n and k - though this has not been statistically proven in 

this study, limiting any conclusions that can be drawn. 

Heterozygosities (how likely a member of a diploid population will have different alleles at one or 

more loci) is the frequently chosen measure when presenting a genetic summary of a population 

(Greenbaum et al., 2014; Vonholdt et al., 2008), as a decrease in observed heterozygosity can 

reduce the average fitness of individuals (Andras et al., 2011; Szulkin et al., 2010, 2003; Toro et al., 

2009; Reed and Frankham, 2003), and thus has observable ecological consequences. Expected 

heterozygosity (HE) estimates what the heterozygosity would be if the number of alleles in the sample 

were under HWE and represents a population’s genetic diversity, since it is calculated using allele 

frequencies, which take into account allelic richness and distribution. If a population remains in HWE, 

HE positively correlates with AR - as there are more alleles in the population, individuals are more 

likely to have two different copies, and less likely to have two copies of the same. For example, a 

fixed locus would equal 0.0 HE, while a biallelic locus (containing only two alleles) will have a HE of 

0.5, since HWE = p2 + 2pq + q2 = 0.5 HE - as there are 2/4 pq and only 1/4 p2 and 1/4 q2, therefore 

50 % (or 0.5) are heterozygous for pq (Crow and Kimura, 1970). As allele richness increase by one, 

it brings one new homozygote state (e.g. x2) and n new heterozygotes, where n = pre-existing AR, 

which in this case is two (e.g. xp, xq). So with each new allele, the number of heterozygous states 

exponentially increases while homozygous states increase incrementally, causing a net increase in 

expected heterozygosity. This explains why expected heterozygosity represents genetic diversity 

better than observed and stresses the need to conserve allelic richness in smaller populations, 

particularly if inbreeding depression is a concern. Observed heterozygosity (HO) estimates the 

population’s actual heterozygosity based on the samples’ allelic frequencies. A limitation with 

observed heterozygosities is null alleles. If an individual is heterozygous for one null allele at a locus, 

that sample will appear to be homozygous during allele scoring, which further contributes to why HE 

is considered to better represent genetic diversity than HO. Mean expected and observed 

heterozygosities was almost equal in all regional populations analysed separately (< 2.02 % HE – HO 

difference ) and as totalled populations (< 1.0 %) (Table 11). Expected heterozygosities suggest the 

Gairloch population is more genetically diverse than the Loch Maree resident populations, though no 

significant difference was found between the Wester Ross resident populations’ HE indicating the 

level of genetic diversity within and between them is similar. An interesting observation can be seen 

at regional ranges, where the heterozygosity increases with increasing n (and AR) except for the 

Wester Ross sea trout, which displays the highest level of heterozygosity, despite the lowest 

population size (n 58) and second lowest AR (16.0 ± 3.2) (Table 11), indicating the sea trout are more 

genetically diverse at the individual level than the resident population. This warrants a need for their 

protection, since sea trout survival and genetic contribution is therefore likely to be influential in 
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maintaining genetic diversity for both the resident and anadromous populations of Salmo trutta in 

Wester Ross.  

The mean HO observed across all populations and loci was 0.656 ± 0.086 SE, and varied from 0.600 

(Canaird sea trout) to 0.761 (Ewe sea trout), which is similar to levels seen in the River Dart (mean 

HO 0.6, range 0.55-0.74) (Griffiths et al., 2009). The study in Norway found an overall mean HO of 

0.52 which ranged from 0.44-0.6, and is only slightly less heterozygous (Carlsson et al., 1999) - 

though differences between study sample sizes and range require caution when comparing their 

data. 

U N I Q U E / S H A R E D   A L L E L E S   A N D   A L L E L I C   F R E Q U E N C I E S 

 The results show that out of the 182 alleles genotyped across the nine loci in this study, 152 (83.5 %) 

were found within Wester Ross resident trout populations (Figure 18). The cardinal regions of Loch 

Maree each have similar numbers of unique alleles, NW- and SE Loch Maree had 9 (5.9 %) while 

CW Loch Maree had 10 (6.6 %). Gairloch had 23 (15.1 %), more than twice as many unique alleles 

found in each Loch Maree population despite having similar allelic richness (Table 11). Allele 

frequencies (Af) for almost all population unique alleles did not indicate population wide distribution 

with frequencies averaging < 4 % for all unique alleles (Appendix 4.1), suggesting the study’s 

sampling may have been inadequate in discerning all of the populations’ alleles. The only alleles with 

frequencies > 7 % were 459 (Af 12.9 %) and a null allele that appeared in seven homozygotes 

(Af 20 % - though this is an underestimation as the null allele may have appeared in heterozygotes 

but would not appear during allele scoring); both on Locus 5 (mOne108) and only in the Gairloch 

resident population (except for one appearance in a Ewe sea trout). This suggests some degree of 

genetic distinction may exist between Gairloch and the Loch Maree populations of brown trout. 

Almost one third of the alleles genotyped in this study (45 or 29.6%) were shared amongst all WR 

resident populations, which indicate differences in allele commonality which might be more typical 

indicators of their populations (Table 15). The lack of population wide unique alleles might suggest 

a degree of introgression (or allele homoplasy) between all populations. A complete list of allele 

frequencies can be found shared and unique to populations are displayed in Appendix 4. Due to their 

low frequencies, Wester Ross brown trout population structure does not seem to be defined by 

population unique alleles, and suggests the study’s sampling might have been insufficient. The data 

suggest it is the shared alleles and their varying frequencies between WR populations that identify 

population structure. One of the limitations with using microsatellite markers is the concept of allele 

homoplasy - due to their high polymorphism and the step-wise mutation model they’re assumed to 

follow (Kimura and Ohta, 1978, Ohta and Kimura, 1973), it is possible that identical alleles in separate 

populations could arise by parallel evolution and not by descent. However, the chance that this has 

occurred for all 45 shared alleles observed in this study is less likely, therefore the presence of at 

least some of these shared alleles and their relative frequencies might indicate that there has been 

a degree of introgression between populations, such that population ‘typical’ alleles are shared 

between all – at least in low frequencies (Table 15). Maintaining sufficient hydrological-connectivity 

between populations may therefore be important in maintaining genetic diversity within the trout of 

Wester Ross. 



MScRes – The Population structure of wild Scottish brown trout (Salmo trutta L.1758) Vu H. Dang 
of Loch Maree, Wester Ross: Spatial genetic structure after population decline M00262288 

64 

 

D E P A R T U R E S   F R O M   H A R D Y – W E I N B E R G   E Q U I L I B R I U M 

Loci with significant deviations from Hardy-Weinberg equilibrium (HWE) were seen in all but one 

population, with variable proportions of loci in disequilibrium (Table 16). Locus 3 (CA054565a) was 

either in HWE or fixed in all populations, with the lowest mean AR (2.5), and heterozygosities (HE, 

0.100; HO, 0.098) (Tables 12-14), and is discounted where monomorphic. HWE describes an equal 

distribution of category states (or combinations) of two or more alleles for any locus in a population. 

Allelic distribution will remain under HWE from generation to generation if the following is true: mating 

is completely random, no mutations are occurring, no selection is occurring, natural or artificial, 

genetic drift is not occurring (less likely in sufficiently large populations), and no introgression (gene 

flow, or migration) (Crow and Kimura,1970). Significant differences between observed and expected 

measures suggest a population is out of HWE at that locus and suggests possible influences by one 

of the above (Chen et al., 2017). The resident trout population with the most loci in disequilibrium 

was the Gairloch population, where only Locus 3 was in HWE. The other eight loci might therefore 

be indicators of significant influences affecting the population’s allele frequencies (e.g. non-random 

mating influenced by selection - whether it be natural or artificial) (Crow and Kimura, 1970), and may 

also explain the non-normal distribution observed in the Gairloch population’s allele distribution 

across the nine loci genotyped. NW Loch Maree was similar to Gairloch with 25 % of the loci (2/8) in 

HWE. NW Loch Maree drains out to sea nearby at Loch Ewe (Poolewe), another sea loch that drains 

all of Loch Maree and neighbouring catchments (e.g. Boor and Tournaig, Table 9, Figure 17). Sea 

trout mortality is known to be influenced by marine predation, parasitisation (Walker, 2016; Sahashi 

and Morita, 2013; Wysujack et al., 2009) and feeding opportunities (Watson, 1999); both Gairloch 

and NW Loch Maree populations are in greater proximity to the sea (5.9 and 5 km) than CW and SE 

Loch Maree populations (12.6 and 26.6 km); therefore, their significant departures from HWE might 

suggest they are more reliant on sea trout returns for reproduction. Loch Gairloch and Loch Ewe are 

sea lochs (with estuarine bays). A harbour south of the village and North-East of Flowerdale bay in 

Loch Gairloch has a working port which supports local and east coast fishing boats, Royal Navy 

vessels, marine wildlife tourism, and a pier for in inshore fisherman to cast lines, and freshwater 

aquaculture (Scotland’s Aquaculture, no date), amongst other local activities (The Highland Council, 

no date), all of which may be adding to the significant influences on the allele frequencies of the local 

trout population. Leven, Flowerdale and Canaird trout have small sample sizes which make their 

measures preliminary and less comparable. 
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P O P U L A T I O N   D I F F E R E N T I A T I O N 

Genetic distance is the amount of differentiation between the genetics of any two populations (Crow 

and Kimura, 1970). There are a number of formulated estimators and all take into account 

heterozygosities, which captures allelic richness and distribution.  FST is widely presented as a 

measure of differentiation, but it was originally formulated to measure biallelic markers (a loci that 

only has two alleles present in a population) (Putman and Carbone, 2014; Meirmans and Hedrick, 

2011; Wright, 1969, 1921), and was later reformulated to handle multi-allelic markers, referred to as 

GST (often FST and GST are used interchangeably) (Takezaki et al., 2014, 2010; Nei, 1973), which 

indicates the level of genetic differentiation between multiple subpopulations across one or more loci 

based on their observed heterozygosities. Though GST and related measures of differentiation have 

been criticised before for underestimating genetic differentiation between clearly divergent 

populations (Putman and Carbone, 2014; Carreras-Carbonel et al., 2006), more recent literature 

argues against this and that GST is still more appropriate than proposed replacements - Hedrick’s 

GST (Hedrick, 2005) (which measures the maximum possible differentiation possible based on the 

subpopulations ‘observed homozygosities’)  and Jost’s D (Jost, 2008) (which measures allelic 

differentiation, based on number of effective alleles calculated from the sample), and argue they are 

also affected by the same underestimations imposed on GST (Wang, 2015; Ryman and Leimar, 2009). 

Therefore, any conclusions derived from these measures should be backed by other evidence and 

context. According to GST values (Table 17), WR sea trout was significantly more differentiation than 

the WR resident trout and to all residents as a whole. When the WR sea trout and residents were 

analysed together as ‘all of Wester Ross’, the amount of genetic differentiation significantly 

decreased, which would make sense if a significant proportion of the sea trout originated from the 

same resident populations. Interestingly, the WR sea trout had almost identical levels of 

differentiation to that found between the LM resident populations. The differentiation observed within 

LM decreases significantly when Gairloch and the LM populations were analysed together as ‘WR 

residents’, suggesting Gairloch shares some genetic similarities within the LM populations. The 

inclusion of Leven trout, though a small sample size (n 5) significantly decreased GST found in the 

WR residents, but not when Leven was included with all of Wester Ross, which might suggest Leven 

trout share more genetic similarities with WR resident trout and not so much the sea trout – though 

Leven’s small sample size means this hypothesis requires greater testing to be certain.  
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I N T E R - P O P U L A T I O N   G E N E T I C   D I V E R G E N C E   B Y   D I S T A N C E 

Results from the mantel tests suggests Wester Ross resident trout populations that are further apart 

are more likely to be genetically differentiated, and the degree of differentiation is positively correlated 

with distance between the populations in Wester Ross. However this trend did not apply between 

NW Loch Maree and Gairloch, indicating less genetic variation between the two groups than would 

be predicted based on geographic-hydrological distances. This may suggest a greater degree of 

introgression between the two populations historically, than compared to other population pairs found 

in this study. Compared to CW- and SE Loch Maree residents, the Gairloch and NWLM trout are 

much closer to sea (mean site distances to sea approximately 5 km NWLM and 5.9 km Gairloch; 

12.6 km CWLM, and 26.6 km SELM). The frequencies of four, maybe five alleles shared between all 

WR resident groups are similarly more common within NWLM and Gairloch, and similarly less 

common in CWLM and SELM, and vice versa (Table 15), suggesting a degree of separation between 

the two population pairs. The overall trend lost its significance when the Wester Ross sea trout 

populations were included in the analysis. This shows that genetic variation and geo-hydro distance 

between the sea trout cohorts where they were sampled did not follow the trend seen in the resident 

samples, suggesting some of the sea trout caught in the River Ewe and Flowerdale bay/Gairloch did 

not originate from the outflows nearby in this study, suggesting their natal streams were elsewhere, 

and that the sea trout cohort of Wester Ross are possibly an admixture of the resident trout with 

overlapping coastal ranges. If this is the case, resident populations may be affected by the large 

overlapping coastal ranges of their anadromous members, as point source coastal activities may 

result in widely diffused consequences in terms of anadromous members’ return (or not) to natal 

streams). If the presence of shared alleles found in this study is the result of historical gene flow, 

then a coastal range large enough to allow the Gairloch and Loch Maree sea trout to introgress 

makes sense, and would at least partially explain the genetic similarities between the two groups. 

The trend is observed again when Loch Leven is added to the matrices. Despite n 5, Leven trout 

show sufficient genetic variation that they also extrapolate the trend (Figure 21) - whether or not the 

sea trout cohorts are included as well - suggesting the sea trout cohort may have a range that covers 

Wester Ross but not the country (which would have been striking considering the coastal distance is 

~ 750 km between Leven and Canaird). These results resonate with literature sources that 

demonstrate significant genetic divergence between populations of Salmo trutta over relatively small 

geographic distances (Stelkens et al., 2012; Ferguson, 1989).  

These data demonstrate the analytical power of the BTMP Panel, despite only using one quarter of 

the total panel (9/38 loci), the markers were able to distinguish genetic differences between Scottish 

brown trout residing on opposite coasts. Though the statistical power of one BTMP panel on Scottish 

trout had not been tested before and did lack analytical power required (at sample sizes available for 

this study) to produce reliable results at lower geographic (site) ranges, these results should be taken 

with caution, with many hypotheses rather than conclusions being drawn for further research. Re-

examination including the rest of the BTMP panel is recommended and would provide broader 

coverage per specimen (Keenan et al., 2013) and would increase confidence and reliability in the 

data, as well as greater phylogeographic resolution. 
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H E A D W A T E R   P O P U L A T I O N S   &   B A R R I E R S   T O   M O V E M E N T 

Seven populations sampled at LAS, RTA(a), LMG, LFM, CAS, LAP and LNO (& LOI) are isolated 

above dams or waterfalls, some with multiples of each (Figures 22-26), creating unidirectional 

barriers preventing upstream return.  Sample bias was randomly balanced (n 5) to compare allelic 

richness between the headwater populations with other trout populations downstream. Allelic 

richness is consistently lower in the isolated headwaters and is significantly greater in populations 

below barriers with sea accessibility. Isolated populations of the salmonid cutthroat trout 

(Orncorhynchus clarkii) have demonstrated a consistent loss of allelic richness over time due to 

genetic drift (Carim et al., 2016), and may echo the low allelic richness observed in the isolated 

populations found in Wester Ross. A negative trend indicated that populations closer to sea were 

more genetically diverse, though this is ruled out as it was not present in populations without barriers. 

