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Abstract —There is a category of biped robots that are 

equipped with passive or un-actuated ankles, which we call 

Passive-Ankle Walkers (PAWs). Lack of actuation at ankles is a 

disadvantage in the fast walking of PAWs. We started this 

study with an intuitive hypothesis that rhythmic sway of torso 

may enable faster walking in PAWs. To test this hypothesis, 

firstly, we optimized the rhythmic sway of torso of a simulated 

PAW model for fast walking speed, and analyzed the 

robustness of the optimal trajectories. Then we implemented 

the optimal trajectories on a real robot. Both the simulation 

analysis and the experimental results indicated that optimized 

torso-swaying can greatly increase the walking speed by 40%. 

By analyzing the walking patterns of the simulated model and 

the real robot, we identified the reason for the faster walking 

with swaying-torso: The rhythmic sway of torso enables the 

robot to walk with a relatively large step-length while still 

keeping a high step-frequency.  
Index Terms— Biped robots, legged locomotion.  

I. INTRODUCTION 

In human walking, the ankle of the stance leg pushes off at 

the end of the stance phase. This powerful push-off adds net 

work in each walk step to offset the energy loss caused by the 

heel-striking of the swing leg [1][2]. Hobbolen and Wisse 

studied a simulation model and a prototype biped robot, and 

found that ankle push-off can increase the walking speed 

effectively [3]. Dean and Kuo’s simulation analysis of a 

biped model indicated that the overall walking speed 

increases roughly with the square root of this push-off 

magnitude [4]. So, the ankle push-off plays a critical role in 

the fast walking of human and biped robots. 

However, not all walking robots can employ ankle 

push-off for their fast walking. There is a category of biped 

robots whose ankle joints or feet are not actuated. Here we 

call them Passive Ankle Walkers (PAWs). Most of the 

PAWs are equipped with pointed or curved feet and are 

planar bipeds [5][6][7][8][9]. These planar biped robots are 

used to study the forward movement of the robot in the 

sagittal plane. Their movements are constrained in the 

sagittal plane usually by a boom structure. The lack of 

actuation at the ankles of PAWs is a disadvantage in their fast 

walking. Fig. 1 illustrates the movement of the robot torso 

during the stance phase of a passive-ankle walker. During the 

first half of the stance phase (form A to B in Fig. 1), the robot 
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torso moves like an inverted pendulum that is climbing up to 

its apex using only its inertia, and thus the speed of the 

Centre of Mass (CoM) is decreasing from A to B, which we 

call “the braking phase”. During the second half of the stance 

phase (from B to C in Fig. 1), the robot is falling down and its 

speed of the CoM is increasing, which we call “the 

accelerating phase”.  

 
Fig.1 Illustrations of the braking-and-accelerating effect in PAW’s walking. 

If we want a PAW to walk fast, we must attenuate the 

drastic braking-and-accelerating effect. To achieve this, we 

propose a new strategy in this study: Optimizing the 

rhythmic say of a high torso to facilitate fast biped walking.  

In most of the biped/humanoid robots (including the robot 

in this study), a large proportion of the mass is located at the 

torso. Therefore, the movement and pose of the torso can 

fundamentally influence the dynamics of the walking gait. 

Unlike in many other biped/humanoid robots that keep their 

torsos upright stably, the torso of our robot is allowed to 

sway forward and backward. If being optimized properly, 

this rhythmic sway of the torso might somewhat compensate 

the braking-and-accelerating effect in PAWs. Thus, the 

braking-and-accelerating effect might be mitigated by 

rhythmic sway of the torso. We postulate that the proposed 

strategy might enable the PAW to walk with a large 

step-length while still keeping a high step-frequency. In this 

way, the PAW's walking speed may be increased greatly. 

Of course, it’s not new to study the movement of the torso 

in biped robots. How the mass distribution and movement of 

the torso could affect various aspects of biped walking have 

been studied in-depth in the literature. Some studies have 

analyzed the effects of torso (or upper body) on the stability 

[11] [12] [13] [14] [15], robustness [15] [16], energy 

efficiency [13] [15], and motion smoothness [17] of biped 

walking robots. A few other studies have also considered 

how to exploit the torso movement to improve the 

performance of humanoid/biped robots. For example, Ugurlu 

et al used torso rotation in the ground plane to compensate 

the undesired yaw motion of a humanoid robot [18].  Kang et 
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al optimized the torso motion to compensate the deviation 

from the ZMP stability criterion in a biped robot [19]. Dallali 

et al designed a ZMP feedback controller that utilizes the 

upper body to balance the humanoid robot [20]. 