The statistical evidence therefore suggests a strong indication that position above or below barriers 

was the most likely cause for the significant differences seen, with the smallest distance between 

two divergent populations over a single barrier in a river being < 4 km (RTA(a) above and RTA(b) 

below, River Talladale, Figure 23). This echoes results seen in other populations of trout with barriers 

between populations (Palmé et al., 2013; Stelkens et al., 2012; Griffiths et al., 2009; Duguid et al., 

2006; Ferguson, 1989). An example of two sites that are proximal with no barrier between them show 

that genetic diversity is similar in the absence of a barrier (LFM and AAG, Figure 25). A small isolated 

(“Cassius Lochan”) site also exists in proximity to LFM and AAG and there is anecdotal evidence 

(unnamed angler, personal communication, 2016) that it receives unofficial stocking with trout 

originating from them (Figure 25). Results indicate CAS trout genetic diversity was similar to LFM 

and AAG, despite it being isolated from them. This makes sense since there is thought to be a lack 

of reproductively suitable gravel beds, and that all stocked trout here do not reproduce. These results 

suggest the presence of barriers created significant influences on the observed genetic diversity 

between populations above and below barriers in Wester Ross trout populations. This stresses an 

importance in conserving headwater populations that likely have lower effective sizes and may be 

under the effects of genetic drift, creating highly divergent populations between above barriers and 

below. Literature has shown that such headwater populations in other salmonids around the globe, 

are much more affected by local environmental selection, specialising and adapting these 

populations to catchment environmental parameters, increasing their local fitness and survival rates, 

and thus could be sources of local adaptions useful to populations downstream (Hetch, 2015; Watson, 

1999). 

M U T A T I O N – D R I F T   E Q U I L I B R I U M 

Genetic drift has a tendency to reduce variation in a population, while mutation introduces it (Crow 

and Kimura, 1970). Since finite populations in nature experience both forces, which have opposing 

effects on genetic variation, the combined effects of these is of much interest. Mutation-drift 

equilibrium occurs if the effective size of a population has remained stable for many generations, 

resulting in an almost equal probability that a locus shows an heterozygosity excess or deficit 

(i.e. whether the heterozygosity observed in a sample is larger or smaller than the heterozygosity 

expected based on the number of alleles found in the sample if the population were at mutation-drift 
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equilibrium) (Cornuet and Luikart, 1996). A population that experiences significant reduction of its 

effective size generally develops heterozygosity excess at selectively neutral loci (Nei et al., 1975). 

Results from sign tests, and standardised differences tests indicate all Wester Ross resident 

populations are not under mutation-drift equilibrium, suggesting all regional populations included 

within this study, may have undergone a recent depression in effective population size. There is a 

suggestion that such a depression event occurred in the late 1980’s (Walker, 2016; WRFT, no date). 

Walker’s (2016) report posted on Salmon and Trout Conservation website, investigated it’s cause 

and offers evidence based on Loch Maree annual angler catch returns that marine salmonid 

aquaculture (one still active in Loch Ewe [Scotland’s aquaculture, no date]) is likely to be responsible 

for Loch Maree’s sea trout population collapse, with the year of sudden decline coinciding with the 

installation of the coasts first two salmon farms. The high density of domestic stocks create high 

density blooms of salmonid marine parasites (“sea-lice”, Lepeophtheirus salmonis K.1837), that 

persist in sea trout coastal territories. The report cites various literature that also reports the same 

population decline in response to salmon farming installations in Ireland, Norway, and other parts of 

Scotland, as well as the first reports of sea-lice blooms following in those countries (Walker, 2016). 

Unfortunately, no genetic baseline pre-collapse exist for the Loch Maree trout population, and so the 

true magnitude of effects this has had since, or whether the trout are recovering or not has not been 

studied before. This study hopes to provide a starting point towards creating a baseline for future 

and possibly historical comparisons. If fin clips sampled before 1987 still exist in archives, they might 

provide information that could help illuminate the Loch Maree wild trout pre-collapse population’s 

ecological and evolutionary history. 

By way of a contrast, mode shift analysis (Luikart et al., 1997) of allele frequencies distribution did 

not suggest any of the Wester Ross resident regional populations had undergone any recent genetic 

bottleneck events (such as an extirpation [local extinction] or founder event), showing an L-shaped 

distribution for all resident groups as expected under mutation-drift equilibrium, which is thought to 

be detectable for only the last few dozen generations (Luikart et al., 1997). One limitation such a 

study faces is that extirpation in highland waters is more likely at waterbody/tributary scales than at 

regional or catchment scales. This apparent disparity between the results of different tests may 

simply emphasise the difficulties of such analyses based on small samples acquired over a large 

geographic range. When such data are analysed, the definition they offer may be insufficient for the 

detection of any influential bottleneck events at this scale, and may be detectable at site level with a 

larger sample per site and or a greater genomic coverage per specimen (Cornuet and Luikart, 1996).  

T E M P O R A L   G E N E T I C   V A R I A T I O N 

A limitation of this study is possible temporal genetic variation. Of the 192 samples genotyped, n 2 

were sampled in year 2006, n 7 in 2009, n 8 in 2010, n 10 in 2011, n 24 in 2012, n 28 in 2013, n 41 

in 2014, n 52 in 2015, n 19 in 2016, and n 1 in 2017 (Table 9). A total range of 11 years, however 

the bulk of the samples (85.4 %) were obtained over 4 years between 2012 and 2016. There is 

evidence in literature to suggest that genetic variance is temporally stable for at least up to 20 years 

in Salmo trutta if effective sizes remain stable (Palm et al., 2003), and studies compared earlier also 

did not find significant temporal genetic differences, albeit their samples only covered two years 

(Griffiths et al., 2009; Carlsson et al., 1999). Therefore, there is the chance that some temporal 
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variation may be present in this study, but it was not statistically addressed as there was not enough 

sample sizes from the same sites (mean site n 5) split over different sample years to make data sets 

of any significant weight (which is was due to sampling strategy focusing on high DNA integrity rather 

than temporal differences). 

R E G I O N A L   P O P U L A T I O N   S T R U C T U R I N G   O F 

W E S T E R   R O S S   B R O W N   T R O U T 

A constructed population (neighbour-joining) tree reflects pairwise DST values, based on population 

allele frequencies (Figure 27). Results suggest the population structure at regional level is split 

between two main branches, with NW Loch Maree and Gairloch sharing a branch, the other branch 

shows a relationship between the CW- and SE Loch Maree resident populations, suggesting the two 

populations are more similar to each other. Loch Maree and Gairloch have two geo-hydrological 

routes between them, one along the west coast and the other via two rivers that drain from Loch na 

h-Oidhche (LNO & LOI), one into Gairloch just south of Flowerdale estuary, the other into CW Loch 

Maree between Slattadale burn (STD) and River Talladale (RTA) (Figure 17). Both routes 

downstream contain multiple unidirectional barriers (waterfalls and dams); trout that make it past the 

barriers and successfully reproduce downstream may contribute a loss of variation between these 

two populations. If this was the case however, it would bring into question why resident trout from 

CW Loch Maree are not also genetically similar to Gairloch residents. This may suggest gene flow 

between the two populations is more coastal or LNOs genetic contribution to the two is negligible. 

The relationship between CW- and SE Loch Maree and their relative positions to NW Loch Maree 

suggest that Loch Maree was colonised first at the NW Loch Maree end, suggesting a sea trout 

colonisation following the last glacial retreat, and not a freshwater radiation from a glacial refuge in 

Loch Maree. The population genetics of Wester Ross brown trout might be structured regionally in 

this way, though these results would preferably carry more statistical weight with higher bootstrap 

values. As it is, this is a tentative result, which indicates the study’s sample sizes were not optimal at 

discerning the true population structure. Nonetheless, the data obtained in this study suggests 

population genetic structure is present in the wild brown trout of Wester Ross, and that its current 

structure has been largely affected by a population crash, leading to a bottleneck event that is still 

statistically detectable. Significant marine pressure and relative proximity to sea is hypothesised to 

be influencing NW Loch Maree and Gairloch’s divergence from CW- and SE Loch Maree inland 

populations, if the NJ tree holds true (Figure 27). Significant genetic differentiation between barriers 

at site level was observed, however site sample sizes were insufficient at producing a tree with any 

confidence at that population and geographic scale – a major limitation of this study. 
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P R I N C I P L E   C O M P O N E N T   A N A L Y S I S   ( P O S T – H O C ) 

The principle component analysis (PCA) that was conducted post hoc was to assess the validity of 

the study's sample groups at sample site and at pooled regional range.  

Five specimens appeared initially as outliers and were subsequently removed from the analysis 

(Figure 28). Two of these specimens (REW44 & 45) were sampled in 2006 and could represent some 

temporal differences in the microsatellite profiles of the sea trout in Loch Maree. LMA 3 was also one 

of the outliers and interestingly is thought to be a possible trout/salmon hybrid based on 

morphological observations made on the specimen (observations not made in this study or by the 

study’s author). The last two specimens came from the SR sample site and were sampled on the 

same date as the rest of the SR samples and are believed to be resident brown trout as well (Table 9). 

All five outliers uniquely carry allele 119 at Locus 3 (CA054565a) (Appendix 3) which may represent 

a salmon allele, though this conjecture is based on a single specimen (LMA 3). 

With these five outliers removed, results show that trout sampled at the same sample sites had 

similar microsatellite profiles, as individuals sampled at the same site were clustered together when 

results were plotted (Figure 29). This suggests that the microsatellite allele scoring was successful 

as an a priori assumption was that trout from the same resident sample sites would share similar 

microsatellite profiles due to the trout’s reproductive homing nature. Considerable overlap was 

observed between many sites in the centre of the plot, suggesting a degree of genetic exchange 

between these sites and their populations is likely to have occurred.  

Headwater sample sites from small isolated lochs such as CAS (3-Yellow) and LMG (21-Red) appear 

divergent from the central overlapping clusters, suggesting the microsatellite profiles found in trout 

from these sites had more unique microsatellite profiles than trout from connected sites. Furthermore, 

sites that were closer geographically, such as AAG (1-Grey), LFM (16-Light green), LAP (10-Navy), 

tended to overlap or cluster beside each other (Figures 17 & 28). 

At pooled regional range, results demonstrate that two out of four of the Wester Ross resident 

regional groups are supported genetically, as NW- (Group 1-Red) and CW Loch Maree (Group 2-

Green) regional groups showed a distinct cluster. Considerable overlap was also seen between all 

sites in both regions’ clusters (except RTA(a) isolated above a waterfall and the Gairloch hill lochs of 

NW Loch Maree [ALC, LL, LLm]), suggesting gene flow between the other sites in these neighbouring 

regions (Figures 17, 28 & 29). 

SE Loch Maree (Group 3-Yellow) and Gairloch (Group 4-Blue) were both fragmented into two 

sub-clusters (Figure 30) with sample sites within each fragment having no overlap with each other 

within their own region. These fragmentations for both SE Loch Maree and Gairloch correlate with 

sites that are in separate catchments or are geographically isolated above barriers to fish movement 

(Figures 17 & 28).  

Within SE Loch Maree clusters, sample sites LMG, LSG and LFD are clustered together away from 

sites GRU, TAG and COU. Although both clusters of sites are within the same region geographically 
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and are proximal in the results, the sites exist in separate Loch Maree tributaries and without overlap 

in the results (Figures 17, 28 & 29). 

The fragmented sub-clusters within the Gairloch cluster demonstrate the same separation but on a 

larger scale, both geographically (Figure 17) and genetically according to results (Figure 30). SR, 

LGD and LNO/LOI are clustered away from LFM, AAG, CAS and LAP which makes sense since SR 

and LMG are part of their own small isolated catchments but neighbour each other west from the 

Flowerdale catchment which holds LFM, AAG, CAS and LAP (Figure 17). Interestingly, LNO is 

geographically separate from SR and LMG existing above many significant barriers to gene flow in 

a separate catchment (Kerrysdale catchment) south of the Flowerdale catchment (Figure 17). 

Two sample sites in NW Loch Maree, LL and LLm are clustered in proximity to the Flowerdale cluster 

of Gairloch (Figures 28 & 29). These sites are also in relatively close proximity geographically 

(Figure 17) and suggests a degree of genetic similarity exist between these sites. However, there 

was an a priori assumption that these sites, did not have gene flow due to a presumed lack of 

hydrological connectivity between these sites. These results might contradict either one or both of 

these assumptions (or perhaps suggest anthropogenic activity) and would at least partially explain 

the high degree of genetic similarity seen between the two regions (NW Loch Maree and Gairloch) 

in earlier results. 

The sea trout clusters (River Ewe sea trout [Group 7-Grey] and the Flowerdale sea trout [Group 6-

Purple]) overlap primarily with NW Loch Maree (Group 1-Red), CW Loch Maree (Group 2-Green), 

one of SE Loch Maree clusters (Group 3-Yellow-southern cluster) and one of the Gairloch clusters 

(Group 4-Blue). But have a clear separation from the other Gairloch cluster, the Flowerdale 

catchment (Group 4-Blue-bottom right) (Figure 30). If these results correspond to the sea trout's 

resident origins, it suggests almost all that were sampled and genotyped, at least in the study, have 

no origins from the Flowerdale catchment and the north side of SE Loch Maree (Group 3-Yellow-

bottom left cluster), except for two sea trout caught in the Flowerdale (Figures 28 & 29). 

Re-analysis of the data with population or reproductive units based on these results might be 

insightful, with the Gairloch hill lochs (LFM, AAG, CAS and LAP [Flowerdale catchment] and LL and 

LLm [from NW Loch Maree]) as a distinct region. SE Loch Maree could be separated into its north 

and southern regions. SR and LGD could be better grouped with NW Loch Maree. LNO/LOI should 

be grouped with CW Loch Maree rather than with Gairloch (Figures 17 & 28). The rest of the sample 

sites could remain as currently grouped; however, larger sample sizes and greater genomic coverage 

would be required to further validate these suggested groupings.  

The hypothesis drawn is that the fragmented clusters may alter the conclusions drawn if the data 

were to be re-analysed in the suggested groupings, however any changes to the conclusions are not 

hypothesised to be substantial at regional range (except for one), and that these results would be 

better used to further inform earlier results at sample site range. The conclusion expected to change 

at regional level is the amount of genetic similarity seen between NW Loch Maree and Gairloch, if 

the Gairloch hill lochs become one total region, they are hypothesised to reduce the genetic similarity 

seen between NW Loch Maree and Gairloch observed earlier in this study.  
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2 . 4 :   C O N C L U S I O N S 

The data in this study suggest population genetic structure is present in the wild brown trout of 

Wester Ross suggesting a non-panmictic population exists and that its current structure may still

show some evidence for having been influenced by a population crash, which led to a genetic 

bottleneck event that may still be detectable. Intra-population genetic diversity appears similar 

between regional populations sampled, however, significant differences were seen in population 

allele frequencies which suggest the Gairloch and NW Loch Maree populations had significant 

departures from Hardy-Weinberg equilibrium in almost all their loci, suggesting they may be under 

the most environmental pressure. The data indicates this may be related to their proximity to the sea, 

which suggests they may also be more reliant on sea trout returns for reproduction. The sea trout 

sampled in this study, seem to be a large admixture of the resident trout populations, with overlapping 

coastal ranges, that appear to mostly originate from Loch Maree. Headwater populations have 

reduced genetic diversity compared to populations downstream which may have been influenced by 

genetic drift in isolation, causing significant genetic variation over distances as low as ~ 4 km over a 

barrier. A trend was observed where the greater the geo-hydrological distances between any two 

resident trout populations the more divergent they were genetically (except between NW Loch Maree 

& Gairloch), though population allele frequencies suggest a degree of introgression may exist 

between all populations that are hydrologically connected. The population structure observed at 

regional level suggest Loch Maree was initially colonised at the NW point from the sea at Poolewe, 

suggesting a sea-to-freshwater colonisation by ancient migrant sea trout is more likely than a 

freshwater-radiation from an inland glacial refuge since the retreat of the last glacial maximum.  
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A P P E N D I C E S 

Any results and analyses, notes or comments that contributed to the study’s results are displayed in 

chronological order as described in the thesis. Some of these may not have been referred to in the 

writing but are displayed nonetheless. Any additional information on tests or results not shown here 

are available on request. 

A P P E N D I X   1   A M P L I F I C A T I O N   O F   B T M P – C U S T O M – P A N E L – 4 :    
R U N S   1 – 4 

 
Appendix 1.1 Agarose gel (1.5%) image of BTMP run 1 in 10 µL reaction volumes. 100 bp ladder was used as 
size standards. 

All samples amplified successfully except for the last 8 (LNF5, TAG, and KER samples). These 
samples were using a different loading dye to the rest which seemed to have failed. A rerun of these 
failed samples with a new loading dye was successful (Appendix 1.1). 

The next 48 specimens were amplified using the same multiplex protocols as run 1. 

 
Appendix 1.2 Agarose gel (1.5%) image of BTMP run 2 in 10 µL reaction volumes. 100 bp ladder was used as 
size standards. 

All samples amplified successfully in run 2, except for specimen LDA20 (Appendix 1.2). The last 48 
specimens were amplified in run 4. 
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Appendix 1.3 Agarose gel (1.5%) image of BTMP run 4 in 10 µL reaction volumes. 100bp ladder was used as 
size standards. 

All specimens amplified successfully except LNO10 and RTA14 (Appendix 1.3), but were amplified 
successfully in reruns (results not shown). 
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A P P E N D I X   2   N O T E S   O N   A L L E L E   S C O R I N G 

The following notes outline defining qualities that led to allele scoring of all 9 loci. 

L O C U S   1   S t r 3 Q U B 

Allele signals, or peaks, have a small merged artefact pattern downstream (left of peak), and are of the similar 
height or intensity. Artefacts peaks are small and present across trance range, but did not impede scoring. Locus 
range was extended from 115-175 to 115-185 bp to incorporate unique alleles found in REW37, and RTA6, 8, 
and 9. 

L O C U S   2   S s a 4 0 7 U o S 

Peaks have one or two artefacts downstream 4 bp apart. Artefacts are present across trace range and may 
overlap with allele calls. This locus has some noise across the range. 

L O C U S   3   C A 0 5 4 5 6 5 a   ( C A 0 5 4 5 6 5 b )  

Peaks are stuttered (have repeating small artefact peaks evenly spaced between them) with 3-6 peaks 1 bp 
apart downstream, often with a small artefact 2 bp upstream. Artefacts at 104 and 114 bp (undescribed 
previously by Keenan et al. 2013), often seen simultaneously and can are present even where there are two 
true peaks. Locus range increased from 101-120 to 101-121 bp to incorporate unique alleles found in REW44 
and SR20. All samples in Keenan et al. (2013) were monomorphic for this locus - in the WR samples, 
monomorphism was only seen in this in locus in 4 out of the 8 populations. 

CA054565a is co-amplified by the CA054565 primer set, and the other co-amplified region CA054565b had 
large noise (artefacts of variable sizes in concentration) signals across traces which made scoring of CA054565b 
unreliable. 

L O C U S   4   C A 0 6 0 1 7 7 

Peaks stuttered by at least one artefact 4 bp downstream. Noise may appear across entire trace. Locus size 
range increased from 234-315 to 234-340 bp to include novel alleles in REW44/45. 

L O C U S   5   m O n e 1 0 8 

Peaks have 2 artefact stuttering 4 bp downstream. A frequent artefact was found at 458 bp which may overlap 
with allele signals at 459. 

L O C U S   6   S s a D 1 7 0 

Alleles have a normal peak pattern with a slight merger at the base and one smaller artefact 4 bp downstream. 
Locus range expanded from 148–217 to 123-258 bp to accommodate peaks outside ranges in LFD8; LSG1, 3, 
4; REW43, 44, 45; SR20, 21; PEW3; COU3; LNO, and LOI. 

L O C U S   7   S a s a – U B A 

A common artefact peak appears at 456 bp and noise between ranges 342-397 bp appeared in some samples. 
Locus range increased to cover novel alleles found in REW44 and 45. 

L O C U S   8   m O n e 1 0 1 

Peaks have a small merger on the peaks base, and are off similar height to one another. Some common noise 
present within bin ranges, but are much smaller than allele peaks on the same trace. A significant ‘free dye’ 
peak is described at 181 bp in Keenan et al. (2013), however the peak at this location appears to behave as an 
allele in the present study. 

L O C U S   9   S s a 4 1 3 U o S 

Allele peaks have a smaller artefact peak 3 bp downstream, Artefact at 236 bp has the same peak stutter as 
allele peaks, is present in every sample and is often the largest peak on the trace, and can overlap true peaks, 
particularly at 232 bp. Locus range increased at the lower range from 225-282 to 220-282 bp to incorporate 
unique alleles in REW45 and SR21. 
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A P P E N D I X   3   A L L E L E S   T A B L E 
        LOCUS 1   LOCUS 2   LOCUS 3   LOCUS 4   LOCUS 5   LOCUS 6   LOCUS 7   LOCUS 8   LOCUS 9 

 Sample ID  Str3QUB  Ssa407UoS  CA054565a  CA060177  mOne108  SsaD170  Sasa-UBA  mOne101  Ssa413UoS 

# Label ID Population 1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

1 AAG 19 Gairloch 132 160  238 242  113 113  266 274  443 447  186 186  315 315  181 181  233 233 

2 AAG 22 Gairloch 132 132  282 282  111 113  274 274  443 443  186 194  296 315  181 181  233 233 

3 AAG 23 Gairloch 132 132  282 282  113 113  266 274  459 459  194 194  296 319  181 181  233 233 

4 AAG 25 Gairloch 132 132  282 282  113 113  266 274  455 455  186 194  315 319  181 181  230 233 

5 AAG 38 Gairloch 132 132  282 282  113 113  270 274  447 455  182 182  307 309  181 181  233 233 

6 ALC 1 NW Loch Maree 160 172  268 278  113 113  262 286  423 423  186 206  NPIL NPIL  177 181  230 233 

7 ALC 2 NW Loch Maree 132 132  238 242  113 113  262 270  451 455  190 218  296 315  181 181  230 230 

8 ALC 3 NW Loch Maree 132 160  242 282  113 113  262 266  431 455  174 186  315 315  177 181  230 233 

9 ALC 4 NW Loch Maree 132 160  238 266  113 113  262 274  451 451  198 218  296 319  177 181  230 230 

10 ALC 5 NW Loch Maree 160 160  238 266  113 113  266 266  451 455  198 198  296 296  181 181  230 233 

11 CAS 1 Gairloch 132 160  234 234  111 113  270 270  443 459  158 158  315 315  181 185  233 233 

12 CAS 2 Gairloch 132 132  234 234  105 113  246 266  NPIL NPIL  190 202  275 296  173 185  230 233 

13 CAS 3 Gairloch 132 132  234 234  113 113  262 266  459 459  202 202  296 315  185 185  230 233 

14 CAS 4 Gairloch 132 160  234 234  113 113  262 266  459 459  158 190  296 315  185 185  233 233 

15 CAS 5 Gairloch 132 160  282 282  113 113  266 270  459 459  158 202  315 315  181 185  233 233 

16 CES 1 Canaird ST 160 172  230 230  113 113  270 274  435 463  182 186  292 292  173 181  230 230 

17 CES 2 Canaird ST 160 160  228 278  113 113  278 278  443 471  162 174  306 306  169 181  230 230 

18 CES 3 Canaird ST 160 172  250 258  113 113  266 270  427 427  166 210  291 306  181 185  230 230 

19 CES 7 Canaird ST 160 160  274 320  113 113  270 270  443 455  182 182  292 306  169 181  230 233 

20 COU 2 SE Loch Maree 172 172  246 250  113 113  270 290  419 467  178 182  291 302  181 181  230 233 

21 COU 3 SE Loch Maree 160 160  246 254  113 113  270 294  423 483  182 222  304 304  181 181  233 233 

22 COU 6 SE Loch Maree 160 160  220 286  113 113  270 278  431 467  190 202  296 296  181 181  230 230 

23 COU 8 SE Loch Maree 160 160  250 266  113 113  262 270  383 463  202 218  304 476  177 177  230 230 
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        LOCUS 1   LOCUS 2   LOCUS 3   LOCUS 4   LOCUS 5   LOCUS 6   LOCUS 7   LOCUS 8   LOCUS 9 
 Sample ID  Str3QUB  Ssa407UoS  CA054565a  CA060177  mOne108  SsaD170  Sasa-UBA  mOne101  Ssa413UoS 

# Label ID Population 1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

24 COU 9 SE Loch Maree 160 160  246 274  113 113  262 262  451 467  194 218  303 309  181 185  230 230 

25 ELF 22 CW Loch Maree 160 160  288 288  111 113  262 262  431 439  190 194  304 304  181 181  233 233 

26 ELF 24 CW Loch Maree 160 160  220 258  113 113  262 278  435 435  194 226  296 304  181 181  230 233 

27 ELF 25 CW Loch Maree 160 172  286 290  113 113  262 278  503 503  174 182  296 306  181 181  230 230 

28 ELF 26 CW Loch Maree 160 160  286 312  113 113  270 270  439 503  194 194  NPIL NPIL  181 181  230 233 

29 ELF 27 CW Loch Maree 160 160  258 286  113 113  262 262  451 483  186 194  296 296  181 181  230 230 

30 FES 1 Flowerdale ST 132 172  258 286  113 113  270 270  439 451  158 186  305 305  181 185  230 230 

31 FES 2 Flowerdale ST 160 160  238 284  113 113  262 274  391 415  182 190  296 305  169 169  230 230 

32 FES 3 Flowerdale ST 160 160  262 284  113 113  270 282  431 443  174 202  304 304  181 185  230 230 

33 FES 4 Flowerdale ST 144 160  278 284  113 113  262 282  379 383  182 186  303 315  173 181  230 230 

34 FES 5 Flowerdale ST 160 172  242 286  111 113  270 270  399 399  182 186  298 298  185 185  230 230 

35 FES 9 Flowerdale ST 160 172  238 274  113 113  262 274  495 495  186 190  291 315  169 181  230 233 

36 FES 10 Flowerdale ST 160 160  238 262  113 113  270 286  427 439  202 210  476 476  169 177  230 230 

37 FES 11 Flowerdale ST 160 160  238 242  113 113  262 270  439 439  158 210  315 315  173 181  230 233 

38 FES 13 Flowerdale ST 160 172  234 284  113 113  270 270  399 399  162 206  292 309  173 181  230 260 

39 FES 44 Flowerdale ST 160 172  234 262  113 113  270 270  439 443  158 162  292 303  173 181  230 233 

40 FES 46 Flowerdale ST 160 160  238 260  113 113  262 270  391 439  190 206  292 292  181 181  230 260 

41 FES 48 Flowerdale ST 132 172  234 286  113 113  270 270  439 451  162 214  305 305  181 181  230 233 

42 GRU 1 SE Loch Maree 160 160  254 272  113 113  270 286  455 471  170 174  296 296  181 181  230 233 

43 GRU 2 SE Loch Maree 132 144  266 286  113 113  262 270  443 487  174 194  304 477  181 181  233 239 

44 GRU 3 SE Loch Maree 144 144  266 286  113 113  262 262  443 487  174 194  304 476  169 181  233 239 

45 GRU 4 SE Loch Maree 144 144  286 304  113 113  262 270  427 443  170 174  296 476  181 181  233 233 

46 GRU 5 SE Loch Maree 160 160  246 270  113 113  262 270  439 487  174 194  307 307  181 181  230 233 

47 KER 1 NW Loch Maree 160 160  220 242  113 113  262 262  411 431  142 186  303 319  181 181  230 233 

48 KER 2 NW Loch Maree 160 160  238 242  113 113  262 266  399 439  142 142  303 303  181 181  233 233 
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        LOCUS 1   LOCUS 2   LOCUS 3   LOCUS 4   LOCUS 5   LOCUS 6   LOCUS 7   LOCUS 8   LOCUS 9 
 Sample ID  Str3QUB  Ssa407UoS  CA054565a  CA060177  mOne108  SsaD170  Sasa-UBA  mOne101  Ssa413UoS 