Kappaganthu et al designed a novel half-passive biped. Only 

its torso is actuated and all other joints are passive [21]. They 

optimized the torso movement in terms of energy cost, to 

drive the robot’s stable walking.  

However, how the rhythmic sway of torso could affect the 

walking speed of biped robots has not been analyzed in the 

literature.  

Grizzles’ group has found that the walking speed of planar 

biped robots could be increased by simply leaning its torso 

forward at a fixed angle [6][25]. In this study we consider a 

more dynamic movement of the torso – rhythmically 

swaying forward and backward during a gait cycle. We ask 

us this question: Can this rhythmic sway of torso increase the 

walking speed of passive ankle walkers? If it can, what is the 

reason?  

The rest of the paper is organized as follows. In Section II, 

we briefly describe the mechanical design and the controller 

of the robot. Section III presents the dynamics model of the 

robot and the optimization process. Section IV analyzes the 

walking speed and robustness of the optimal walking 

patterns. The experimental results of the prototype robot are 

summarized in Section V. Finally, Section VI concludes the 

paper by pointing out the drawbacks of the proposed 

strategy.  

II. THE ROBOT AND ITS CONTROLLER 

A. Mechanical structure of the robot 

The actuators, the sensors, and the leg-length of the robot 

are similar to that of another robot designed in our previous 

study [7]. However, there is one fundamental difference 

between them: In order to investigate the effects of the torso 

on walking speed, the robot in this study is equipped with a 

much higher torso, which makes the robot’s total weight 

twice larger than that of our previous design. Due to this 

heavy and high torso (see Fig. 2), the dynamics of the robot is 

critically changed and becomes more complex. The new 

robot would not be able to walk fast with the controller of our 

previous study in [7]. The robot is shown in Fig. 2. For its 

details, please see [33]. 

 
Fig. 2 The robot (A), and its boom structure (B). The encoder for measuring 

the walking speed is installed at the Z axis of the boom.  

B. The controller  

Each leg of the robot has two phases: stance phase and 

swing phase. At each joint, there is a PD controller to drive 

the joint to track the planned trajectory. At the inter-leg level 

and the step-to-step level, there is a simple state machine that 

switches the phases of each leg whenever the swing leg lands 

[33]. This kind of event-based step-to-step control or 

phase-resetting can stabilize the walking gait of the real robot 

even when the planned or desired trajectories are not stable. 

In this study, because the desired trajectories obtained in the 

optimization of a simulated model will be implemented on 

the real robot, un-modeled dynamics and inevitable 

disturbances in real system could undermine the stability. 

This step-to-step control will be very helpful to the stability 

and robustness of the real robot. The desired trajectories of 

the stance phase and swing phase will be defined by the 

optimization process in the next section. 

III. OPTIMIZATION PROCESS 

In this section, we first construct the trajectories of the 

robot movement with polynomial functions and the 

dynamics model. Then we optimize the trajectories in terms 

of walking speed. The optimization method used in this 

study is an nonlinear constrained optimization algorithm, 

which were popularly applied on the trajectory planning of 

biped walking robots [5][6][32][29]. The method will be 

briefly described in sub-section III.B. Details of this method 

is available in [32]. 

A. Constructing the joint trajectories 

The kinematics model of the planar biped robot used in the 

simulation is shown in Fig. 3. The mechanical structure, the 

size and mass of each link, and the controller are the same as 

that of the real robot described in the previous section. The 

frictions at joints are ignored and the duration of double 

support phase is assumed to be infinitesimal. The biped robot 

is a hybrid dynamic system involving three stages in each 

gait cycle:  

(1) Single support stage: one foot is on the floor while the 

other foot is swing forward. The system is in a continuous 

state during this phase.  

(2) Landing stage: when the swing heel lands, it has impact 

with the floor. This is a discrete transient phase. 

(3) Double support stage: both feet are on the floor. 

Following many other studies on the simulation of 

passive-ankle walker [3][4][5][6][7][9], this transient stage 

is assumed to be instantaneous and takes no time. 

Before we can design the optimization process, we need to 

formulate the robot’s movement with equations and 

variables that will be used as the optimization parameters. 

Each biped walking gait cycle includes two walking steps, 

which have the same movement trajectories at each joint 

except that the legs swap their roles. The stance leg of the 

first walking step becomes swing leg in the second step. 



  

 

Therefore, in order to reduce the number of optimization 

variables, we only need to consider one walking step when 

constructing the joint trajectories.  

 
Fig. 3. The kinematics model of the robot used in simulation. The location of 

the center of mass of each link is indicated.  