# Label ID Population 1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

49 KER 3 NW Loch Maree 160 160  242 242  113 113  262 262  411 439  142 174  296 296  177 181  233 248 

50 KER 4 NW Loch Maree 132 160  278 278  113 113  262 266  427 435  142 170  303 303  173 173  230 233 

51 KER 5 NW Loch Maree 160 172  270 278  113 113  262 278  411 427  142 190  303 303  177 181  233 233 

52 LAP 8 Gairloch 132 132  238 282  113 113  270 274  NPIL NPIL  158 194  315 315  181 181  233 233 

53 LAP 19 Gairloch 132 160  274 282  113 113  266 266  411 411  202 206  296 305  181 181  233 233 

54 LAP 29 Gairloch 132 132  282 282  113 113  270 274  NPIL NPIL  186 190  291 315  181 181  233 233 

55 LAP 30 Gairloch 132 132  262 282  113 113  266 274  455 455  186 202  315 319  181 181  233 233 

56 LAP 36 Gairloch 132 160  238 282  113 113  274 274  431 455  186 206  296 319  181 181  233 233 

57 LAS 1 CW Loch Maree 160 160  282 286  113 113  262 262  427 479  182 182  307 307  181 181  230 230 

58 LAS 2 CW Loch Maree 160 172  266 282  113 113  262 278  403 479  182 182  296 296  181 181  230 233 

59 LAS 3 CW Loch Maree 160 160  266 266  113 117  262 266  403 427  182 182  307 307  181 181  230 230 

60 LAS 4 CW Loch Maree 160 160  266 282  113 117  262 262  427 427  182 186  306 306  181 181  230 233 

61 LAS 5 CW Loch Maree 160 160  270 278  113 113  262 262  427 479  182 194  296 296  181 181  230 233 

62 LBR 1 NW Loch Maree 132 172  230 278  113 113  278 282  423 471  174 178  306 306  181 181  230 230 

63 LBR 2 NW Loch Maree 132 160  262 266  113 113  270 282  435 491  186 194  476 476  181 181  233 233 

64 LBR 4 NW Loch Maree 160 172  282 282  113 113  270 270  419 423  186 186  476 480  181 181  230 230 

65 LBR 13 NW Loch Maree 160 172  230 262  113 113  270 270  471 471  178 186  296 296  181 181  233 233 

66 LBR 14 NW Loch Maree 160 172  238 266  113 113  270 282  419 419  186 186  306 476  181 181  233 233 

67 LDA 16 CW Loch Maree 172 172  220 262  113 113  278 278  443 443  194 226  291 304  181 181  230 230 

68 LDA 17 CW Loch Maree 160 160  262 282  113 113  262 278  435 483  182 226  296 306  181 181  230 230 

69 LDA 18 CW Loch Maree 160 172  246 282  113 113  262 278  443 503  190 194  291 296  177 181  230 230 

70 LDA 19 CW Loch Maree 160 160  246 246  113 113  262 262  483 483  194 226  304 304  181 181  230 230 

71 LDA 20 CW Loch Maree 160 160  282 282  113 113  262 278  479 479  194 194  291 296  181 181  230 230 

72 LEV 1 Loch Leven 132 132  226 270  113 113  270 290  NPIL NPIL  166 190  296 296  173 177  233 239 

73 LEV 2 Loch Leven 132 172  250 256  113 113  270 282  427 451  166 170  302 302  169 173  230 266 
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        LOCUS 1   LOCUS 2   LOCUS 3   LOCUS 4   LOCUS 5   LOCUS 6   LOCUS 7   LOCUS 8   LOCUS 9 
 Sample ID  Str3QUB  Ssa407UoS  CA054565a  CA060177  mOne108  SsaD170  Sasa-UBA  mOne101  Ssa413UoS 

# Label ID Population 1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

74 LEV 3 Loch Leven 132 160  242 242  113 113  278 278  371 371  142 166  300 303  173 181  233 260 

75 LEV 4 Loch Leven 160 172  270 270  113 113  270 270  439 439  166 174  301 303  173 189  230 239 

76 LEV 5 Loch Leven 160 160  244 274  113 113  290 290  435 435  170 190  291 296  173 185  239 239 

77 LFD 1 SE Loch Maree 172 172  262 266  113 113  266 270  399 403  206 210  309 309  181 185  230 260 

78 LFD 2 SE Loch Maree 160 172  262 266  113 113  266 270  403 411  198 206  309 309  185 185  260 260 

79 LFD 5 SE Loch Maree 160 172  242 246  113 113  270 274  395 467  206 210  292 309  181 185  230 260 

80 LFD 8 SE Loch Maree 160 172  266 294  113 113  270 270  399 439  214 218  300 478  181 185  230 260 

81 LFD 9 SE Loch Maree 160 160  262 288  113 113  270 274  423 483  210 210  300 328  181 185  230 230 

82 LFM 34 Gairloch 132 160  270 282  113 113  270 270  447 471  182 198  315 315  181 181  233 233 

83 LFM 35 Gairloch 132 132  238 282  113 113  274 274  447 447  186 198  315 319  181 181  233 233 

84 LFM 36 Gairloch 132 160  238 262  113 113  262 274  447 447  190 202  315 315  181 181  233 233 

85 LFM 37 Gairloch 160 160  282 282  113 113  266 274  455 455  186 202  319 319  181 181  233 233 

86 LFM 38 Gairloch 132 132  262 282  113 113  266 274  NPIL NPIL  186 202  315 319  181 181  233 233 

87 LGD 12 Gairloch 172 172  248 274  111 113  262 282  443 443  150 186  306 309  177 181  233 248 

88 LGD 16 Gairloch 160 172  248 270  113 113  274 286  415 415  198 202  303 303  181 181  230 230 

89 LGD 17 Gairloch 156 160  234 234  113 113  282 286  427 447  178 178  291 306  169 181  233 248 

90 LGD 20 Gairloch 160 160  234 244  113 113  270 290  415 423  194 194  303 303  177 181  230 230 

91 LGD 22 Gairloch 132 172  262 270  113 113  262 262  443 471  186 186  292 309  177 181  248 275 

92 LL 68 NW Loch Maree 132 132  270 274  113 113  270 274  443 443  178 186  296 296  181 181  233 233 

93 LL 69 NW Loch Maree 132 160  274 282  113 113  270 270  471 483  182 186  296 296  181 181  233 233 

94 LL 70 NW Loch Maree 132 160  274 274  113 113  270 270  443 447  178 210  296 315  181 181  233 233 

95 LL 72 NW Loch Maree 160 160  270 274  113 113  262 270  443 443  178 186  296 315  181 181  233 233 

96 LL 73 NW Loch Maree 132 132  266 274  113 113  270 270  439 443  178 182  296 315  181 181  233 233 

97 LLm 13 NW Loch Maree 132 132  274 274  113 113  270 270  427 447  178 186  296 296  181 181  233 233 

98 LLm 14 NW Loch Maree 132 160  266 270  113 113  274 274  443 447  182 186  296 296  181 181  233 233 
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        LOCUS 1   LOCUS 2   LOCUS 3   LOCUS 4   LOCUS 5   LOCUS 6   LOCUS 7   LOCUS 8   LOCUS 9 
 Sample ID  Str3QUB  Ssa407UoS  CA054565a  CA060177  mOne108  SsaD170  Sasa-UBA  mOne101  Ssa413UoS 

# Label ID Population 1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

99 LLm 15 NW Loch Maree 132 160  266 270  113 113  270 274  439 451  178 186  297 297  181 181  233 233 

100 LLm 17 NW Loch Maree 160 160  274 274  113 113  270 274  419 471  182 186  296 315  181 181  233 233 

101 LMA 2 River Ewe ST 132 132  238 238  113 113  262 286  439 443  174 174  296 296  169 169  233 263 

102 LMA 3 River Ewe ST 128 128  266 298  113 119  306 338  359 479  126 214  273 273  165 165  227 230 

103 LMG 2 SE Loch Maree 160 172  266 266  113 113  270 270  403 419  190 190  309 309  185 185  230 230 

104 LMG 3 SE Loch Maree 160 160  266 266  113 113  270 270  403 423  206 206  309 309  181 185  230 230 

105 LMG 4 SE Loch Maree 160 160  266 266  113 113  270 270  403 419  190 190  309 309  181 185  230 230 

106 LMG 5 SE Loch Maree 160 172  262 266  113 113  270 270  399 403  190 206  309 309  181 185  230 230 

107 LMG 6 SE Loch Maree 160 172  266 266  113 113  266 270  419 419  190 206  309 309  185 185  230 230 

108 LND 1 NW Loch Maree 132 132  274 282  113 113  262 266  447 447  178 190  296 306  181 181  230 230 

109 LND 4 NW Loch Maree 132 160  258 274  113 113  262 262  415 435  194 230  296 303  181 181  230 233 

110 LND 7 NW Loch Maree 160 172  226 246  113 113  270 282  439 479  158 190  307 307  169 181  233 239 

111 LND 11 NW Loch Maree 148 160  230 238  113 113  262 274  419 463  194 230  298 309  181 181  230 230 

112 LND 12 NW Loch Maree 160 172  238 298  113 113  262 274  447 451  190 194  306 309  181 181  230 230 

113 LNF 1 CW Loch Maree 144 172  238 242  113 113  270 270  427 439  142 186  307 307  181 181  230 233 

114 LNF 2 CW Loch Maree 160 160  242 290  113 113  270 282  443 471  186 186  292 480  181 181  233 260 

115 LNF 3 CW Loch Maree 160 160  246 272  113 113  266 278  403 447  178 186  296 296  181 181  230 233 

116 LNF 4 CW Loch Maree 132 160  230 266  113 113  262 278  403 451  182 202  300 300  181 181  230 233 

117 LNF 5 CW Loch Maree 160 160  236 240  113 113  262 278  439 471  194 206  296 305  181 185  230 233 

118 LNO 10 Gairloch 160 160  242 242  113 113  278 278  NPIL NPIL  142 142  300 303  173 181  260 260 

119 LNO 11 Gairloch 160 160  242 246  113 113  282 282  NPIL NPIL  142 142  300 300  173 181  260 260 

120 LNO 17 Gairloch 160 160  242 246  111 113  282 282  471 499  142 142  300 300  181 181  260 260 

121 LNO 20 Gairloch 160 160  246 254  111 113  278 282  495 495  142 142  300 300  173 181  260 260 

122 LOI 1 Gairloch 160 160  246 246  113 113  278 282  NPIL NPIL  142 142  300 303  181 181  260 260 

123 LSG 1 SE Loch Maree 160 160  242 242  113 113  270 270  403 419  214 218  309 309  181 181  230 230 
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        LOCUS 1   LOCUS 2   LOCUS 3   LOCUS 4   LOCUS 5   LOCUS 6   LOCUS 7   LOCUS 8   LOCUS 9 
 Sample ID  Str3QUB  Ssa407UoS  CA054565a  CA060177  mOne108  SsaD170  Sasa-UBA  mOne101  Ssa413UoS 

# Label ID Population 1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

124 LSG 2 SE Loch Maree 172 172  278 292  113 113  270 270  399 435  206 214  309 309  181 185  230 230 

125 LSG 3 SE Loch Maree 160 160  250 266  113 113  270 270  403 439  206 218  328 328  181 185  230 260 

126 LSG 4 SE Loch Maree 160 160  292 296  113 113  274 274  399 419  210 218  292 328  185 185  230 260 

127 McF 1 NW Loch Maree 160 160  242 270  113 113  262 262  431 435  202 206  303 303  177 181  233 233 

128 McF 2 NW Loch Maree 160 160  240 246  113 113  270 274  423 483  202 214  292 303  181 181  230 230 

129 McF 3 NW Loch Maree 132 172  238 238  113 113  266 270  431 439  142 202  305 305  181 181  233 263 

130 McF 4 NW Loch Maree 132 132  234 274  113 113  262 282  435 463  NPIL NPIL  296 304  181 181  239 263 

131 McF 5 NW Loch Maree 160 160  254 262  113 113  266 266  443 467  186 186  296 476  181 181  230 239 

132 NUR 1 NW Loch Maree 160 160  278 278  113 113  286 286  479 479  186 190  302 302  169 169  233 260 

133 NUR 2 NW Loch Maree 160 160  274 278  113 113  262 286  451 463  186 190  304 304  169 169  233 233 

134 PEW 1 River Ewe ST 160 160  274 274  111 113  270 286  439 507  186 214  306 309  181 181  230 233 

135 PEW 2 River Ewe ST 156 160  220 282  113 113  270 270  391 443  186 194  298 309  177 181  230 233 

136 PEW 3 River Ewe ST 160 172  234 234  113 117  266 282  447 455  170 230  303 315  181 181  230 233 

137 RCA 1 Canaird ST 132 160  238 282  113 113  262 278  447 447  158 170  291 306  173 181  230 230 

138 RCA 2 Canaird ST 172 172  242 254  113 113  270 270  439 463  186 190  302 302  169 185  230 230 

139 REW 1 River Ewe ST 144 172  268 270  111 113  262 274  455 475  186 226  304 305  169 181  230 233 

140 REW 12 River Ewe ST 160 172  276 298  113 113  270 294  419 439  142 190  298 305  181 185  230 233 

141 REW 13 River Ewe ST 132 160  220 230  113 113  266 278  403 427  194 214  292 301  181 181  230 230 

142 REW 14 River Ewe ST 160 172  230 286  113 113  262 266  415 447  186 206  296 306  181 181  230 233 

143 REW 15 River Ewe ST 160 172  250 272  111 113  262 286  451 451  206 222  291 298  181 181  230 233 

144 REW 16 River Ewe ST 132 160  238 274  113 113  274 274  383 475  170 202  304 476  181 181  230 233 

145 REW 17 River Ewe ST 144 160  258 262  113 113  266 270  423 475  182 202  296 305  169 181  230 260 

146 REW 18 River Ewe ST 160 172  246 250  113 113  270 294  471 475  194 202  302 306  181 181  230 230 

147 REW 19 River Ewe ST 144 172  258 266  113 115  270 282  423 431  178 194  296 296  181 181  230 230 

148 REW 20 River Ewe ST 160 172  262 270  113 113  270 270  439 447  210 222  298 306  181 185  230 230 
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        LOCUS 1   LOCUS 2   LOCUS 3   LOCUS 4   LOCUS 5   LOCUS 6   LOCUS 7   LOCUS 8   LOCUS 9 
 Sample ID  Str3QUB  Ssa407UoS  CA054565a  CA060177  mOne108  SsaD170  Sasa-UBA  mOne101  Ssa413UoS 