For fully actuated biped robots, the trajectories of all joints 

and the duration of a walking step can be arbitrarily chosen in 

a reasonable range. This is not the case of the passive-ankle 

walkers. Due to the un-actuated ankle, the trajectory of the 

stance leg and the duration of the walking step are 

determined by the natural dynamics of the robot, and can not 

be freely chosen. Below, we describe how the joint 

trajectories of the robot model are constructed in each of the 

stages of one walking step.  

Single support stage 
The single support stage starts immediately after the swing 

leg lands. As the knee of the stance leg is locked during this 

stage, total number of degrees of freedom is 4. The origin of 

the frame is set at the location where the previous swing heel 

touches the floor (see Fig.3). When the swing shank reaches 

the mechanical stop, a strike can occur if the speed is not 

zero. We will set a constraint in the trajectory planning to 

avoid this strike of the swing knee joint. With the Lagrange 

method, the equations that govern the motion of the 

simulated robot in its single-support stage are described as: 

𝐷(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞) + 𝐺(𝑞) = 𝜏̇                 (1) 

where Tq ],,,[ 321  is a vector describing the 

configuration of the robot (for definition of
321 ,,,  , see 

Fig. 3), D(q) is a 4×4 inertia matrix, 𝐶(𝑞, 𝑞)̇is a 4×1 vector of 

centripetal and coriolis forces, G(q) is a 4 × 1 vector 

representing gravity forces, 
T],,,[ 3210   ,  

3210 ,,,  are the torques applied on the stance foot, the 

stance hip, the swing hip, and the swing knee joints, 

respectively (see Fig.3). Because the ankle is fixed and there 

is no actuator at foot, the torque around the ground contact 

point of the stance foot is zero ( 00  ). To separate the 

un-actuated joint from the actuated ones, let 
T],,[ 321  represents the three actuated joints (see 

Fig.3).  

Similar to [29] and many other optimization studies on biped 

walking robots, we use 2-knot cubic spline functions [22] to 

construct the trajectories of the three actuated joints, Θ.  
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Where T is the duration of the walking step. Tm=T/2, is the 

time for the intermediate configuration 𝜃𝑖(𝑇𝑚). In the hip 
joints (i=1, 2), this cubic spline function can be uniquely 

defined by specifying initial position and velocity 

( 𝜃𝑖(0), 𝜃̇𝑖(0) ), intermediate position and velocity 

( 𝜃𝑖(𝑇𝑚), 𝜃̇𝑖(𝑇𝑚) ), and final position and velocity 

(𝜃𝑖(𝑇), 𝜃̇𝑖(𝑇)). The final velocity of hip joints is zero.  

During the single support stage, the knee joint of the swing 

leg (𝜃3in Fig.3) has two sub-phases, flexion and extension. 

Each of these sub-phases is described with a set of spline 

functions like in (2). Their time durations are Te (for 

extension) and Tf (for flexion), respectively. Of course, 

TTT fe  . The initial and final position of the swing knee 

joint, 𝜃3(0) and 𝜃3 (𝑇), are set at zero, because the leg is 

straight at the beginning and the end of the walking step. To 

avoid the knee strike, we also have, 𝜃̇3(0) = 𝜃̇3(𝑇) = 0. The 

final state of the flexion phase, 𝜃3,𝑓 (𝑇𝑓) and 𝜃̇3,𝑓(𝑇𝑓), and the 

initial state of the extension phase, 𝜃3,𝑒(0) and 𝜃̇3,𝑒(0), are 

the same. 𝜃̇3,𝑓(𝑇𝑓) is 0. The intermediate states of the flexion 

phase (𝜃3,𝑓 (𝑇𝑓/2) and 𝜃̇3,𝑓(𝑇𝑓/2)) and the extension phase 

( 𝜃3,𝑒(𝑇𝑒/2)  and 𝜃̇3,𝑒 (𝑇𝑒/2) )will be the optimization 

parameters.  

Once )(t is constructed as in (2), the evolution of the 

un-actuated ankle joint,  , can be computed by integrating 

the first equation of equation (1), which can be re-written as, 

𝐷1(𝜙, Θ)𝜙̈ + 𝐶1(𝜙, Θ, 𝜙̇, Θ̇) + 𝐺1 (𝜙, Θ) = 0        (3) 

Where D1, C1, and G1 are the first row of D, C, and G in 

equation (1), respectively.  

Due to the relatively heavy torso, the two hip joints are 

coupled severely to each other, and thus higher PD gains are 

used in robot experiments at hip motors. However, as the 

gains in the real robot system are limited by the maximum 

torque of the motors, the real robot joints can not perfectly 

track the planned trajectories as in the simulation. This is part 

of the reason for the discrepancy between the real robot 

experimental results and the simulation results.  