# Label ID Population 1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

149 REW 21 River Ewe ST 160 172  246 254  113 113  270 270  407 439  178 186  303 476  177 181  230 230 

150 REW 22 River Ewe ST 160 172  250 278  111 113  262 270  475 479  174 210  305 476  181 181  233 233 

151 REW 23 River Ewe ST 160 172  254 270  111 113  262 274  463 467  174 218  304 476  177 177  230 233 

152 REW 24 River Ewe ST 160 160  246 250  111 113  262 270  447 467  178 182  296 309  177 181  260 260 

153 REW 25 River Ewe ST 160 160  242 270  113 113  262 266  403 487  182 190  307 476  181 185  233 260 

154 REW 26 River Ewe ST 160 160  230 270  113 113  262 278  411 471  198 202  296 476  181 181  233 233 

155 REW 27 River Ewe ST 160 160  250 274  113 113  270 274  443 467  174 174  304 476  177 181  230 233 

156 REW 28 River Ewe ST 160 172  262 282  113 117  262 270  423 475  182 190  306 476  181 181  230 230 

157 REW 29 River Ewe ST 160 160  270 270  113 113  266 266  439 491  190 194  304 305  181 181  230 233 

158 REW 30 River Ewe ST 160 172  254 268  113 113  274 278  431 455  182 214  301 305  181 181  233 233 

159 REW 31 River Ewe ST 148 160  258 266  113 115  262 278  419 427  178 186  296 306  169 181  239 260 

160 REW 32 River Ewe ST 144 160  234 270  111 113  274 290  467 467  158 234  305 325  169 177  230 263 

161 REW 33 River Ewe ST 148 160  246 270  113 113  262 270  391 475  202 202  296 476  177 181  230 263 

162 REW 34 River Ewe ST 144 172  266 290  113 113  282 286  443 467  142 214  292 305  169 177  230 239 

163 REW 35 River Ewe ST 160 160  234 258  113 113  266 286  403 487  202 214  304 480  169 181  230 233 

164 REW 36 River Ewe ST 160 172  266 282  113 113  266 270  435 467  186 194  296 307  181 181  260 260 

165 REW 37 River Ewe ST 172 184  242 242  113 113  270 286  403 435  170 194  296 476  181 181  230 233 

166 REW 38 River Ewe ST 148 160  240 240  113 113  270 270  443 459  186 198  301 303  181 181  230 269 

167 REW 39 River Ewe ST 160 172  250 288  113 113  262 294  395 419  178 214  304 305  181 185  230 233 

168 REW 40 River Ewe ST 160 172  266 278  111 113  262 290  427 443  190 214  307 307  181 181  230 230 

169 REW 41 River Ewe ST 148 160  238 246  113 113  262 298  435 447  174 218  298 476  181 181  230 233 

170 REW 42 River Ewe ST 160 172  238 250  113 113  270 290  459 479  186 198  303 303  181 181  230 263 

171 REW 43 River Ewe ST 160 172  246 250  111 113  270 298  451 467  210 230  304 476  181 181  230 263 

172 REW 44 River Ewe ST 128 144  258 266  119 121  330 334  351 491  246 258  321 327  165 169  227 230 

173 REW 45 River Ewe ST 140 144  262 266  117 119  330 338  NPIL NPIL  226 226  315 323  165 169  224 230 
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        LOCUS 1   LOCUS 2   LOCUS 3   LOCUS 4   LOCUS 5   LOCUS 6   LOCUS 7   LOCUS 8   LOCUS 9 
 Sample ID  Str3QUB  Ssa407UoS  CA054565a  CA060177  mOne108  SsaD170  Sasa-UBA  mOne101  Ssa413UoS 

# Label ID Population 1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2 

174 RTA 5 CW Loch Maree 160 172  256 256  113 113  274 282  439 471  182 194  476 476  181 181  230 230 

175 RTA 6 CW Loch Maree 172 184  238 256  113 113  282 290  415 439  170 194  309 309  181 181  230 230 

176 RTA 7 CW Loch Maree 160 172  260 260  113 113  270 270  415 439  182 206  476 476  181 181  230 230 

177 RTA 8 CW Loch Maree 160 184  260 262  113 113  270 270  439 439  170 170  309 476  181 181  230 230 

178 RTA 9 CW Loch Maree 160 184  242 262  113 113  282 290  439 439  194 194  309 309  181 185  230 230 

179 RTA 13 CW Loch Maree 160 160  274 304  113 113  262 290  439 439  182 210  296 307  181 181  230 233 

180 RTA 14 CW Loch Maree 160 172  246 286  113 113  262 270  467 483  194 194  296 477  169 177  233 233 

181 RTA 15 CW Loch Maree 132 172  220 270  113 113  270 286  403 499  162 170  296 296  177 181  230 260 

182 RTA 16 CW Loch Maree 160 172  256 304  113 113  266 282  379 439  182 198  296 307  177 181  230 230 

183 SR 17 Gairloch 160 172  234 270  113 113  262 278  467 499  174 174  302 302  181 181  230 230 

184 SR 20 Gairloch 128 128  242 250  119 121  306 326  499 499  126 222  277 321  169 169  230 230 

185 SR 21 Gairloch 128 128  208 278  113 119  306 338  475 491  126 226  282 321  169 169  221 230 

186 SR 22 Gairloch 160 160  230 250  113 113  262 278  463 499  174 210  302 302  177 181  230 233 

187 SR 23 Gairloch 160 160  250 270  113 113  262 262  423 423  174 190  309 309  181 181  230 275 

188 STD 1 CW Loch Maree 160 160  254 294  113 113  262 266  463 479  178 182  296 306  181 181  233 233 

189 STD 2 CW Loch Maree 160 172  266 282  113 113  266 278  467 479  182 186  296 306  181 181  233 260 

190 STD 3 CW Loch Maree 156 160  240 246  113 113  262 270  423 471  186 214  307 307  181 181  230 239 

191 TAG 1 SE Loch Maree 132 160  242 262  113 113  270 270  423 443  186 202  304 476  177 181  230 230 

192 TAG 2 SE Loch Maree 160 160   246 262   113 113   270 270   387 463   186 190   306 306   169 181   230 230 
Abbreviations: NPIL, No peaks in locus.  
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A P P E N D I X   4   A L L E L E   F R E Q U E N C I E S 

Appendix 4.1 Population unique alleles and their frequencies found within Wester Ross brown trout 

populations. 

NWLM Af  CWLM Af  SELM Af  WCG Af 

148(1) 0.014  184(1) 0.047  292(2) 0.038  128(1) 0.057 

226(2) 0.014  236(2) 0.016  296(2) 0.019  208(2) 0.014 

268(2) 0.014  256(2) 0.063  294(4) 0.019  248(2) 0.029 

298(2) 0.014  260(2) 0.047  383(5) 0.019  244(2) 0.014 

230(6) 0.028  290(2) 0.031  387(5) 0.019  105(3) 0.014 

?(6) 0.028  312(2) 0.016  395(5) 0.019  119(3) 0.029 

298(7) 0.014  117(3) 0.031  487(5) 0.058  121(3) 0.014 

297(7) 0.028  379(5) 0.016  328(7) 0.077  246(4) 0.014 

263(9) 0.028  503(5) 0.063  478(7) 0.019  306(4) 0.029 

Mean: 0.020  162(6) 0.016  Mean: 0.032  326(4) 0.014 

SE: 0.002  Mean: 0.034  SE: 0.007  338(4) 0.014 

SD: 0.007  SE: 0.006  SD: 0.022  459(5) 0.129 
   SD: 0.019     475(5) 0.014 
         495(5) 0.029 
         ?(5) 0.200 
         126(6) 0.029 
         150(6) 0.014 
         275(7) 0.014 
         277(7) 0.014 
         282(7) 0.014 
         321(7) 0.029 
         221(9) 0.014 
         275(9) 0.029 

         Mean: 0.034 
         SE: 0.009 

                  SD: 0.044 

Almost population specific alleles had a frequency < 7 % except for alleles 459(5) and ?(5) which 

had frequencies of 12.9 and 20 % (Appendix 4.1). 
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Appendix 4.2 Population unique alleles and their frequencies found shared pairwise between Wester Ross 

resident trout populations. 

  CWLM Y f X f  SELM Y f X f  WCG Y f X f 
NWLM 240(2) 0.014 0.031  399(5) 0.014 0.096  234(2) 0.014 0.171 

 258(2) 0.014 0.031  419(5) 0.069 0.135  491(5) 0.014 0.014 
 479(5) 0.042 0.109  218(6) 0.028 0.115  158(6) 0.014 0.071 
 480(7) 0.014 0.016  Mean: 0.037 0.115  315(7) 0.097 0.286 
 ?(7) 0.028 0.031  SE: 0.017 0.011  319(7) 0.028 0.114 
 Mean: 0.022 0.044  SD: 0.029 0.019  173(8) 0.028 0.057 
 SE: 0.006 0.017      248(9) 0.014 0.043 
 SD: 0.012 0.037      Mean: 0.030 0.108 
         SE: 0.012 0.035 
         SD: 0.030 0.094 
            

CWLM - - -  144(1) 0.016 0.096  156(1) 0.016 0.014 
     272(2) 0.016 0.019  111(3) 0.016 0.071 
     286(2) 0.078 0.077  499(5) 0.016 0.071 
     288(2) 0.031 0.019  226(6) 0.063 0.014 
     294(2) 0.016 0.019  Mean: 0.027 0.043 
     304(2) 0.031 0.019  SE: 0.012 0.016 
     403(5) 0.078 0.154  SD: 0.023 0.033 
     477(7) 0.016 0.019     
     Mean: 0.035 0.053     
     SE: 0.010 0.018     
     SD: 0.027 0.051     

SELM - - -  - - -  250(2) 0.058 0.043 
         222(6) 0.019 0.014 
         Mean: 0.038 0.029 
         SE: 0.019 0.014 
                  SD: 0.027 0.020 

Alleles and their frequencies that were found shared pairwise within WR resident populations. 

Appendix 4.3 Population unique alleles and their frequencies found shared between Loch Maree resident 

trout populations. 

A(Locus) NWLM CWLM SELM 
220(2) 0.014 0.047 0.019 
266(2) 0.097 0.094 0.308 
435(5) 0.069 0.047 0.019 
439(5) 0.083 0.219 0.058 
451(5) 0.097 0.031 0.019 
483(5) 0.028 0.078 0.038 
170(6) 0.014 0.063 0.038 
214(6) 0.014 0.016 0.058 
304(7) 0.042 0.094 0.115 
476(7) 0.069 0.078 0.077 
239(9) 0.042 0.016 0.038 
Mean: 0.052 0.071 0.072 

SE: 0.010 0.017 0.025 
SD: 0.033 0.056 0.083 

Alleles and their frequencies found shared within all Loch Maree Populations. 
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A P P E N D I X   5   D E P A R T U R E S   F R O M   H A R D Y – W E I N B E R G    

E Q U I L I B R I U M  

Test parameters 
Guo, S. and Thompson, E. (1992) and Levene H. (1949) 
Exact test using a Markov chain (for all Loci): 
Forecasted chain length:1000000 Dememorization steps:100000 

Appendix 5.1 Full list of test results for departures from HWE, calculated using Arlequin 3.5.2.2 

Population Locus n HE HO P-value SD HWE n Permutations 
NWLM 1 36 0.52778 0.59703 0.41649 0.00050 HWE 1001000 
NWLM 2 36 0.77778 0.91041 0.01257 0.00009 DE 1001000 
NWLM 3 This locus is monomorphic     

NWLM 4 36 0.61111 0.79264 0.01823 0.00011 DE 1001000 
NWLM 5 36 0.77778 0.94484 0.00849 0.00008 DE 1001000 
NWLM 6 35 0.85714 0.87909 0.11586 0.00016 HWE 1001000 
NWLM 7 35 0.45714 0.84224 0.00000 0.00000 DE 1001000 
NWLM 8 36 0.19444 0.32042 0.00040 0.00002 DE 1001000 
NWLM 9 36 0.33333 0.56260 0.00640 0.00008 DE 1001000 

  Mean: 0.56706 0.73116 0.07231 0.00013 2/8  
  SD: 0.23360 0.21742 0.14426 0.00016 -  
    SE: 0.08259 0.07687 0.05100 0.00006 -   

CWLM 1 32 0.46875 0.49008 0.57309 0.00056 HWE 1001000 
CWLM 2 32 0.81250 0.95238 0.00672 0.00003 DE 1001000 
CWLM 3 32 0.09375 0.09177 1.00000 0.00000 HWE 1001000 
CWLM 4 32 0.65625 0.77431 0.00156 0.00004 DE 1001000 
CWLM 5 32 0.71875 0.91518 0.00732 0.00005 DE 1001000 
CWLM 6 32 0.71875 0.83532 0.46241 0.00041 HWE 1001000 
CWLM 7 31 0.45161 0.83659 0.00000 0.00000 DE 1001000 
CWLM 8 32 0.18750 0.20486 0.11702 0.00032 HWE 1001000 
CWLM 9 32 0.43750 0.49554 0.47490 0.00050 HWE 1001000 

  Mean: 0.50504 0.62178 0.29367 0.00021 5/9  
  SD: 0.24685 0.31591 0.35451 0.00023 -  
    SE: 0.08228 0.10530 0.11817 0.00008 -   

SELM 1 26 0.30769 0.54374 0.00069 0.00002 DE 1001000 
SELM 2 26 0.80769 0.87406 0.05252 0.00013 HWE 1001000 
SELM 3 This locus is monomorphic     

SELM 4 26 0.50000 0.57391 0.64795 0.00051 HWE 1001000 
SELM 5 26 0.96154 0.93590 0.07573 0.00008 HWE 1001000 
SELM 6 26 0.84615 0.91403 0.01123 0.00009 DE 1001000 
SELM 7 26 0.42308 0.82579 0.00000 0.00000 DE 1001000 
SELM 8 26 0.50000 0.57541 0.16715 0.00035 HWE 1001000 
SELM 9 26 0.38462 0.53318 0.01373 0.00013 DE 1001000 

  Mean: 0.59135 0.72200 0.12113 0.00016 4/8  
  SD: 0.24406 0.18023 0.22014 0.00018 -  
    SE: 0.08629 0.06372 0.07783 0.00006 -   

WCG 1 35 0.34286 0.63271 0.00012 0.00001 DE 1001000 
WCG 2 35 0.60000 0.86253 0.00000 0.00000 DE 1001000 
WCG 3 35 0.22857 0.23768 0.13863 0.00035 HWE 1001000 
WCG 4 35 0.68571 0.86418 0.00055 0.00002 DE 1001000 
WCG 5 28 0.42857 0.91299 0.00000 0.00000 DE 1001000 
WCG 6 35 0.60000 0.90725 0.00000 0.00000 DE 1001000 
WCG 7 35 0.57143 0.87536 0.00000 0.00000 DE 1001000 
WCG 8 35 0.31429 0.47495 0.00499 0.00007 DE 1001000 
WCG 9 35 0.25714 0.61905 0.00000 0.00000 DE 1001000 

  Mean: 0.44762 0.70963 0.01603 0.00005 1/9  
  SD: 0.17023 0.23640 0.04600 0.00011 -  
    SE: 0.05674 0.07880 0.01533 0.00004 -   
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Appendix 5.1 Continued 

Population Locus n HE HO P-value SD HWE n Permutations 
ECLL 1 5 0.60000 0.71111 1.00000 0.00000 HWE 1001000 
ECLL 2 5 0.60000 0.91111 0.05278 0.00020 HWE 1001000 
ECLL 3 This locus is monomorphic     
ECLL 4 5 0.40000 0.77778 0.18880 0.00043 HWE 1001000 
ECLL 5 4 0.25000 0.89286 0.00894 0.00010 DE 1001000 
ECLL 6 5 1.00000 0.82222 1.00000 0.00000 HWE 1001000 
ECLL 7 5 0.60000 0.88889 0.15022 0.00030 HWE 1001000 
ECLL 8 5 1.00000 0.77778 1.00000 0.00000 HWE 1001000 
ECLL 9 5 0.80000 0.82222 0.89836 0.00028 HWE 1001000 

  Mean: 0.65625 0.82550 0.53739 0.00016 7/8  
  SD: 0.26651 0.06923 0.47175 0.00016 -  
    SE: 0.09422 0.02448 0.16679 0.00006 -   

FES 1 12 0.58333 0.56159 0.24980 0.00048 HWE 1001000 
FES 2 12 1.00000 0.90580 1.00000 0.00000 HWE 1001000 
FES 3 12 0.08333 0.08333 1.00000 0.00000 HWE 1001000 
FES 4 12 0.58333 0.62681 0.29470 0.00038 HWE 1001000 
FES 5 12 0.66667 0.88768 0.01334 0.00008 DE 1001000 
FES 6 12 1.00000 0.92391 0.85073 0.00025 HWE 1001000 
FES 7 12 0.41667 0.90580 0.00043 0.00002 DE 1001000 
FES 8 12 0.66667 0.73551 0.16314 0.00035 HWE 1001000 
FES 9 12 0.50000 0.42029 1.00000 0.00000 HWE 1001000 

  Mean: 0.61111 0.67230 0.50802 0.00017 7/9  
  SD: 0.28260 0.28449 0.44400 0.00019 -  
    SE: 0.09420 0.09483 0.14800 0.00006 -   

EST 1 40 0.77500 0.69399 0.00428 0.00006 DE 1001000 
EST 2 40 0.85000 0.94873 0.00726 0.00006 DE 1001000 
EST 3 40 0.40000 0.38797 0.12704 0.00031 HWE 1001000 
EST 4 40 0.85000 0.86519 0.68112 0.00032 HWE 1001000 
EST 5 39 0.94872 0.95937 0.28465 0.00025 HWE 1001000 
EST 6 40 0.90000 0.94494 0.06411 0.00012 HWE 1001000 
EST 7 40 0.87500 0.92215 0.02970 0.00011 DE 1001000 
EST 8 40 0.42500 0.53449 0.01785 0.00011 DE 1001000 
EST 9 40 0.70000 0.67500 0.23764 0.00032 HWE 1001000 

  Mean: 0.74708 0.77020 0.16152 0.00018 5/9  
  SD: 0.20273 0.20822 0.22027 0.00011 -  
    SE: 0.06758 0.06941 0.07342 0.00004 -   

CST 1 6 0.50000 0.59091 1.00000 0.00000 HWE 1001000 
CST 2 6 0.83333 0.98485 0.09100 0.00012 HWE 1001000 
CST 3 This locus is monomorphic     
CST 4 6 0.50000 0.72727 0.25383 0.00038 HWE 1001000 
CST 5 6 0.66667 0.93939 0.08165 0.00016 HWE 1001000 
CST 6 6 0.83333 0.93939 0.40193 0.00041 HWE 1001000 
CST 7 6 0.50000 0.77273 0.19175 0.00039 HWE 1001000 
CST 8 6 1.00000 0.77273 0.86020 0.00033 HWE 1001000 
CST 9 6 0.16667 0.16667 1.00000 0.00000 HWE 1001000 

  Mean: 0.62500 0.73674 0.48505 0.00022 8/8  
  SD: 0.26352 0.26528 0.40276 0.00017 -  
    SE: 0.09317 0.09379 0.14240 0.00006 -   
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A P P E N D I X   6   M U T A T I O N –D R I F T   E Q U I L I B R I U M 

Results calculated using online software Bottleneck v1.2.02 (Cornuet and Luikart, 1999). 

Sign tests suggest all resident populations are in MDE except NW Loch Maree, though the 

standardised differences test suggests it is (Appendix 6.1). Only 8 polymorphic loci were used for 

the standardised differences making it less reliable (Cornuet and Luikart, 1999). 

Appendix 6.1 Results from sign and standardised differences tests 

  Sign test  Standardised differences test 
  n n kE Hexc n k Hdef n k Hexc  P-value MDE   n poly. k T2 P-value MDE 

NWLM 36 4.7 5 3 0.19325 E  8 -3.514 0.00022 D 
CWLM 32 5.33 9 0 0.00031 D  9 -6.745 0.00000 D 
SELM 26 4.71 7 1 0.01021 D  8 -5.812 0.00000 D 
WCG 35 5.25 9 0 0.00038 D  9 -5.801 0.00000 D 
LEV 5 4.47 2 6 0.22644 E  8 -0.145 0.44225 E 
EST 40 5.46 6 3 0.09150 E  9 -4.99 0.00000 D 
FST 12 5.17 5 4 0.32149 E  9 -1.102 0.13516 E 
CST 6 4.03 4 4 0.63627 E  8 NAN NAN NAN? 

Abbreviations: n, number of samples; n kE Hexc, number of loci expected to be in heterozygosity excess; n k Hdef, number of 

loci in heterozygosity deficit; n k Hexc, number of loci in heterozygosity excess; MDE, mutation-drift equilibrium; n poly. K, 

number of polymorphic loci; T2, test statistic. 

Furthermore, the mode shift analysis disagrees with both sign and standardised differences test 

(Appendix 6.2), suggesting the study’s sample size and marker size was insufficient in producing 

reliable results. Therefore these results are cautionary, with the sign test results holding the most 

validity. 

Appendix 6.2 Results from the mode shift test 

  Mode shift 
  n Distribution MDE 

NWLM 36 L E 
CWLM 32 L E 
SELM 26 L E 
WCG 35 L E 
LEV 5 Shifted D 
EST 40 L E 
FST 12 L E 
CST 6 L E 

 

Furthermore, the mode shift analysis contradicts both sign and standardised differences test, 

suggesting the study’s sample size and marker size was insufficient in producing reliable results. 

Therefore these results are cautionary. 
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A P P E N D I X   7   S T A T I S T I C A L   A N A L Y S I S 

The following are all the intermediate and output results from conducting all the statistical analyses 
in this project using Minitab®. Presented in the same chronological order as in the thesis. 

C O M P L E T E   D N A   Q U A L I T Y   A S S E S S M E N T 

A P P E N D I X   7 . 1   D N A   Q U A N T I T Y   -   N O R M A L I T Y   T E S T S 

 Only ethanol-pectoral and frozen-adipose fins had normally distributed DNA yields (ng). 

 
Appendix 7.1.1 Normality test result for Dry-adipose fins DNA yield (ng) = Non-normal distribution 
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Appendix 7.1.2 Normality test result for Ethanol-adipose fins DNA yield (ng) = Non-normal 
distribution 

 

  
Appendix 7.1.3 Normality test result for Frozen-adipose fins DNA yield (ng) = Normal distribution 
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Appendix 7.1.4 Normality test result for Dry-pectoral fins DNA yield (ng) = Non-normal distribution 

 

 
Appendix 7.1.5 Normality test result for Ethanol-pectoral fins DNA yield (ng) = Normal distribution 
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Appendix 7.1.6 Normality test result for Frozen-muscle tissue DNA yield (ng) = Non-normal 
distribution 

 

 
Appendix 7.1.7 Normality test result for Defrosted-muscle tissue DNA yield (ng) = Normal 
distribution 
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A P P E N D I X   7 . 2   D N A   Q U A N T I T Y   -   M A N N – W H I T N E Y   T E S T S 

Mann-Whitney Test and CI: Dry-Adipose, Eth-Adipose  
 
              N  Median 
Dry-Adipose  46   14064 
Eth-Adipose  97    4256 
 
 
Point estimate for η1 - η2 is 9026 
95.0 Percent CI for η1 - η2 is (6567,11869) 
W = 4890.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
The test is significant at 0.0000 (adjusted for ties) 
 
 
Mann-Whitney Test and CI: Dry-Pecto, Eth-Pecto  
 
             N  Median 
Dry-Pecto  100   20199 
Eth-Pecto   13   19188 
 
 
Point estimate for η1 - η2 is 1552 
95.1 Percent CI for η1 - η2 is (-5383,10059) 
W = 5743.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.7021 
The test is significant at 0.7021 (adjusted for ties) 
 
 
Mann-Whitney Test and CI: Fro-Muscle, Def-Muscle  
 
             N  Median 
Fro-Muscle  94     822 
Def-Muscle  26   11756 
 
 
Point estimate for η1 - η2 is -11060 
95.1 Percent CI for η1 - η2 is (-15671,-8794) 
W = 4465.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
The test is significant at 0.0000 (adjusted for ties) 
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A P P E N D I X   7 . 3   D N A   I N T E G R I T Y :   I N T E G R I T Y   I N D E X   R A T I N G S   - 

N O R M A L I T Y   T E S T S 

 All IIR data sets not normally distributed. 

 
Appendix 7.3.1 Normality test result for Dry-adipose fins DNA IIR = Non-normal distribution 

 
Appendix 7.3.2 Normality test result for Ethanol-adipose fins DNA IIR = Non-normal distribution 

Unable to compute normality test for Frozen-adipose fins DNA IIR data – data homogenous. 
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Appendix 7.3.3 Normality test result for Dry-pectoral fins DNA IIR = Non-normal distribution 

Unable to compute normality test for Ethanol-pectoral fins DNA IIR data – data homogenous. 

 
Appendix 7.3.4 Normality test result for Frozen-muscle tissue DNA IIR = Non-normal distribution 
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Appendix 7.3.5 Normality test result for Defrosted-muscle tissue DNA IIR = Non-normal 
distribution 
 

A P P E N D I X   7 . 4   D N A   I N T E G R I T Y   ( I I R )   - 
M A N N – W H I T N E Y   T E S T S 

 Mann-Whitney Test and CI: FM quality, DM quality  
 
             N  Median 
FM quality  98  1.0000 
DM quality  26  0.0000 
 
 
Point estimate for η1 - η2 is 1.0000 
95.0 Percent CI for η1 - η2 is (1.0000,1.0000) 
W = 7254.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
The test is significant at 0.0000 (adjusted for ties) 
 

Mann-Whitney Test and CI: DA quality, DP quality  
 
             N  Median 
DA quality  46  0.5000 
DP quality  95  0.0000 
 
 
Point estimate for η1 - η2 is 0.5000 
95.0 Percent CI for η1 - η2 is (-0.0000,0.4999) 
W = 4266.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
The test is significant at 0.0000 (adjusted for ties) 
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A P P E N D I X   7 . 5   P L A T E   1   &   2 :   D N A   I I R   -   N O R M A L I T Y   T E S T S 

 IIR data is non-parametric 

 

Appendix 6.5.1 Normality test result for Plate 1 Frozen-muscle tissue DNA IIR = Non-normal 
distribution 

 

Appendix 6.5.2 Normality test result for Plate 2 adipose and pectoral fin tissue DNA IIR = Non-
normal distribution 
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A P P E N D I X   7 . 6   P L A T E   1   &   2 :   D N A   I I R   -   M A N N – W H I T N E Y   T E S T 

Mann-Whitney Test and CI: Plate 1 Fro-Mu IIR, Plate 2 IIR  
 
                     N  Median 
Plate 1 Fro-Mu IIR  85  1.0000 
Plate 2 IIR         96  0.2500 
 
Point estimate for η1 - η2 is 0.5000 
95.0 Percent CI for η1 - η2 is (0.5000,0.5000) 
W = 9919.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
The test is significant at 0.0000 (adjusted for ties) 
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A P P E N D I X   7 . 7   D N A   Q U A L I T Y   C O M P A R I S O N   P O S T O N E 

C R Y O – E X T R A C T I O N :   N O R M A L I T Y   T E S T S 

 Both IIR data sets not normally distributed. 

 
Appendix 7.7.1 Normality test result for Automated DNA extractions IIR = Non-normal distribution 

 
Appendix 7.7.2 Normality test result for Additional manual DNA extractions IIR = Non-normal 
distribution 
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A P P E N D I X   7 . 8   D N A   Q U A L I T Y   C O M P A R I S O N   P O S T O N E 

C R Y O – E X T R A C T I O N :   M A N N – W H I T N E Y   T E S T S 

Mann-Whitney Test and CI: Auto ext IIR, Manu ext IIR  
 
               N  Median 
Auto ext IIR  14  1.0000 
Manu ext IIR  15  1.0000 
 
Point estimate for η1 - η2 is 0.0000 
95.3 Percent CI for η1 - η2 is (-0.0001,0.5000) 
W = 236.5 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.2565 
The test is significant at 0.1684 (adjusted for ties) 
 

A P P E N D I X   7 . 9   A L L E L I C   R I C H N E S S   -   N O R M A L I T Y   T E S T S 

 Allelic richness normally distributed in all data sets except for Gairloch. 

 
Appendix 7.9.1 Normality test result for NW Loch Maree AR = Normal distribution 
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Appendix 7.9.2 Normality test result for CW Loch Maree AR = Normal distribution 

 
Appendix 7.9.3 Normality test result for SE Loch Maree AR = Normal distribution 
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Appendix 7.9.4 Normality test result for Gairloch AR = Non-normal distribution 

 
Appendix 7.9.5 Normality test result for Loch Leven AR = Normal distribution 
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Appendix 7.9.6 Normality test result for Ewe sea trout AR = Normal distribution 

 
Appendix 7.9.7 Normality test result for Flowerdale sea trout AR = Normal distribution 
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Appendix 7.9.8 Normality test result for Canaird sea trout AR = Normal distribution 

 

Appendix 7.9.9 Normality test result for coalesced Loch Maree resident trout AR = Normal 
distribution 
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Appendix 7.9.10 Normality test result for coalesced Wester Ross resident trout AR = Normal 
distribution 

 

 

Appendix 7.9.11 Normality test result for coalesced WR and Loch Leven resident trout AR = 
Normal distribution 
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Appendix 7.9.12 Normality test result for coalesced Wester Ross sea trout AR = Normal 
distribution 

 

 

Appendix 7.9.13 Normality test result for coalesced Wester Ross resident and sea trout AR = 
Normal distribution 
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Appendix 7.9.14 Normality test result for coalesced all trout specimens AR = Normal distribution 

 

Appendix 7.9.15 Normality test result for n 58 WR resident trout AR = Normal distribution 
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Appendix 7.9.16 Normality test result for n 58 WR sea trout AR = Normal distribution 

 

A P P E N D I X   7 . 1 0   A L L E L I C   R I C H N E S S   -   T E S T S   F O R 
D I F F E R E N C E S 

One-way ANOVA: NWLM, CWLM, SELM  
 
Method 
 
Null hypothesis         All means are equal 
Alternative hypothesis  At least one mean is different 
Significance level      α = 0.05 
 
Equal variances were assumed for the analysis. 
 
Factor Information 
 
Factor  Levels  Values 
Factor       3  NWLM, CWLM, SELM 
 
Analysis of Variance 
 
Source  DF   Adj SS  Adj MS  F-Value  P-Value 
Factor   2     3.56   1.778     0.04    0.965 
Error   24  1184.44  49.352 
Total   26  1188.00 
 
Model Summary 
 
      S   R-sq  R-sq(adj)  R-sq(pred) 
7.02509  0.30%      0.00%       0.00% 
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Means 
 
Factor  N   Mean  StDev      95% CI 
NWLM    9  10.00   6.93  (5.17, 14.83) 
CWLM    9  10.44   7.32  (5.61, 15.28) 
SELM    9   9.56   6.82  (4.72, 14.39) 
 
Pooled StDev = 7.02509 
 

 
 
Appendix 7.10.1 Boxplot of for NW, CW, and SE Loch Maree populations AR 

 

 

One-way ANOVA: NWLM, CWLM, SELM, WCG  
 
Method 
 
Null hypothesis         All means are equal 
Alternative hypothesis  At least one mean is different 
Significance level      α = 0.05 
 
Equal variances were assumed for the analysis. 
 