After q is defined or computed by using equation (2) and 

(3), the ground reaction forces can be computed using the 

acceleration of the centre of mass of the robot. The position 

of the centre of mass of the robot can be formulated as a 

function of q (see Fig.3): 

[
𝑥𝑐

𝑧𝑐
] = [

𝑓𝑥(𝑞)
𝑓𝑧(𝑞)

]                               (4) 

Thus, the ground reaction forces at the x and z axis can be 

calculated as: 

[
𝐹𝑥

𝐹𝑧
] = 𝑚 [

𝑥𝑐̈

𝑥𝑧̈
] + 𝑚𝑔 [

0
1

]                       (5)  

where m is the total mass of the robot.   

 



  

 

Landing stage 

At time t=T, the swinging foot lands and the transient 

landing stage starts. During this stage, the configuration of 

the robot, q, doesn’t change. The strike of the swing heel is 

assumed to be an inelastic impact. This assumption implies 

the conservation of angular momentum of the robot just 

before and after the strikes. Thus the value of 𝑞̇ just after the 

strikes   

, (𝑞̇
+)  ,  can be computed using its value just before the 

strikes,  
𝑞̇−

. So, we have,  

𝑞̇
+

= 𝐻(𝑞−, 𝑞̇
−

)                                (6) 

Where 𝑞− = [𝜙(𝑇), Θ(𝑇)]𝑇
, and 𝑞̇

−
= [𝜙̇(𝑇), Θ̇(𝑇)]𝑇

. 

𝜙(𝑇) can be calculated with Θ(𝑇), because at time t= T, 

both leg are straight and touch the floor.  

Just after the landing of the swing foot, the two legs swap 

their roles. As described above, [𝑞(0), 𝑞̇(0)]𝑇is the initial 

state of the robot when current walking step starts, and 

[𝑞+, 𝑞̇+]
𝑇

is the initial state of the next walking step. 

Because the walking gait is cyclic, we have the following 

cyclic constraint:         

[
𝑞(0)
𝑞̇(0)

] = 𝐸 [
𝑞+

𝑞̇+]                           (7)  

Where E is a matrix representing the role-swapping of the 

two legs.  

B. Process of optimization 

As described above in IIIA, using equations (1)—(7), the 

evolution of the robot state during one walking step is 

completely defined by the parameters in Table 1. 

Table 1. The optimization parameters 
Duration of the single support stage T 

Duration of the flexion phase of swing 

knee 

Tf 

Final position of hip joints )(Ti , i=1, 2 

Intermediate state of hip joints  𝜃𝑖 (𝑇𝑚), 𝜃̇𝑖(𝑇𝑚) i=1,2 

Intermediate state of flexion phase in 

swing knee 
𝜃3,𝑓(𝑇𝑓/2) 𝜃̇3,𝑓(𝑇𝑓 /2) 

Intermediate state of extension phase 

in swing knee 
𝜃3,𝑒(𝑇𝑒/2) 𝜃̇3,𝑒(𝑇𝑒/2) 

Final position of the flexion phase in 

swing knee 
)(,3 ff T  

Final velocity of the un-actuated ankle 

joint 
𝜙̇(𝑇) 

But, how to select the values of these parameters in Table 

1 to generate fast and stable walking patterns? We formulate 

this as a constrained nonlinear optimization problem: find the 

values of the parameters in Table 1 that maximize the 

walking speed:  

𝐽 =
𝑥(𝑇)

𝑇
                                     (9) 

Where x(T) is the position of the swing foot at time t = T. The 

optimization problem is solved numerically using the 

fmincon function in Matlab. It uses a Sequential Quadratic 

Programming (SQP) method to find the optimum of the cost 

function in equation (9) under the several nonlinear 

constraints (e.g., maximal torque/speed, step-length) and a 

stability criterion. In each iteration, estimated values of the 

optimization parameters listed in Table 1 are used to 

compute the trajectories of the robot according to equations 

(1)-(3), and thus getting the estimation of the optimization 

parameters for the next iteration. When the algorithm 

converges, the optimal values of the optimization parameters 

are found.  

The optimization process is run repeatedly with different 

step-angles (step-length). Firstly, to get walking patterns 

with upright-torso, we run the optimization process with a 

further constraint: during the walking step, the angle between 

the torso and the vertical line must be lower than 2 degree. 

Secondly, to get the swaying-torso walking patterns, we 

remove this constraint and re-run the optimization process.  

IV. RESULTS OF THE OPTIMIZATION  

A. Fast walking patterns obtained in optimization 

The result of the optimization process is shown in Fig.5. 

The range of the step-length that can generate stable walking 

patterns in the swaying-torso walking is much larger than in 

the upright-torso walking (see Fig.5). The fastest speed of the 

swaying-torso walking is 40% higher than that of the 

upright-torso walking (see Fig.5). To show more features of 

the fast walking patterns with and without torso-swaying, we 

look at the following three typical walking patterns: 

(1) The fastest walking with swaying-torso (point a in Fig.5). 

(2) The fastest walking with upright-torso (point b in Fig.5). 

(3) The fastest walking with upright-torso and largest 

allowable step-length (point c in Fig.5). 

The stick diagram and the instantaneous speeds of the mass 

centre of torso in these three walking patterns are shown in 

Fig. 6.  

As revealed in Fig.5 and Fig.6B, the strategy for fast 

walking with upright-torso is to have a smaller step-length 

(see Fig.5) but high step-frequency (see Fig.6B). This is 

consistent with the results of our previous study on another 

biped robot [7]. For comparison, some key features of the 



  

 

three walking patterns are also listed in Table 2. As shown in 

Table 1 and Fig.6, the step-frequency of the fastest 

swaying-torso walking is nearly as high as that of the fastest 

upright-torso walking. But its step-length is much larger (see 

Table 2). This is the reason that the swaying-torso walking is 

faster.  

 
Fig.5  The fastest walking speeds got from the optimization process (see 

fig.4) at different step-angle. Three typical walking patterns corresponding 

to the point a, b, and c are also shown. For detailed comparison of these 

walking patterns, see the text and Fig.6.  

 

 
Fig. 6  Stick-diagrams and instantaneous walking speeds of the three typical 

walking patterns: (A) fastest swaying-torso walking (point a in Fig.5); (B) 

fastest upright-torso walking (point b in Fig.5); (C) upright-torso walking 

with the largest step-length (point c in Fig.5).  

V. PROTOTYPE EXPERIMENTS 

The optimal trajectories with swaying or upright torso and 

various step-lengths (i.e., the points in Fig.5) are applied on 

the real robot under its controller. If the robot can walk for 

one round in the arena without falling (see Fig.2), the 

walking pattern is regarded as stable. The overall walking 

speed of the robot is estimated simply by measuring how 

long it takes for the robot to walk one round in the arena (see 

Fig. 2). As shown in Fig.10, the range of step-lengths that can 

have stable walking in the real robot is smaller than in the 

simulated robot. Moreover, the walking speed of the real 

robot is higher than that of the simulated one. Despite these 

discrepancies, the relationship between the speed and the 

step-length in the real robot has the same trend as in the 

simulated one (see Fig.10). For example, the fastest walking 

patterns have a large step-length with swaying-torso (point a 

in Fig.10), and small step-length with upright-torso (point b 

in Fig.10).  

 
Fig. 10 The black lines are the walking speed of the stable swaying-torso 

walking and upright-torso walking with various step-lengths (step-angle 

here) in the real robot. For comparison, the walking speed curves of the 

simulated robot shown in Fig.4 are also put here in blue color.  

 

Snapshots of the fastest walking gait with swaying-torso 

are in Fig. 13. It shows the rhythmic sway of the torso during 

a walking step. For legged robots, a video may tell much 

more than the data could. Please watch a video footage of the 

fastest swaying-torso walking at, 

https://sites.google.com/site/dadatwtw/Home/FASTBIPED.avi?att

redirects=0&d=1  

 
Fig. 13 A series of snapshots of the fastest walking with swaying-torso.  

VI. CONCLUSION AND DISCUSSION 

The torso’s effects on various aspects of biped walking 

have been studied in the literature. This study was started 

with an intuitive hypothesis: Rhythmic sway of torso might 

enable faster walking in under-actuated bipeds. Firstly, we 

have simulated a passive-ankle walker model and analyzed 

how the optimized swaying movements of torso affect its 

walking speed and robustness. Then we applied the optimal 

trajectories on a real robot. Despite the reality gap between 

the simulation and the real robot’s experimental results, both 

of them indicated that the optimized torso-swaying can 

greatly increase the walking speed of passive-ankle walkers. 

Our analysis of the simulation results and the experimental 

https://sites.google.com/site/dadatwtw/Home/FASTBIPED.avi?attredirects=0&d=1
https://sites.google.com/site/dadatwtw/Home/FASTBIPED.avi?attredirects=0&d=1


  

 

data also revealed the reason for the fast walking with 

swaying-torso: The rhythmic sway of torso mitigates the 

braking-and-accelerating effect of large-step walking in 

PAWs, thus enabling the robot to walk with a relatively large 

step-length while still keeping a high step-frequency.  
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