Factor Information 
 
Factor  Levels  Values 
Factor       4  NWLM, CWLM, SELM, WCG 
 
Analysis of Variance 
 
Source  DF   Adj SS  Adj MS  F-Value  P-Value 
Factor   3     6.56   2.185     0.05    0.985 
Error   32  1408.44  44.014 
Total   35  1415.00 
 
Model Summary 
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      S   R-sq  R-sq(adj)  R-sq(pred) 
6.63430  0.46%      0.00%       0.00% 
 
Means 
 
Factor  N   Mean  StDev      95% CI 
NWLM    9  10.00   6.93  (5.50, 14.50) 
CWLM    9  10.44   7.32  (5.94, 14.95) 
SELM    9   9.56   6.82  (5.05, 14.06) 
WCG     9  10.67   5.29  (6.16, 15.17) 
 
Pooled StDev = 6.63430 
 

 
Appendix 7.10.2 Boxplot of for NW, CW, and SE Loch Maree, and Gairloch populations AR 

 

Test and CI for Two Variances: WR RES n58, WRST n58 BALANCED 
 
Method 
 
Null hypothesis         σ(WR RES n58) / σ(WRST n58) = 1 
Alternative hypothesis  σ(WR RES n58) / σ(WRST n58) ≠ 1 
Significance level      α = 0.05 
 
Statistics 
                                   95% CI for 
Variable    N  StDev  Variance       StDevs 
WR RES n58  9  8.803    77.500  (6.258, 15.833) 
WRST n58    9  9.636    92.861  (6.799, 17.459) 
 
Ratio of standard deviations = 0.914 
Ratio of variances = 0.835 
 
95% Confidence Intervals 
 
                            CI for 
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Method       Ratio           Ratio 
Bonett  (0.487, 1.732)  (0.237, 2.999) 
Levene  (0.366, 1.842)  (0.134, 3.394) 
 
Tests 
 
                       Test 
Method  DF1  DF2  Statistic  P-Value 
Bonett    1    —       0.12    0.734 
Levene    1   16       0.09    0.765 
 

 

Appendix 7.10.3 Equal variance tests results between WR resident and sea trout with balanced 
sample sizes 

Two-Sample T-Test and CI: WR RES n58, WRST n58 BALANCED 
 
Two-sample T for WR RES n58 vs WRST n58 
 
            N   Mean  StDev  SE Mean 
WR RES n58  9  13.00   8.80      2.9 
WRST n58    9  16.11   9.64      3.2 
 
 
Difference = μ (WR RES n58) - μ (WRST n58) 
Estimate for difference:  -3.11 
95% CI for difference:  (-12.38, 6.16) 
T-Test of difference = 0 (vs ≠): T-Value = -0.72  P-Value = 0.486  DF = 
15 
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A P P E N D I X   7 . 1 1   H E T E R O Z Y G O S I T I E S   ( H E )   -    

N O R M A L I T Y   T E S T S 

 All data sets normally distributed except for Loch Leven and Canaird sea trout. 

 
Appendix 7.11.1 Normality test result for NW Loch Maree HE = Normal distribution 

 

 

Appendix 7.11.2 Normality test result for CW Loch Maree HE = Normal distribution 
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Appendix 7.11.3 Normality test result for SE Loch Maree HE = Normal distribution 

 

 
Appendix 7.11.4 Normality test result for Gairloch (West coast) HE = Normal distribution 
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Appendix 7.11.5 Normality test result for Loch Leven (East coast) HE = Non-normal distribution 

 

 
Appendix 7.11.6 Normality test result for River Ewe sea trout HE = Normal distribution 
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Appendix 7.11.7 Normality test result for Flowerdale sea trout HE = Normal distribution 

 

 
Appendix 7.11.8 Normality test result for Canaird sea trout HE = Non-normal distribution 
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A P P E N D I X   7 . 1 2   E X P E C T E D   H E T E R O Z Y G O S I T I E S   ( H E )   - 

O N E – W A Y   A N O V A 

One-way ANOVA: NWLM, CWLM, SELM  
 
Method 
 
Null hypothesis         All means are equal 
Alternative hypothesis  At least one mean is different 
Significance level      α = 0.05 
 
Equal variances were assumed for the analysis. 
 
Factor Information 
 
Factor  Levels  Values 
Factor       3  NWLM, CWLM, SELM 
 
Analysis of Variance 
 
Source  DF   Adj SS    Adj MS  F-Value  P-Value 
Factor   2  0.00377  0.001884     0.02    0.981 
Error   24  2.29455  0.095606 
Total   26  2.29832 
 
Model Summary 
 
       S   R-sq  R-sq(adj)  R-sq(pred) 
0.309203  0.16%      0.00%       0.00% 
 
Means 
 
Factor  N    Mean   StDev       95% CI 
NWLM    9   0.650   0.317  ( 0.437,  0.863) 
CWLM    9   0.622   0.316  ( 0.409,  0.834) 
SELM    9  0.6418  0.2939  (0.4291, 0.8545) 
 
Pooled StDev = 0.309203 
 



MScRes – The Population structure of wild Scottish brown trout (Salmo trutta L.1758) Vu H. Dang 
of Loch Maree, Wester Ross: Spatial genetic structure after population decline M00262288 

126 

 

Appendix 7.12.1 Boxplot of for NW, CW, and SE Loch Maree populations HE 

 

One-way ANOVA: NWLM, CWLM, SELM, WCG  
 
Method 
 
Null hypothesis         All means are equal 
Alternative hypothesis  At least one mean is different 
Significance level      α = 0.05 
 
Equal variances were assumed for the analysis. 
 
Factor Information 
 
Factor  Levels  Values 
Factor       4  NWLM, CWLM, SELM, WCG 
 
Analysis of Variance 
 
Source  DF   Adj SS   Adj MS  F-Value  P-Value 
Factor   3  0.03862  0.01287     0.15    0.929 
Error   32  2.74114  0.08566 
Total   35  2.77976 
 
Model Summary 
 
       S   R-sq  R-sq(adj)  R-sq(pred) 
0.292678  1.39%      0.00%       0.00% 
 
 
 
 
Means 
 
Factor  N    Mean   StDev       95% CI 
NWLM    9   0.650   0.317  ( 0.451,  0.849) 

SELMCWLMNWLM

1.0

0.8

0.6

0.4

0.2

0.0

D
at

a



MScRes – The Population structure of wild Scottish brown trout (Salmo trutta L.1758) Vu H. Dang 
of Loch Maree, Wester Ross: Spatial genetic structure after population decline M00262288 

127 

CWLM    9   0.622   0.316  ( 0.423,  0.820) 
SELM    9  0.6418  0.2939  (0.4431, 0.8405) 
WCG     9  0.7097  0.2363  (0.5109, 0.9084) 
 
Pooled StDev = 0.292678 
 

 
Appendix 7.12.2 Boxplot of for NW, CW, SE Loch Maree, and Gairloch populations HE 

 
One-way ANOVA: NWLM, CWLM, SELM, WCG, FES, EST  
 
Method 
 
Null hypothesis         All means are equal 
Alternative hypothesis  At least one mean is different 
Significance level      α = 0.05 
 
Equal variances were assumed for the analysis. 
 
Factor Information 
 
Factor  Levels  Values 
Factor       6  NWLM, CWLM, SELM, WCG, FES, EST 
 
Analysis of Variance 
 
Source  DF  Adj SS   Adj MS  F-Value  P-Value 
Factor   5  0.1330  0.02660     0.34    0.885 
Error   48  3.7364  0.07784 
Total   53  3.8694 
 
Model Summary 
 
       S   R-sq  R-sq(adj)  R-sq(pred) 
0.279001  3.44%      0.00%       0.00% 
 
Means 
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Factor  N    Mean   StDev       95% CI 
NWLM    9   0.650   0.317  ( 0.463,  0.837) 
CWLM    9   0.622   0.316  ( 0.435,  0.809) 
SELM    9  0.6418  0.2939  (0.4548, 0.8288) 
WCG     9  0.7097  0.2363  (0.5227, 0.8967) 
FES     9  0.6724  0.2847  (0.4855, 0.8594) 
EST     9  0.7701  0.2082  (0.5831, 0.9571) 
 
Pooled StDev = 0.279001 
 

   

Appendix 7.12.3 Boxplot of for all parametric HE data sets, including NW, CW, SE Loch Maree, 
Gairloch, and the Flowerdale and Ewe sea trout populations 
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A P P E N D I X   7 . 1 3   P O P U L A T I O N   D I F F E R E N T I A T I O N   -   

N O R M A L I T Y   T E S T S 
 Normal distributions seen in all GST measures except for groups All of Wester Ross, All 

residents, and all specimens. 

 

Appendix 7.13.1 Normality test result for Loch Maree populations GST = Normal distribution 

 

Appendix 7.13.2 Normality test result for Wester Ross resident populations GST = Normal distribution 
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Appendix 7.13.3 Normality test result for Wester Ross sea trout populations GST = Normal 
distribution 

 

Appendix 7.13.4 Normality test result for All of Wester Ross trout populations GST = Non-normal 
distribution 
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Appendix 7.13.5 Normality test result for All resident populations GST = Non-normal distribution 

 

Appendix 7.13.6 Normality test result for All specimens GST = Non-normal distribution 
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A P P E N D I X   7 . 1 4   P O P U L A T I O N   D I F F E R E N T I A T I O N – T E S T S   F O R   

D I F F E R E N C E S 

 

Appendix 7.14.1 Equal variance results between WR sea trout and Loch Maree resident GST = 
Equal 

 

Two-Sample T-Test and CI: WRST Gst, LM Gst  
 
Two-sample T for WRST Gst vs LM Gst 
 
          N    Mean   StDev  SE Mean 
WRST Gst  9  0.2850  0.0224   0.0075 
LM Gst    9  0.2840  0.0172   0.0057 
 
 
Difference = μ (WRST Gst) - μ (LM Gst) 
Estimate for difference:  0.00100 

 

  

P-Value 0.588

P-Value 0.826
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Levene’s Test
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Boxplot of WRST Gst, LM Gst

95% CI for σ(WRST Gst) / σ(LM Gst)

95% CI for StDevs

Test and CI for Two Variances: WRST Gst, LM Gst
Ratio = 1 vs Ratio ≠ 1
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Test and CI for Two Variances: LM Gst, WRr Gst  
 
Method 
 
Null hypothesis         σ(LM Gst) / σ(WRr Gst) = 1 
Alternative hypothesis  σ(LM Gst) / σ(WRr Gst) ≠ 1 
Significance level      α = 0.05 
 
 
Statistics 
 
                                95% CI for 
Variable  N  StDev  Variance      StDevs 
LM Gst    9  0.017     0.000  (0.011, 0.035) 
WRr Gst   9  0.017     0.000  (0.009, 0.041) 
 
Ratio of standard deviations = 0.988 
Ratio of variances = 0.976 
 
 
95% Confidence Intervals 
 
                            CI for 
         CI for StDev      Variance 
Method       Ratio           Ratio 
Bonett  (0.422, 2.942)  (0.178, 8.654) 
Levene  (0.421, 2.474)  (0.177, 6.121) 
 
 
Tests 
 
                       Test 
Method  DF1  DF2  Statistic  P-Value 
Bonett    1    —       0.00    0.974 
Levene    1   16       0.00    0.982 
 

 

Appendix 7.14.2 Graphical results from equal variances test between Loch Maree and WR 
resident GST = Not-equal 
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Mann-Whitney Test and CI: LM Gst, WRr Gst  
 
         N   Median 
LM Gst   9  0.28100 
WRr Gst  9  0.24800 
 
Point estimate for η1 - η2 is 0.03800 
95.8 Percent CI for η1 - η2 is (0.01901,0.05700) 
W = 121.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0020 
The test is significant at 0.0020 (adjusted for ties) 
 
 

Test and CI for Two Variances: WR Gst, WRr Gst  
Method 
 
Null hypothesis         σ(WR Gst) / σ(WRr Gst) = 1 
Alternative hypothesis  σ(WR Gst) / σ(WRr Gst) ≠ 1 
Significance level      α = 0.05 
 
Statistics 
                                95% CI for 
Variable  N  StDev  Variance      StDevs 
WR Gst    9  0.033     0.001  (0.012, 0.117) 
WRr Gst   9  0.017     0.000  (0.009, 0.041) 
 
Ratio of standard deviations = 1.906 
Ratio of variances = 3.633 
 
95% Confidence Intervals 
                             CI for 
         CI for StDev       Variance 
Method       Ratio           Ratio 
Bonett  (0.324, 5.753)  (0.105, 33.094) 
Levene  (    *, 4.287)  (    *, 18.378) 
 
Tests 
                       Test 
Method  DF1  DF2  Statistic  P-Value 
Bonett    1    —       0.77    0.379 
Levene    1   16       0.43    0.523 
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Appendix 7.14.3 Equal variance results between All of WR trout and WR residents GST = Not-equal 

Mann-Whitney Test and CI: WR Gst, WRr Gst  
 
         N   Median 
WR Gst   9  0.17900 
WRr Gst  9  0.24800 
 
 
Point estimate for η1 - η2 is -0.06100 
95.8 Percent CI for η1 - η2 is (-0.08100,-0.04201) 
W = 53.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0047 
The test is significant at 0.0047 (adjusted for ties) 
 

Test and CI for Two Variances: WRST Gst, WRr Gst  
 
Method 
 
Null hypothesis         σ(WRST Gst) / σ(WRr Gst) = 1 
Alternative hypothesis  σ(WRST Gst) / σ(WRr Gst) ≠ 1 
Significance level      α = 0.05 
 
Statistics 
                                95% CI for 
Variable  N  StDev  Variance      StDevs 
WRST Gst  9  0.022     0.001  (0.010, 0.062) 
WRr Gst   9  0.017     0.000  (0.009, 0.041) 
 
Ratio of standard deviations = 1.286 
Ratio of variances = 1.655 
 
 
95% Confidence Intervals 
                             CI for 
         CI for StDev       Variance 
Method       Ratio           Ratio 
Bonett  (0.326, 3.857)  (0.106, 14.875) 

P-Value 0.379

P-Value 0.523
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Levene  (0.233, 2.973)  (0.054,  8.839) 
 
Tests 
                       Test 
Method  DF1  DF2  Statistic  P-Value 
Bonett    1    —       0.25    0.616 
Levene    1   16       0.06    0.814 

 

 
Appendix 7.14.4 Equal variance test between WR sea trout and residents GST = Not-equal. 
 
 
Mann-Whitney Test and CI: WRST Gst, WRr Gst  
 
          N   Median 
WRST Gst  9  0.28100 
WRr Gst   9  0.24800 
 
Point estimate for η1 - η2 is 0.03700 
95.8 Percent CI for η1 - η2 is (0.01999,0.05500) 
W = 120.5 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0023 
The test is significant at 0.0023 (adjusted for ties) 
 
 
Mann-Whitney Test and CI: All Gst, WRr Gst  
 
         N   Median 
All Gst  9  0.17100 
WRr Gst  9  0.24800 
 
Point estimate for η1 - η2 is -0.06400 
95.8 Percent CI for η1 - η2 is (-0.08500,-0.03300) 
W = 57.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0134 
The test is significant at 0.0133 (adjusted for ties) 
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Mann-Whitney Test and CI: All Gst, WR Gst  
 
         N   Median 
All Gst  9  0.17100 
WR Gst   9  0.17900 
 
 
Point estimate for η1 - η2 is -0.00300 
95.8 Percent CI for η1 - η2 is (-0.02699,0.02702) 
W = 82.5 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.8253 
The test is significant at 0.8251 (adjusted for ties) 
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A P P E N D I X   7 . 1 5   H E A D W A T E R   P O P U L A T I O N S   & 

B A R R I E R S   T O   M O V E M E N T 

A summary of all P-values from the following tests are presented: 

POPULATIONS ABOVE AND BELOW BARRIERS 
Appendix 7.15.1 Spearman's Rho correlations based on ranked (RK) values for populations above 

and below barriers 

Variable 1 V 2 P-Values r 
Distance to sea AR 0.001 -0.753 
Distance to sea HE 0.001 -0.753 
Life history AR 0.000 0.862 
Life history HE 0.000 0.862 
Above or below barrier AR 0.000 0.867 
Above or below barrier HE 0.000 0.867 

 

Appendix 7.15.2 Mann-Whitney tests for difference based on actual values for populations above 

and below barriers 

Variable 1 V 2 P-Value 95% CI 
Landlocked AR Downstream AR 0.001 1.8 2.9 
Landlocked HE Downstream HE 0.001 0.230 0.365 

 

POPULATIONS WITH NO BARRIERS TO SEA 
Appendix 7.15.3 Spearman's Rho correlations based on ranked (RK) values for populations 

without barriers to the sea 

Variable 1 V 2 P-Value r 
Distance to sea AR 0.249 -0.380 
Distance to sea HE 0.474 -0.242 
Life history AR 0.160 0.454 
Life history HE 1.000 0.000 

 

Appendix 7.15.4 Tests for difference based on actual values for populations without barriers to the 

sea 

Variable 1 V 2 P-Value 95% CI Test 
Resident AR Sea trout AR 0.179 0.9 1.1 MW test 
Resident HE Sea trout HE 0.746 0.059 0.079 T-test 

 
POPULATIONS WITH AND WITHOUT BARRIERS 
Appendix 7.15.5 Spearman's Rho correlations based on ranked (RK) values for populations with 

and without barriers to sea 

Variable 1 V 2 P-Value r 
Distance to sea AR 0.217 -0.281 
Distance to sea HE 0.212 -0.284 
Life history AR 0.000 0.869 
Life history HE 0.000 0.794 
Above or below barrier AR 0.000 0.862 
Above or below barrier HE 0.000 0.859 
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Appendix 7.15.6 Mann-Whitney tests for difference based on actual values for populations with and 

without barriers 

Variable 1 V 2 P-Value 95% CI 
Landlocked AR Downstream AR 0.0001 1.49 2.50 
Landlocked HE Downstream HE 0.0001 0.210 0.337 

 

 

A P P E N D I X   7 . 1 6   H E A D W A T E R   P O P U L A T I O N S   & 

B A R R I E R S   T O   M O V E M E N T   -   N O R M A L I T Y   T E S T S 

 Distances to sea was consistently non-normal, allelic richness and heterozygosity 

distribution is variable 

 
Appendix 7.16.1 Normality test of allelic richness for headwater populations and their downstream 
counterparts = Normal distribution 
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Appendix 7.16.2 Normality test of expected heterozygosities for headwater populations and their 
downstream counterparts = Normal distribution 

 

Appendix 7.16.3 Normality test of distances to sea (km) for headwater populations and their 
downstream counterparts = Non-normal distribution 

1.00.90.80.70.60.50.40.30.20.1

99

95

90

80

70
60
50
40

30

20

10

5

1

Mean 0.5429
StDev 0.1568
N 16
AD 0.858
P-Value 0.021

He

Pe
rc

en
t

3020100-10

99

95

90

80

70
60
50
40

30

20

10

5

1

Mean 7.156
StDev 8.274
N 16
AD 1.087
P-Value 0.005

D. to sea

Pe
rc

en
t



MScRes – The Population structure of wild Scottish brown trout (Salmo trutta L.1758) Vu H. Dang 
of Loch Maree, Wester Ross: Spatial genetic structure after population decline M00262288 

141 

 

Appendix 7.16.4 Normality test of allelic richness for only headwater populations = Non-normal 
distribution 

 

Appendix 7.16.5 Normality test of allelic richness for only the populations downstream of 
headwater populations = Normal distribution 
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Appendix 7.16.6 Normality test of expected heterozygosities for only headwater populations = 
Normal distribution 

 

Appendix 7.16.7 Normality test of expected heterozygosities for only the populations downstream 
of headwater populations = Normal distribution 
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Appendix 7.16.8 Normality test of distances to sea (km) for populations without barriers to sea = 
Not-normally distributed 

 

Appendix 7.16.9 Normality test of allelic richness found in populations without barriers to sea = 
Normally distributed 
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Appendix 7.16.10 Normality test of expected heterozygosities found in populations without barriers 
to sea = Normally distributed 

 

Appendix 7.16.11 Normality test of allelic richness found in resident populations without barriers to 
sea = Not-normally distributed 
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Appendix 7.16.12 Normality test of allelic richness found in anadromous populations without 
barriers to sea = Normally distributed 

 

Appendix 7.16.13 Normality test of expected heterozygosities found in resident populations 
without barriers to sea = Normally distributed 
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Appendix 7.16.14 Normality test of expected heterozygosities found in anadromous populations 
without barriers to sea = Normally distributed 

 

Appendix 7.16.15 Normality test of allelic richness found in populations with and without barriers to 
sea = Normally distributed 
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Appendix 7.16.16 Normality test of expected heterozygosities found in populations with and 
without barriers to sea = Non-normally distributed 

 

Appendix 7.16.17 Normality test of distances to sea (km) found in populations with and without 
barriers to sea = Non-normally distributed 
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Appendix 7.16.18 Normality test of allelic richness found in headwater populations for analysis 
with and without barriers to sea = Non-normally distributed 

 

Appendix 7.16.19 Normality test of allelic richness found in all populations below barriers for 
analysis with and without barriers to sea = Normally distributed 
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Appendix 7.16.20 Normality test of expected heterozygosity found in headwater populations for 
analysis with and without barriers to sea = Normally distributed 

 

Appendix 7.16.21 Normality test of expected heterozygosity found in all populations below barriers 
for analysis with and without barriers to sea = Normally distributed 
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A P P E N D I X   7 . 1 7   H E A D W A T E R   P O P U L A T I O N S   &   B A R R I E R S   T O   

M O V E M E N T   -   T E S T S   F O R   D I F F E R E N C E S 

Mann-Whitney Test and CI: AR_L, AR_downstream  
 
               N  Median 
AR_L           9   2.700 
AR_downstream  7   4.800 
 
 
Point estimate for η1 - η2 is -2.200 
95.6 Percent CI for η1 - η2 is (-2.900,-1.800) 
W = 45.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0010 
The test is significant at 0.0009 (adjusted for ties) 
 

 

Mann-Whitney Test and CI: He_locked, He_downstream  
 
               N   Median 
He_locked      9  0.44200 
He_downstream  7  0.71900 
 
 
Point estimate for η1 - η2 is -0.27600 
95.6 Percent CI for η1 - η2 is (-0.36498,-0.23000) 
W = 45.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0010 
The test is significant at 0.0010 (adjusted for ties) 
 
 

Mann-Whitney Test and CI: AR_R, AR_A  
 
      N  Median 
AR_R  7   4.600 
AR_A  4   4.800 
 
 
Point estimate for η1 - η2 is -0.200 
95.3 Percent CI for η1 - η2 is (-1.100,0.900) 
W = 34.5 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.1859 
The test is significant at 0.1798 (adjusted for ties) 
 

Test and CI for Two Variances: He_R, He_A  
 
Method 
 
Null hypothesis         σ(He_R) / σ(He_A) = 1 
Alternative hypothesis  σ(He_R) / σ(He_A) ≠ 1 
Significance level      α = 0.05 
 
Statistics 
                                95% CI for 
Variable  N  StDev  Variance      StDevs 
He_R      7  0.056     0.003  (0.035, 0.122) 
He_A      4  0.042     0.002  (0.014, 0.247) 
 
Ratio of standard deviations = 1.329 
Ratio of variances = 1.766 
 
95% Confidence Intervals 
                             CI for 



MScRes – The Population structure of wild Scottish brown trout (Salmo trutta L.1758) Vu H. Dang 
of Loch Maree, Wester Ross: Spatial genetic structure after population decline M00262288 

151 

         CI for StDev       Variance 
Method       Ratio           Ratio 
Bonett  (0.395, 3.893)  (0.156, 15.154) 
Levene  (0.134, 6.243)  (0.018, 38.971) 
 
Tests 
                       Test 
Method  DF1  DF2  Statistic  P-Value 
Bonett    —    —          —    0.578 
Levene    1    9       0.55    0.479 
 

 

Appendix 7.17.1 Equal variances test between expected heterozygosities for resident and 
anadromous trout without barriers to sea = Equal 

Two-Sample T-Test and CI: He_R, He_A  
 
Two-sample T for He_R vs He_A 
 
      N    Mean   StDev  SE Mean 
He_R  7  0.6833  0.0557    0.021 
He_A  4  0.6932  0.0419    0.021 
 
Difference = μ (He_R) - μ (He_A) 
Estimate for difference:  -0.0100 
95% CI for difference:  (-0.0785, 0.0585) 
T-Test of difference = 0 (vs ≠): T-Value = -0.34  P-Value = 0.746  DF = 8 
 

Mann-Whitney Test and CI: AR_Locked_2, AR_Downstream_2  
 
                  N  Median 
AR_Locked_2       9  2.7000 
AR_Downstream_2  12  4.6500 
 
Point estimate for η1 - η2 is -1.9000 
95.7 Percent CI for η1 - η2 is (-2.5002,-1.4999) 
W = 45.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0001 
The test is significant at 0.0001 (adjusted for ties) 

P-Value 0.578

P-Value 0.479

Bonett’s Test

Levene’s Test

He_A
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0.7500.7250.7000.6750.6500.6250.600
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Boxplot of He_R, He_A

95% CI for σ(He_R) / σ(He_A)

95% CI for StDevs

Test and CI for Two Variances: He_R, He_A
Ratio = 1 vs Ratio ≠ 1
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Test and CI for Two Variances: He_Locked_2, He_downstream_2  
 
Method 
 
Null hypothesis         σ(He_Locked_2) / σ(He_downstream_2) = 1 
Alternative hypothesis  σ(He_Locked_2) / σ(He_downstream_2) ≠ 1 
Significance level      α = 0.05 
 
Statistics 
                                        95% CI for 
Variable          N  StDev  Variance      StDevs 
He_Locked_2       9  0.069     0.005  (0.041, 0.149) 
He_downstream_2  12  0.047     0.002  (0.033, 0.080) 
 
Ratio of standard deviations = 1.467 
Ratio of variances = 2.152 
 
95% Confidence Intervals 
                             CI for 
         CI for StDev       Variance 
Method       Ratio           Ratio 
Bonett  (0.647, 3.045)  (0.418,  9.275) 
Levene  (0.459, 4.059)  (0.211, 16.476) 
 
Tests 
                       Test 
Method  DF1  DF2  Statistic  P-Value 
Bonett    —    —          —    0.256 
Levene    1   19       0.49    0.491 
 

 

Appendix 7.17.2 Equal variances test between expected heterozygosities for populations above 
and below barriers within all populations above and below = Not-equal 
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Mann-Whitney Test and CI: He_Locked_2, He_downstream_2  
 
                  N  Median 
He_Locked_2       9  0.4420 
He_downstream_2  12  0.7060 
 
Point estimate for η1 - η2 is -0.2665 
95.7 Percent CI for η1 - η2 is (-0.3370,-0.2100) 
W = 45.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0001 
The test is significant at 0.0001 (adjusted for ties) 
 

  
A P P E N D I X   7 . 1 8   H E A D W A T E R   P O P U L A T I O N S   &   B A R R I E R S   T O   

M O V E M E N T   -   C O R R E L A T I O N   A N A L Y S I S 

Spearman Rho: D. to sea RK, AR RK  
 
Spearman rho for D. to sea RK and AR RK = -0.753 
P-Value = 0.001 
 
  

Spearman Rho: D. to sea RK, He RK  
 
Spearman rho for D. to sea RK and He RK = -0.753 
P-Value = 0.001 
 

Spearman Rho: Life H._1, AR RK  
 
Spearman rho for Life H._1 and AR RK = 0.862 
P-Value = 0.000 
 
  

Spearman Rho: Life H._1, He RK  
 
Spearman rho for Life H._1 and He RK = 0.862 
 

Spearman Rho: Barrier RK, AR RK  
 
Spearman rho for Barrier RK and AR RK = 0.867 
P-Value = 0.000 
 
  

Spearman Rho: Barrier RK, He RK  
 
Spearman rho for Barrier RK and He RK = 0.867 
 

Spearman Rho: D. to sea_1, AR_1  
 
Spearman rho for D. to sea_1 and AR_1 = -0.380 
P-Value = 0.249 
 
 

Spearman Rho: D. to sea_1, He_1  
 
Spearman rho for D. to sea_1 and He_1 = -0.242 
P-Value = 0.474 
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Spearman Rho: Life H. RK_1, AR_1  
 
Spearman rho for Life H. RK_1 and AR_1 = 0.454 
P-Value = 0.160 
 

Spearman Rho: Life H. RK_1, He_1  
 
Spearman rho for Life H. RK_1 and He_1 = 0.000 
P-Value = 1.000 
 

Spearman Rho: D. to sea_1_1 RK, AR_1_1_1 RK  
 
Spearman rho for D. to sea_1_1 RK and AR_1_1_1 RK = -0.281 
P-Value = 0.217 
 

Spearman Rho: D. to sea_1_1 RK, He_1_1 RK  
 
Spearman rho for D. to sea_1_1 RK and He_1_1 RK = -0.284 
P-Value = 0.212 
 

Spearman Rho: Life H._1_1 RK, AR_1_1_1 RK  
 
Spearman rho for Life H._1_1 RK and AR_1_1_1 RK = 0.869 
P-Value = 0.000 
 
 

Spearman Rho: Life H._1_1 RK, He_1_1 RK  
 
Spearman rho for Life H._1_1 RK and He_1_1 RK = 0.794 
P-Value = 0.000 
 

Spearman Rho: Barrier_1 RK, AR_1_1_1 RK  
 
Spearman rho for Barrier_1 RK and AR_1_1_1 RK = 0.862 
P-Value = 0.000 

 
Spearman Rho: Barrier_1 RK, He_1_1 RK  
 
Spearman rho for Barrier_1 RK and He_1_1 RK = 0.859 
P-Value = 0.000 
 

 


